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COVERING SEMIGROUPS

HAROLD DAVID KAHN

A topological semigroup is a Hausdorff space S together
with a continuous associative multiplication m: S X S^> S. The
lifting of the group structure of a topological group to its
simply connected covering space is a technique used in the
theory of Lie groups. In this paper we investigate the lifting
of the multiplication of a topological semigroup S to its
simply connected covering space (S, φ). A general theory is
developed and applications to examples are discussed.

1* Covering spaces* Let S and S be locally connected topologi-
cal spaces and φ: S —> S a continuous map. If C is a subset of S,
then C is evenly covered if φ \ C: C —• C is a homeomorphism for each
component C of φ~ι(C). If each point in S has an evenly covered
open neighborhood, then φ is called a covering map. If φ is a
covering map and S is connected, then (S, φ) is called a covering
space of S. A covering space is called trivial if the covering map
is a homeomorphism, and if S admits only trivial covering spaces,
then S is called simply connected. If (Slf φ±) and (S2, φ2) are simply
connected covering spaces of S and ψ: Sx —> S2 is a homeomorphism
such that φ2oijr = φί9 then ψ is called a covering space isomorphism.
An automorphism of (S, φ) is an isomorphism of (S, <p) with itself.

LEMMA 1. Let (S, φ) be a covering space of S and T a con-
nected space. If a, β: T—+S are continuous maps with φ°a — φ°β,
then a and β agree everywhere or nowhere.

LEMMA 2. Let P be a topological space. Then P is simply
connected if and only if (a) P is connected and locally connected and
(b) if φ\ S —> S is a covering map, ψ:P—»S is continuous, p is in
P, s is in S with ψ{p) = φ(s)9 then there exists unique continuous
ψ: P—+S such that ψ = φof and ψ(p) = s.

LEMMA 3. Let (P, ψ) and (S, φ) be covering spaces of S with
p in P and s in S with ψ(p) = φ{s). If P is simply connected and
ψ:P—+S is the unique lifting of ψ with ψ{p) = s, then ψ is a
covering map.

LEMMA 4. // (Sl9 φ^ and (S2, φ2) awe simply connected cover-
ing spaces of S and Si is in Si9 i — 1, 2 with φγ{s^) — <p2(s2), then
there exists a unique covering space isomorphism ψ: Sλ —+ S2 such
that ψ(Sj) = s2.
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LEMMA 5. Let (S, φ) be a simply connected covering space of S.
We define the set of all automorphisms of (S, φ) to be the Poincare
group or fundamental group of S and denote it by P(S). The
orbits of P(S) are the discrete subspaces φ~\x), x in S, and P(S)
is simply transitive on these orbits, i.e., a given point can be mapped
into a given point in the same orbit by precisely one automorphism
in P(S).

LEMMA 6. (S, φ) be a covering space of S. If A is a connected,
locally connected subspace of S and A is a component of φ~1(A),
then {A, φ \ A) is a covering space of A.

LEMMA 7. // S and T are topological spaces admitting simply
connected covering spaces (S, φλ) and (Γ, <ps), then S x T admits the
simply connected covering space (S x T, φι x φ2) and P(S x T) ~
P(S) x P{T). It follows that the product of two topological spaces
is simply connected if and only if both are.

The proofs of the above lemmas can be found in either Chevalley
[2], Hochschild [4], Hofmann [5], or Pontrjagin [10]. Theorem 8
seems to be of a van Kampen type.

THEOREM 8. Let U, V be simply connected subsets of a space
A. If U\V and V\U are separated and if Uf]V is nonvoid and
connected, then U U V is simply connected.

