PROJECTING ONTO CYCLES IN SMOOTH, REFLEXIVE BANACH SPACES

H. B. Cohen and F. E. Sullivan

Abstract

This paper deals with operator algebras generated by certain classes of norm 1 projections on smooth, reflexive Banach spaces. For a strictly increasing continuous function \mathscr{F} on the nonnegative reals, the set of " \mathscr{F}-projections" gives rise to operator algebras equal to their second commutants. The principal result is that the closed subspace generated by the set of elements $E x$, where x is fixed and E runs through a Boolean algebra of \mathscr{F}-projections, is the range of a norm 1 projection that commutes with each projection in the Boolean algebra. Sufficient conditions using Clarkson type norm inequalities are given for the commutativity of the set of all \mathscr{F}-projections. Examples in Orlicz spaces are given.

1. Projections in smooth spaces. A normer of a nonzero element x in a Banach space X is a functional x^{*} in the dual X^{*} such that $\left\|x^{*}\right\|=1$ and $\|x\|=x^{*}(x)$. A normer for x always exists; we say that X is smooth if every nonzero x has but one normer, denoted $N(x)$. We make the definition $N(0)=0$.

Proof of the following three lemmas is left to the reader; see, for instance, [5; p. 447].

Lemma 1. In a smooth space X, the norming $\operatorname{map} N: X \rightarrow S^{*} \cup\{0\}$ has the following properties, where S^{*} is the unit sphere of X^{*}.
(1) $N(x)$ is the only element of S^{*} such that $N(x)(x)=\|x\|$ if $x \neq 0$.
(2) $N(\lambda x)=(|\lambda| / \lambda) N(x)$ for all scalars $\lambda \neq 0$; in particular, $N(\lambda x)=N(x)$ for $\lambda>0$.
(3) In the real case, $N(x)(y)=\lim (\lambda \rightarrow 0)(\|x+\lambda y\|-\|x\|) / \lambda$ for $x, y \in X$ and $x \neq 0$.

Lemma 2. If X is a smooth complex Banach space, $\operatorname{Re} X$ is also smooth; indeed, for each $x \neq 0, \operatorname{Re} N(x)$ is the normer of x in $(\operatorname{Re} X)^{*}$.

A vector x is said to be James-orthogonal to y if $\|x+\lambda y\| \geqq\|x\|$ for all real numbers λ.

Lemma 3. If X is a smooth space, then $N(x)(y)=0$ if and only if x is James-orthogonal to y in the real case and James-orthogonal to both y and iy in the complex case. If Y is a subspace, then $N(x)(y)=0(y \in Y)$ if and only if $\|x+y\| \geqq\|x\|(y \in Y)$.

Lemma 4. If E is a norm one projection in a normed linear space X, then $\|a+b\| \geqq\|a\|$ for every $a \in E X$ and $b \in(I-E) X$.

$$
\text { Proof. }\|a\|=\|E(a+b)\| \leqq\|a+b\| .
$$

Lemma 5. If E is a norm one projection on a smooth space X, $N(E x)(E y)=N(E x)(y)(x, y \in X)$.

Proof. This is an immediate consequence of Lemmas 3 and 4.

TheOREM 6. A subspace of a smooth space X can be the range of at most one norm 1 projection.

Proof. Suppose E and F are norm 1 projections on X with $E X=$ $F X$. Then $E F=F$ and $F E=E$ so that $E-F=E(I-F)=F(E-I)$. If $E \neq F$, there is an x such that

$$
\begin{aligned}
0 & \neq\|E x-F x\|=N(E x-F x)(E x-F x) \\
& =N(E(I-F) x)(E x)-N(F(E-I) x)(F x) \\
& =N(E(I-F) x)(x)-N(F(E-I) x)(x)=0,
\end{aligned}
$$

a contradiction.

We wish to thank the referee for sharpening the following two lemmas into their present form and for suggesting lines of proof.

Theorem 7. A subspace of a rotund space can be the null manifold of at most one norm 1 projection.