Proof. We may assume A = U U V. Then A is trivially con-
nected and is locally connected by a proof identical to the first para-
graph of Lemma 1.3 on page 45 of Hochschild [4]. Now let φ\ S —*S
be a covering map, a a continuous map of A into S, a0 a point of
A, sQ a point of S with a(a0) — φ(s0). We may assume α0 is in U.
Define aγ = a \ U: U —> S. Since U is simply connected and

ψ \ \φ \ \φ

s s s

a^cLo) = a(a0) = <p(s0), there is continuous a1:U—+S with φoaλ = a^_
and ά^ao) = s0. Fix b0 in Z7 Π V and define y0 = a^bo) in S. Then
9>(2/o) = ^°^i(δ0) = «i(δo) = oc2{bQ), where α2 = α \V: V-+S. Since F
is simply connected, there is continuous a2:V—>S with φoά2 = a2

and a2(b0) = τ/0. We now define the maps βi = a^ UΠV: U n F ^ S ,
i = 1, 2. We note that φoβ1 = <po(αx 117 ΓΊ F) = (^oαj | JJ Π. F =
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ai\Uf)V=a2\UnV= (φoά2) IU Π V = φo(ά21 U n V) = φ°β2 and that
βiφo) = ά.φo) = y0 = α2(60) = /92(60). Since C7 Π F is connected, we have
α11 j7 n F = A = /52 = a2 \ U n F. We can now define δ : A —> 5 with
α(α) = άx(α), when α is in U, and = α2(α), when a is in F. The
continuity of a follows by Exercise 3B of Kelley [7], and it is clear
that φoά = a and that a(a0) = s0. Finally, the uniqueness of a
follows again by the connectedness of U Π V.

LEMMA 9. If P is a simply connected topological space and A
is a retract of P, then A is simply connected.

Proof. It is clear that A is connected and locally connected.
Let φ\ S —»S be a covering map, ψ: A—>S be continuous, a in A and
s in S with ψ(a) = φ(s). Moreover, let ρ:P—*A be the retraction
map. Then ψop;P—+S is continuous and ψop(μ) = ψ(a) = φ(s).

Since P is simply connected, there is continuous <f:P-+S with
ψop = <£>ô> and ^(α) = s. It is now straightforward to show that if
ψ = ψ I A, then φoψ — ψ and ^(α) = s. Uniqueness of ψ follows
from the connectedness of A.

LEMMA 10. Let (S, φ) be a simply connected covering space of
S and A a retract of S. If A is a component of φ~1(A)f then A is
a retract of S and (A, φ \ A) is a simply connected covering space of A.

Proof. Let p: S—• S be the retract and a be in A. Since φ(a) is
in A, we have p°φ(a) = φ(a) and p lifts to continuous p: S —*S with
p(a) = a and φop = poφ. Now let j : ΆsS and p \ A: A —> S. Then
it is straightforward to show that φo(p \ A) = φoj and that (p \ A)(a) =
i(α), which implies that ρ\A=j. Since <p(p(S)) = ρ(φ(S)) = /θ(5») =
A, we have ^(S) a connected subset of φ " 1 ^ ) - Observing that a is
in A Π i^(S), we have ρ(S) S ^4. Therefore, ^ is a retraction of S
onto -A. Moreover, (A, φ \ A) is a simply connected covering space of
A by Lemmas 6 and 9 of this section.

LEMMA 11. // the topological product of two spaces admits a
simply connected covering space, then so do both of them.
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Proof. Let (P, φ) be a simply connected covering space of S x T.
If t is in T and S is a component of φ-\S x £), then (S, θo(φ \ S))
is a simply connected covering space of S, where θ: S x t —> S is the
natural homeomorphism. Indeed, S x ί is obviously a retract of
S x JΓ, and we apply Lemma 10.

LEMMA 12. Lβί (S, 9?) 6β a simply connected covering space of
S, A a connected, locally connected subset of S, and A a component
of φ~ι(A). If A is simply connected, and we let P(S) and P(A) be
the automorphism groups of (S, φ) and (A, φ \ A), respectively, then
there exists a monomorphism θ: P(A) —> P(S) such that if ψ is in
P(A), then θ(ψ) = ψ is the unique extension of ψ to ψ in P(S).
Moreover, θ is an isomorphism if and only if φ~ι{A) is connected,
i.e., if and only if A — φ~ι{A).

Proof. Suppose ψ is in P(A). Fix aγ in A. Let ψ(aL) = a2 in
A. Now, φidj) — (φ I A)(αO — (φ \ A)oψ(a1) = (φ I A)(a2) = <p(az). Thus,
there exists unique ψ in P(S) such that ψ(aL) — α2.

We show that ψ is an extension of ψ. We first show that
ψ(A) = A. Clearly, ψ(φ~\A)) = φ~ι{A). We see that ψ(A) is a
connected subset of φ~\A) with α2 in A Π ψ(A). Therefore, ψ(A) g A.
Let η be the inverse of ψ in P(A). As before, we find rj in P(S)
such that ^(α2) = aλ and "̂(A) g A. Now, ΪΓOΎJ is in P(S) and fixes
α2. Thus, ^o^" is the identity of P(S), and A = ^o^"(A) £ <f (A) S A.
Therefore, ψ(A) = A. Since ψ: S —* S is a homeomorphism, so is
ψ I A: A—> A. Moreover, (φ \ Ά)o(ψ \ A)(α) = φoψ(a) = φ(a) = (φ \ A){a),
for all a in A. So, ψ\A is in P(A). But ψ is in P(A), and ψ(aL) =
a2 — (ψ\ A)(aL). Thus we have ψ = ψ | A, as described.

Now that we have 0 a well-defined function, we observe that it
is trivially injective. A simple computational argument shows that θ
is a homomorphism.

We next show that A = <p~~\A) if and only if θ is surjective.
Suppose A - φ-\A). Let f be in P(S). Then 'f(A) = ψ(φ~ι(A)) =
φ~ι{A) = A. As above, we see that ψ\ A is in P(A). Moreover,
θ(ψ \ A) = ψ. Therefore, θ is surjective. Conversely, suppose θ is
surjective. Let aι be in <p~ι(A). Let φ{a^) = α in A. There exists
α2 in A such that ^>(α2) = a = <p{a^. Thus, there is ψ in P(S) with
ψ(a2) = αx. Since 0 is onto, there is ψ in P(A) with 0(Ί/Γ) = ψ, i.e.,
τ/r = ψ I A. Then αx = ψ(a2) = ψ(a2) in A. Since αx was arbitrary in
φ~\A), we have ^"'(A) s A, and they are equal.

2* General theory of covering semigroups* Let S and S be
topological semigroups and φ: S ~> S a homomorphism. If, moreover,
(S, φ) is a covering space of S, then we say that (S, φ) is a covering
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semigroup of S. The proofs of the first two of the following
theorems are omitted, as they are similar to the development of
covering groups. See [2], [4], [5].

THEOREM 1. Let S be a topological semigroup with topological
space structure admitting a simply connected covering space (S, φ).
Let e be an idempotent in S and fix some point e in S such that
φ(e) — e. There exists a unique topological semigroup multiplication
on S such that e is an idempotent and φ is a homomorphism. If e
is an identity for S, then e is an identity for S. If S is a topologi-
cal group, then so is S.

THEOREM 2. Let (S19 φ^ and (S2, φ2) be covering semigroups of
S with idempotents ex in Sι and e2 in S2 such that φx(e^ — φ2(e2).
If Sλ is simply connected, then there exists a unique homomorphism
and covering map ψ:S1-^S2 with φ2°ψ = φλ and ψ(et) = e2. More-
over, if S2 is also simply connected, then ψ is a covering space and
semigroup isomorphism.