Proof. Suppose E and F are distinct norm 1 projections on a rotund space X, with the same null manifold N. Then there is an element x in the range of E that is not in the range of F. Then $x=y+w$ where y is the range of F, w is in N, and x and y are not. linearly dependent.

$$
\begin{aligned}
& \|x\|=\|E(x-1 / 2 w)\| \leqq\|x-1 / 2 w\|=\|1 / 2(x+y)\| \\
& \|y\|=\|F(y+1 / 2 w)\| \leqq\|y+1 / 2 w\|=\|1 / 2(x+y)\|
\end{aligned}
$$

so that $1 / 2(\|x\|+\|y\|) \leqq\|1 / 2(x+y)\| \leqq 1 / 2(\|x\|+\|y\|),\|x+y\|=$ $\|x\|+\|y\|$, and X is not rotund.

Theorem 8. For any norm 1 projection E on a smooth space X, $N(E X \cap S) \subseteq E^{*} X^{*} \cap N(S)$, with equality if X is smooth and rotund. If X is reflexive, then $N(S)=S^{*}$, but in any case $N(S)$ is dense in S^{*}.

Proof. If $x^{*} \in N(E X \cap S)$, then there is a norm 1 vector x such that $x^{*}=N(x)$ and $E x=x$. Then $E^{*} N(x)(y)=N(E x)(E y)=N(E x)(y)=$ $x^{*}(y)$ by Lemma 5 for all y in X; hence, $x^{*} \in E^{*} X^{*} \cap N(S)$.

If X is rotund and $x^{*} \in E^{*} X^{*} \cap N(S)$, then $x^{*}=N(x)$ where $\|x\|=1$ and $E^{*}(N(x))=N(x)$. Then

$$
\begin{aligned}
& \|x+E x\| \leqq\|x\|+\|E x\| \leqq\|x\|+\|x\| \\
= & N(x)(x)+N(x)(x)=N(x)(x)+\left(E^{*} N(x)\right)(x)=N(x)(x+E x) \leqq\|x+E x\|
\end{aligned}
$$

Then $\|x\|+\|E x\|=\|x+E x\|$ and $x=E x$ by rotundity and the fact that E is a projection.

The last statement follows from results of James [7] and BishopPhelps [2].
2. \mathscr{F}-projections. Throughout this section, \mathscr{F} denotes a fixed, but arbitrary, strictly increasing continuous function from the set of nonnegative real numbers into itself.

Definition. An \mathscr{F}-projection on a Banach space X is a projection E on X for which $\mathscr{F}(\|x\|)=\mathscr{F}(\|E x\|)+\mathscr{F}(\|(I-E) x\|)$ for all x in X.

Lemma 9. (1) An \mathscr{F}-projection has norm 1 or 0; (2) If E is an \mathscr{F}-projection, $\mathscr{F}(\|a+b\|)=\mathscr{F}(\|a\|)+\mathscr{F}(\|b\|)$ and $\|a+b\|$ $=\|a-b\|$ for all a in $E[X], b$ in $(I-E)[X] ;$ (3) the product of two commuting \mathscr{F}-projections is an \mathscr{F}-projection.

Proof. (1) If E is an \mathscr{F}-projection,

$$
\mathscr{F}(\|E X\|) \leqq \mathscr{F}(\|E x\|)+\mathscr{F}(\|(I-E) x\|)=\mathscr{F}(\|x\|) .
$$

Since \mathscr{F} is strictly increasing, $\|E x\| \leqq\|x\|$.

$$
\begin{align*}
& \mathscr{F}(\|a+b\|)=\mathscr{F}(\|E a+(I-E) b\|) \\
= & \mathscr{F}(\| E(E a+(I-E) b \|)+\mathscr{F}(\|(I-E)(E a+(I-E) b \|) \tag{2}\\
= & \mathscr{F}(\|E a\|)+\mathscr{F}(\|(I-E) b\|),
\end{align*}
$$

and

$$
\begin{aligned}
& \|a+b\|=\mathscr{F}^{-1}\left(\mathscr{F}(\|a+b\|)=\mathscr{F}^{-1}(\mathscr{F}(\|a\|)+\mathscr{F}(\|b\|))\right. \\
& =\mathscr{F}^{-1}(\mathscr{F}(\|a\|)+\mathscr{F}(\|-b\|))=\mathscr{F}^{-1}(\mathscr{F}(\|a-b\|))=\|a-b\| .
\end{aligned}
$$

(3) If E and F are commuting \mathscr{F}-projections,

$$
\begin{aligned}
& \mathscr{F}(\|x\|)=\mathscr{F}(\|F x\|)+\mathscr{F}(\|(I-F) x\|) \\
= & \mathscr{F}(\|E F x\|)+\mathscr{F}(\|(I-E) F x\|)+\mathscr{F}(\|(I-F) x\|)
\end{aligned}
$$

$$
\begin{aligned}
& =\mathscr{F}(\|E F x\|)+\mathscr{F}(\|F(I-E) x+(I-F) x\|) \\
& =\mathscr{F}(\|E F x\|)+\mathscr{F}(\|(I-E F) x\|)
\end{aligned}
$$

for all x in X.

Remark. If E is an \mathscr{F}-projection, then $\|a+b\|$, where a is any norm 1 vector in $E X$ and b is any norm 1 vector in $(I-E) X$, is constant at $\mathscr{F}^{-1}(2 \mathscr{F}(1))$. For

$$
\|a+b\|=\mathscr{F}^{-1} \mathscr{F}(\|a+b\|)=\mathscr{F}^{-1}\left(\mathscr{F}(\|a\|)+\mathscr{F}^{(\| b}(\|) .\right.
$$

Theorem 10. A maximal family \mathscr{P} of commuting \mathscr{F}-projections is a complete-Boolean algebra of norm 1 projections.

Proof. Clearly 0 and I are in \mathscr{P} and if E is in \mathscr{P}, so is $I-E$ by the symmetry of the definition of an \mathscr{F}-projection. If E and F are in $\mathscr{P}, E F$ is an \mathscr{F}-projection by Lemma 9 , and it commutes with \mathscr{P}. Therefore, $E F$ is in \mathscr{P}. Thus \mathscr{P} is a Boolean algebra of projections on X as defined by Bade [1]. Now suppose E_{α} is an increasing net of projections in \mathscr{P}. For each x in X and for $\alpha \leqq \beta, E_{\alpha} x=E_{\alpha} E_{\beta} x$. So $\left\|E_{\alpha} x\right\| \leqq\|x\|$; thus, $\mathscr{F}\left(\left\|E_{\alpha} x\right\|\right)$ is an increasing net of real numbers bounded above by $\mathscr{F}(\|x\|)$; hence, covergent. This implies $E_{\alpha} x$ is Cauchy, as follows. Given $\varepsilon \geqq 0$, choose θ such that

$$
\mathscr{F}\left(\left\|E_{\alpha} x\right\|\right) \geqq \lim _{\gamma} \mathscr{F}\left(\left\|E_{\gamma} x\right\|\right)-\mathscr{F}(\varepsilon / 2)
$$

for all $\alpha \geqq \theta$. If $\beta \geqq \theta$,

$$
\begin{aligned}
& \mathscr{F}\left(\left\|E_{\beta} x-E_{\theta} x\right\|\right)+\mathscr{F}\left(\left\|E_{\theta} x\right\|\right) \\
= & \mathscr{F}\left(\left\|E_{\beta} x-E_{\beta} E_{\theta} x\right\|\right)+\mathscr{F}\left(\left\|E_{\theta} E_{\beta} x\right\|\right) \\
= & \left.\mathscr{F}\left(\| I-E_{\theta}\right) E_{\beta} x \|\right)+\mathscr{F}\left(\left\|E_{\theta} E_{\beta} x\right\|\right)=\mathscr{F}\left(\left\|E_{\beta} x\right\|\right) .
\end{aligned}
$$

Thus,

$$
\mathscr{F}\left(\left\|E_{\beta} x-E_{\theta} x\right\|\right)=\mathscr{F}\left(\left\|E_{\beta} x\right\|\right)-\mathscr{F}\left(\left\|E_{\theta} x\right\|\right) .
$$