THEOREM 3. Let [X, G, Y]σ be a topological paragroup (Hofmann
and Mostert [6]) where X(Y) is a left (right) zero semigroup and G
is a group. If X, G, and Y admit simply connected covering spaces
(X,φΐ), (G,φ2) and (Ϋ,φ3), then the left (right) zero multiplication
of X(Y) lifts to a left (right) zero multiplication on X(Ϋ) and the
group multiplication of G lifts to a group multiplication on G.
Moreover, the sandwich function σ: Y x X-+G lifts to a sandwich
function σ: Ϋ x X—»G such that ([X, G, Ϋ]a, φιx φ2x <p3) is a simply
connected covering paragroup of [X, G, Y]σ.

Proof. Note that φ^φ^) is automatically a homomorphism if we
give X(Ϋ) the left (right) zero multiplication. Any lifting of σ to σ
allows us to form the paragraph [X, G, Ϋ]^. A straightforward com-
putation, making use of the equation σ°(φ3 x φx) = φ2°^y shows that
φ1 x φ2 x φ3: [X, G, Ϋ]-σ —> [X, G, Y]σ is a homomorphism. We omit
further details.

THEOREM 4. // (S, φ) is a covering semigroup of S, then φ~ι

{center S) = center S.

Proof. Clearly, center S g φ~ι (center S). Let s be any element
of φ~γ (center S). Define a, β: S -+S with a(x) = sx and β(x) = xs.
Straightforward computations show that φoa = φoβ and that a(s) =
β(s). Thus, a — β, i.e., s is in center S.

For the rest of this section * we assume that (S, φ) is a simply
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connected covering semigroup of S. Moreover, S and S have identities
ϊ and 1, respectively. We define Ker φ to be φ~\l). Although this
is not standard semigroup terminology, we feel that Theorem 6 of
this section is ample motivation.

COROLLARY 5. Ker φ is central.

Proof. Note that 1 is central.

THEOREM 6. // s is in Ker φ and we define ψ: S —>S by ψ(x) =
sx, then ψ is in P(S). This defines an isomorphism between Ker φ
and P(S). Therefore, P(S) is commutative.

Proof. Let s be in Ker φ and define ψ as above. There exists
η in P(S) with η(ΐ) = s._ Straightforward computation shows that
φoψ = φo-η and ψ(ϊ) = η(ϊ). So, ψ = η, and f is in P(S). Since S
has an identity, we conclude that mapping s into ψ gives a mono-
morphism of Ker φ into P(S). Weshow that the mapping is onto.
Let ψ be in P(S). Define s = ψ(ΐ). Then s is in Ker<£>, and we
define rj = θ(s) in P(S). But then ψ and η agree at ϊ and, there-
fore, are equal.

COROLLARY 7. If a and b are in S with φ(a) = φ(b), then
there exists unique s in Ker φ with sa = b.

Material from here through Corollary 18 is independent and
completely algebraic in nature, providing we define (S, φ) to be an
algebraic covering of S with group P(S) if:

(a) S and S are purely algebraic semigroups with identities ΐ
and 1, respectively.

(b) The map φ\ S —• S is a surmorphism with Ker φ = ^"^(l)
being a central subgroup of S.

(c) Ker<p acts on S with orbits φrι(x), x in S, and is simply
transitive on these orbits.

(d) P(S) is a faithful functional representation of Ker φ on S.

LEMMA 8. // x is in S, x is in φ~ι(x), and A, B are subsets of
S, then φ^(AxB) = φ-^Ajxφ-'iB). Also φr\Ax) = φ^(A)x, φ~ι{xB) =
xφ~\B), and ψ~\AB) = φ~ι(A)φ-ι(B).

Proof. It is trivial that ψr\A)xψrι{B) g φ~ι{AxB). Conversely,,
let y be in φ~ι{AxB). There exists a in A, b in B with φ{y) — axb.
If we pick α, 6, in S with φ(a) = a and φ(b) = b, then φ(axb) =
axb = φ(y). Thus, there exists s in Ker φ with s(άxb) — y. Observing
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that sa is in φ~ι(A), we have y — (sa)xb in φ~1(A)xφ~1(B), as desired.
The remaining equations follow easily from the equation φ~1{AxB) =

φr\A)xφ~\B). Indeed, if x = ϊ and x = 1, we have φ-^AB) =
^•^(A)^-1^), and if 5 or A is {1}, then the remaining equations
result.