And from this

$$
\begin{aligned}
\mathscr{F}(\varepsilon / 2) & \geqq \lim _{\alpha \mathscr{F}}\left(\left\|E_{\alpha} x\right\|\right)-\mathscr{F}\left(\left\|E_{\theta} x\right\|\right) \\
& \geqq \mathscr{F}\left(\left\|E_{\beta} x\right\|\right)-\mathscr{F}\left(\left\|E_{\theta} x\right\|\right)=\mathscr{F}\left(\left\|E_{\beta} x-E_{\theta} x\right\|\right) ;
\end{aligned}
$$

hence, $\varepsilon / 2 \geqq\left\|E_{\beta} x-E_{\theta} x\right\|$ because \mathscr{F} is increasing. If $\alpha, \beta \geqq \theta$,

$$
\left\|E_{\alpha} x-E_{\beta} x\right\| \leqq\left\|E_{\alpha} x-E_{\theta} x\right\|+\left\|E_{\beta} x-E_{0} x\right\| \leqq \varepsilon .
$$

Define $E x=\lim _{\alpha} E_{\alpha} x$ for every x in X. Then E is surely a projection and, since \mathscr{F} is continuous, E is an \mathscr{F}-projection; since E
commutes with \mathscr{P}, it is in \mathscr{P}. This completes the argument.
By Zorn's lemma, complete Boolean algebras of \mathscr{F}-projections always exist, although they may be trivial. Nontrivial examples are given later.

Theorem 11. Suppose that all vectors v and w in X satisfy the (Clarkson) inequality

$$
1 / 2 \mathscr{F}(\|v+w\|)+1 / 2 \mathscr{F}(\|v-w\|) \leqq \mathscr{F}(\|v\|)+\mathscr{F}(\|w\|)
$$

and suppose $\mathscr{F}(2) \neq 4, \mathscr{F}(1)=1$. Then any two \mathscr{F}-projections commute (and so the set of all \mathscr{F}-projections form a complete Boolean algebra of projections). The same result holds for the reverse inequality.

Proof. Let E and F be two \mathscr{F}-projections and $x \in X$. Then decomposing $E x$ into F and then E components, applying Clarkson's inequality, and simplifying (using Lemma 9) we obtain

$$
\begin{aligned}
& \mathscr{F}(\|E x\|)=\mathscr{F}(\|E F E x\|)+\mathscr{F}(\|E(I-F) E x\|) \\
&+\mathscr{F}(\|(I-E) F E x\|)+\mathscr{F}(\|(I-E)(I-F) E x\|) \\
& \geqq1 / 2 \mathscr{F}(\| E F E x+E(I-F) E x) \|)+1 / 2 \mathscr{F}(\|E F E x-E(I-F) E x\|) \\
& \quad+1 / 2 \mathscr{F}(\|(I-E) F E x+(I-E)(I-F) E x\|) \\
& \quad+1 / 2 \mathscr{F}(\|(I-E) F E x-(I-E)(I-F) E x\|) \\
&=1 / 2 \mathscr{F}(\|E x\|)+1 / 2 \mathscr{F}(\| E F E x-E(I-F) E x \\
&\quad+(I-E) F E x-(I-E)(I-F) E x \|) \\
&=1 / 2 \mathscr{F}(\|E x\|)+1 / 2 \mathscr{F}(\|F E x-(I-F) E x\|) \\
&=1 / 2 \mathscr{F}(\|E x\|)+1 / 2 \mathscr{F}(\|F E x+(I-F) E x\|) \\
&=\mathscr{F}(\|E x\|) .
\end{aligned}
$$

This implies equality in Clarkson's inequality for the vectors $(I-E) F E x$ and $(I-E)(I-F) F x:$

$$
\begin{gathered}
\mathscr{F}(\|(I-E) F E x\|)+\mathscr{F}(\|(I-E)(I-F) E x\|) \\
=1 / 2 \mathscr{F}(\|(I-E) F E x+(I-E)(I-F) E x\|) \\
\quad+1 / 2 \mathscr{F}(\|(I-E) F E x-(I-E)(I-F) E x\|) .
\end{gathered}
$$