THEOREM 9. If H is a subgroup of S, then φr\H) is a sub-
group of S. In particular, if e is an idempotent in S, then φ~\e)
is subgroup of S. Moreover, if θ: Ker φ —* φ~ι(e) by θ(s) = se, where
e is the identity of φ~\e), then θ is an isomorphism. Thus, φ~\e) =
P(S). Note that it follows that φ~\H) is an extension of P(S) by
H, in the sense of Kurosh [8], p. 76.

Proof. Let x be in φ~ι{H), φ(x) = x in H. Then xφ~\H) =
φ-\xH) - qrι(H) and φ~\H)x = φ~\Hx) = qr\H). Therefore, φ-^H)
is a group.

We show θ is an isomorphism. Since e is idempotent and Ker φ
is central, θ(st) = (st)e = (se)(te) = θ(s)θ(t), for all s, t in Ker<p.
Moreover, if x is in φ~\e) then there exists unique s in Ker φ with
se = α?, i.e., 0(s) = a?. Therefore, ^ is an isomorphism.

THEOREM 10. If E and E are the sets of idempotents of S and
S, respectively, then φ \ E: E —+ E is bijective. In particular, if S
has no idempotents other than 1, then S has no idempotents other
than ϊ .

Proof. If e is in E, then φ~\e) is a group and thus contains
exactly one idempotent.

In the next few pages we deal with £f-, &-, £έf~, 2$-, and
^^^classes of a semigroup. Notation and terminology are as in Clifford
and Preston [3].

LEMMA 11. Let a, b be in S and a, b in φ~\a), φ~\b), respec-
tively. Then a^fb if and only if aJίfb, and similarly for &,
£ίf, Sf, and J".

Proof. The fact that a£?b implies aS^b is automatic alge-
braically, and likewise for &, £ίf, 2$, and ̂ . All that is needed is
that S and S be algebraic semigroups and that φ be an epimorphism.
Conversely,_ let aSfb. Then Sa = φ~\S)a = φr\Sa) = φ~\Sb) =
φ~ι(S)b = Sb gives aJίfb. Symmetrically, a&b implies a&b. As
for ^g^-classes, we have aSίfb if and only if a^b and a&b if and
only if a£fb and a&b if and only if aέ%fb. As for ^-classes, we
use the fact that for any semigroup S, 3f = ^ o ^ , [3], page 47.
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Thus, suppose a2$b. Then there is c in S with a^fc and c&b. If
c is in φ~ι{c), then aJSfc and c&b, i.e., aSίb. Finally, for ^-
classes we have α^Fδ implies SaS — φ~ι(SaS) — φ~ι{SbS) = SbS, i.e.,

THEOREM 12. φ induces a bίjective correspondence between the
£f classes of S and the ^-classes of S. More precisely, if a is in
S and a = φ(a), then <p-1(Xα) — L«. This holds similarly for Ra, Ha,
Da, and Ja.

Proof, x is in φ~\La) if and only if φ(x) is in La if and only if
φ{x)Sfa if and only if x<S?a if and only if x is in L-a. Similar proofs
hold for Ra, Ha, Da, and Ja.

COROLLARY 13. φ induces a bijective correspondence between the
maximal subgroups of S and the maximal subgroups of S. More
precisely, if H is a maximal subgroup of S, then φ{H) is a maximal
subgroup of S; if H is a maximal subgroup of S, then φ~ι{H) is a
maximal subgroup of S.

Proof. This is immediate if we observe that the maximal sub-
groups of a semigroup are precisely the Jg^-classes containing
idempotents [3], p. 61.

Let S be a semigroup, H an ^g -̂class of S, and s an element of
S such that sH s H. Then we denote by τ s the element of Γ{H),
the left Schϋtzenberger group [3] of H, such that ys(x) — sx, for all
x in H. The following theorem generalizes Theorem 9.

THEOREM 14. If H is an 3^-class in S and H = φ~\H) is the
corresponding 3ίf-class in S, then the left Schutzenberger group
Γ(H) is an extension of P(S) by the left Schutzenberger group Γ(H).

Proof. Let T(H) be the subsemigroup of S of all s in S with
sH S H, and let T(H) be similar in S. Let V: T(H) -> Γ(H) and
v: T(H) —> Γ{H) be the natural homomorphisms. It is straightforward
to show that φ~ι(T(H)) = T(H) and that φ induces epimorphisms
φH: T(H) — T(H) and φH:Γ(H)->Γ(H) with φHov = voφH. More-
over, Ker φ is contained in T(H), and v(Ker φ) is contained in Ker φH.
Thus v induces a homomorphism Vo: Ker φ —> Ker φιi. Since the
image of v0 is the restriction of all the functions in P(S) to H, it
follows that vQ is injective. We next show that v0 is surjective. Let
ψ be in Ker φ11. There is s in T{H) with ψ — v(s). Let x be in H.
If φ(x) = x in H, then φ(sx) = 9?(s)a? = 7 (̂s)(^) = [vo f̂/(s)]($) ==

= [φH(ψ)](x) = Ύi(x) — x — φ(x). Thus, there is t in Ker φ
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with tx — sx, and we have yt and τ s in Γ(H) agreeing at x. But
Γ(H) is simply transitive on H, and thus VQ(t) = Ύt = τ s = ̂ , as
desired.

We recall that an element a of a semigroup S is called regular
if α#α = α for some x in 5, and S is called regular if every element
of S is regular. Moreover, a and δ are inverses of each other if
aba — a and δαδ = δ, and S is an inverse semigroup if every element
of S has a unique inverse. The following are equivalent for an
-element a of a semigroup S: (1) the element a is regular, (2) the
element a has an inverse δ, (3) the principal left ideal generated by
a has an idempotent generator, and (4) the principal right ideal
generated by a has an idempotent generator [3], p. 27.

THEOREM 15. If a is a regular element of S and a is in φ~ι(a),
then a is regular. Therefore, if S is regular then so is S.

Proof. Since a is regular, there is an idempotent e in S with
Se = Sa. Let e be the idempotent in φ"ι(e). Then Se = φ~ι(Se) —
ψ~ι(Sa) = Sa, and thus a is regular.

THEOREM 16. // S is an inverse semigroup, then so is S.

Proof. We recall that a semigroup is inverse if and only if
every principal right ideal and every principal left ideal has a unique
idempotent generator. Let S be an inverse semigroup. By the above
theorem, every principal right ideal and every principal left ideal has
at least one idempotent generator. Suppose e and / are idempotents
in S with Se = Sf. Then φ(e) and <p(f) are idempotents generating
the same principal left ideal in S. Since S is an inverse semigroup,
we have <p(e) = φ(f), which implies e — f, by Theorem 10. Principal
right ideals are treated symmetrically.

THEOREM 17. If I is a left ideal (right ideal) (ideal) in S, then
φ~ι(I) is a left ideal (right ideal) (ideal) in S. If I is a left ideal
(right ideal) (ideal) in S, then φ~ιφ(I) — I. Therefore, φ induces a
bijective, inclusion preserving correspondence between the left ideals
(right ideals) (ideals) of S and those of S.

Proof. Let / b e a left ideal in S. Then Sφ~λ(I) - φ~ι(SI) S
Ψ~ι(I), i.e., φ~ι(I) is a left ideal in S. Now, let x be in φ~ιφ(I)
where I is a left ideal in S. There is y in I with φ(x) = φ(y). So,
there is s in Ker φ with x = sy in I. The proof for right ideals or
ideals is similar.
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COROLLARY 18. If I is a minimal left ideal (right ideal)
(ideal) in S, then φ~ι(I) is a minimal left ideal (right ideal) (ideal)
in S.

THEOREM 19. // S has a minimal ideal K then P(S) =
P(K).

Proof. By Proposition 1.9 of [1] we have that if is a retract of
S, and thus K is connected and locally connected. Let K — φ~ι(K).
By Corollary 18, K is the minimal ideal of S and, hence, is connected.
By Lemma 10 of the previous section, K is simply connected. Then
by Lemma 12 of that section P(K) = P(S).

THEOREM 20. Let S have a minimal ideal K. Moreover, let e
be a primitive idempotent in K. Let X = E(Se), Y = E(eS) be the
sets of idempotents in Se and eS, respectively, and let G = eSe, a
maximal subgroup of K. Let σ: Y x X—>G such that σ(y, x) — yx.
Let θ: [X, G, Y]σ-+K be the canonical map, i.e., θ(x, g, y) = χgy+
Now, θ is an algebraic isomorphism and continuous [6]. If θ is
also a homeomorphism, then X and Y are simply connected and thus
P(K) = P(G).

Proof. From Proposition 1.9 of [1], p. 47, we have that K is a
retract of S. Let K = φ~ι(K). By Lemma 10 of the previous section,,
(K, φ\K) is a simply connected covering space of K. The topological
space structure of [X, G, Y]σ is X x G x Y with the product topology.
By Lemma 11 of the previous section and the fact that θ is a
homeomorphism, X, G, and Y have simply connected covering spaces
(X,φd, (G,φ2), and (Ϋ,φΛ). By Theorem 3, ([X, G, Ϋ]-σ, φ') is a
simply connected covering paragroup of [X, G, Y]σ, where φf —
φι x φ2 x φz. In lifting σ to σ we

I
ψ2

can choose σ such that σ(e3, ei) = e2, where e2 is the identity of G and
e"3 and ex are fixed in Ϋ and X, respectively, such that φ3(e3) = e and

Now θoφf(ely e2, e3) = θ(e, e, e) = e* = e = (φ \ K)(e), where e is
the idempotent of K such that φ(e) — e. By Theorem 2, we can
lift θ to a semigroup and covering space isomorphism θ so that
θ(elf e2, e*s) = e and (φ \K)°5 = θoφ'.
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[X,G, Ϋb-^K

[X,G,Y]σ-^K

We now show that all the elements of X x e2 x e3 are idempotent
Now, φ2(σ(e3 x X)) = o{{φ3 x φ^){e x X)) = σ(e x X) = eX = e, since
X is a left zero semigroup. This means that σ(e3 x X) is a con-
nected subset of the discrete set Ker φ2. Moreover, e2 = σ(e3, e±) is
in σ(e3 x X). Therefore, σ(e3 x X) = {e"2}. Thus, if # is in X, then
<a?, e2, β3)

2 = (a?, e a σ(e 8 , x)βj, e8) = (»» β2

3, e8) = (α?, e2, e 8), a s desired._

We show that <pt: X—+X is one-to-one. Let x19 x2 be in X with
^i(«i) = 9>i(»2). Then ?>(%<, β2, β8)) = (9> I K)og(xi9 e2, e3) = θoφ'(Xi1 e2, e3) =

θ(φ1(xi), e, e) — 9>i(α?i)ββ = ̂ i ( ^ ) , i = 1, 2, since ^(fiCi) and e are in X, a

left zero semigroup. Hence, <p(θ(xlf e2, e3)) — φ1(x^) = φι(x2) = φ(θ(x2y e2, β3)).

Since (xlf e2, e3) and (x2, e2, e3) are idempotents, so are 0(xu e2, e3) and
d(xs, e2, e3). By Theorem 10, θ(xlf e2, e3) = θ(x2, e2, e3). Hence, (xlf e2, β8) =

(x2, e2, e3) and xt = a;2.

Therefore, X is simply connected, and symmetrically, Y is simply
connected. Moreover, P(K) s P(X x G x Y) s P(X) x P(G) x P(F) =

Let (G, β) be a simply connected covering group of a compact
Lie group G. It is known [4] that the following are equivalent: (a)
G is semisimple, (b) P(G) is finite, (c) G is compact. The following
corollary follows easily.

COROLLARY 21. Using the hypotheses and notation of Theorem
20 and assuming that S is compact and that G is a Lie group, we
have that the following are equivalent: (a) G is semisimple, (b) P(S)
is finite, (c) S is compact.

3* Applications and examples*

(A) Semigroups on the cylinder. Mostert and Shields [9] proved
that a topological semigroup on the plane with an identity and no
other idempotents must be a group. The cylinder can be handled as
follows.

THEOREM. Let S be a topological semigroup with identity 1 and
with the cylinder S1 x R as topological space structure. Here R is
the line and S1 = {(x, y): (x, y) in R2 and x2 + y2 = 1}. If S has no
idempotents other than 1, then S is a group.

Proof. S has a simply connected covering semigroup (S, φ) with
identity ΐ and space the plane. Moreover, S has no other idempotents.
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By Mostert and Shields, S is a group. Being the homomorphic image
of a group, S is a group.

(B) A non-locally connected example. In this section we discuss
one type of cylindrical semigroup [6], p. 67. Following [6], we define
H = [0, co) and H* = [0, oo], both under addition.

THEOREM 1. Let (A, φ) be a covering group of the group A,
and let f:H—>A be a continuous homomorphism. Define f+:H-+
H* x A by f+(p) = (p, f(p))- Since H is simply connected, there
exists a unique homomorphism f:H—*A such that φ°f — f> Now
define_ f+:JT-+H* x A by f+(p) = (p, f{p)). Let S = f+{H) U - x A
and S =f+(H){J™ x A.

Then S and S are closed subsemigroups of H* x A and H* x A,
respectively, and f+(H) is the component of (1 x φ)~ι(f+(H)) that
contains (0, ΐ), where Ixφ: H* x A —> H* x A. Moreover, (S, (1 xφ) \S)
is a sort of i6not necessarily connected (at most two components)
covering semigroup" of S in the sense that (f+(H), (1 x φ) \f+(H))
is a trivial covering semigroup off+(H) and (oo x A, (1 x φ)\ °o x A)
is a covering semigroup of °° x A.

Proof. The fact that S and S are closed subsemigroups of H* x A
and H* x A follows as in [6], as does the fact that f+(H) and f+(H)
are copies of H as subsemigroups of S and S. Observing that
(1 x φ)°f+ = f+, we have that f+(H) is a connected subsemigroup
of (1 x φ)-ι{f+{H)). Let C be the component of (1 x φ)~\f+{H))
containing f+(H). Then (C, (1 x φ) \ C) is a covering semigroup of
the simply connected f+(H). Thus C is a copy of H, and we must
have f+(H) — C. The rest of the theorem is now obvious.

THEOREM 2. Let A be a connected topological group and f: H—>
A a continuous homomorphism. Define f+:H—»iϊ* x A and S as
in Theorem 1. Then S is not connected if and only if f is an
imbedding onto a closed subset of A.

Proof. S is not connected if and only if f+(H) is closed in S
and, therefore, if and only if f+(H) is closed in H* x A. This
means that for each point a in A, there is a pa in H and a neigh-
borhood Na of a such that (pa, oo] x Na is disjoint from f+(H), i.e.,
(p,f(p)) is not in (pa, oo] x Na for all p in H. Thus, S is not con-
nected is equivalent to the existence of a neighborhood Na of each
point a of A such that f(p) is not in Na for sufficiently large p.
This last is equivalent to f(H) being closed in A and the local finite-
ness of the collection of all sets of the form /([&, k + 1]), k a non-
negative integer. The remainder of the proof is straightforward.
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