Since the first term on the right is zero, we can define $Z \equiv Z(x) \equiv$ $(I-E) F E x \equiv-(I-E)(I-F) E x$ and obtain $4 \mathscr{F}(\|z\|)=\mathscr{F}(2\|z\|)$. What if $Z(x) \neq 0$? Then $\|Z(x /\|Z(x)\|)\|=1$, and we have

$$
4=4 \mathscr{F}(\|Z(x /\|Z(x)\|)\|)=\mathscr{F}(2\|Z(x /\|Z(x)\|)\|)=\mathscr{F}(2)
$$

which contradicts the hypothesis. Thus $Z=0$ and so $F E x=E F E x$
for any x and any two \mathscr{F}-projections E and F. Replacing E and F by $(I-E)$ and F yields $F(I-E) x=(I-E) F(I-E) x$; whence $E F x=$ $E F E x$. Therefore $F E x=E F x$ and so E and F commute.

Remark. Consider $\mathscr{F}(\lambda)=\lambda^{p}$ for a fixed $p, 1 \leqq p<\infty$. An \mathscr{F}-projection for such an \mathscr{F} is called an L^{p}-projection. Cunningham [4] showed that the L^{1} projections always commute in any Banach space. The above theorem shows that for $p \neq 2$, the L^{p} projections in an L^{p} space commute.

Definition. A net T_{α} of projections on a Banach space X is said to be increasing if $\alpha<\beta$ implies $T_{\alpha} T_{\beta}=T_{\alpha}=T_{\beta} T_{\alpha}$.

Theorem 12. If T_{α} is an increasing net of norm 1 projections on a reflexive Banach space X, then T_{α} converges in the strong opertor topology of X to a norm 1 projection T that commutes with each T_{α} and whose range is the norm closure of $\bigcup_{\alpha} T_{\alpha}[X]$.

Proof. The essentials of a proof can be found in [8; p. 223].

3. Projecting onto cycle subspaces.

Definition. If \mathscr{P} is a Boolean algebra of projections on X and x is in X, let $S(x ; \mathscr{P})$ denote the cycle generated by x and \mathscr{P}; that is, the closed subspace of X generated by $\{E x: E \in \mathscr{P}\}$.

Theorem 13. Let \mathscr{P} be a Boolean algebra of \mathscr{F}-projections on a Banach space X that is smooth and reflexive, and let $x \in X$. Then $S(x ; \mathscr{P})$ is the range of a (unique) norm 1 projection that commutes with \mathscr{P}.

Proof. Let π denote the set of all partitions of x by \mathscr{P}; that is, finite subsets $\left\{E_{1}, \cdots, E_{n}\right\}$ of \mathscr{P} such that $E_{i} E_{j}=0$ if $i \neq j$ and $\left(V_{i} E_{i}\right)(x)=\sum_{i} E_{i} x=x$. The set $\{I\}$ is such a partition. Order π by setting $\mathscr{E} r \mathscr{A}$ if, given A in \mathscr{A} there is an E in \mathscr{E} such that $A E=$ A. This " is refined by " relation r is reflexive, anti-symmetric, transitive, and it directs the set π. Indeed, if $\left\{E_{1}, \cdots, E_{n}\right\}$ and $\left\{A_{1}, \cdots, A_{m}\right\}$ are partitions of x, then one common refinement is the set of $E_{i} A_{j}$ such that $E_{i} A_{j} x \neq 0$.

For each partition \mathscr{E} of x, define $T(\mathscr{E})(y) \equiv \sum(E \in \mathscr{E})(N(E x)(y) /$ $\|E x\|) E x$ for all y in X. The transformation $T(\mathscr{E})$ is obviously linear; that it is a projection on X is an immediate consequence of the fact that for E and F in \mathscr{P} with $E F=0, N(E z)(F y)=N(E z)(E F y)=0$. We now show that the norm of $T(\mathscr{E})$ is 1 . It is not 0 , first of all,
because the projection leaves x fixed. Proceeding, let $y \in X$.

$$
\|[N(E x)(y) /\|E x\|] E x\|=|N(E x)(y)|=|N(E x)(E y)| \leqq\|E y\|
$$

From this,

$$
\begin{aligned}
& \mathscr{F}(\|y\|) \geqq \mathscr{F}(\|V(E \in \mathscr{E}) E y\|)=\mathscr{F}\left(\left\|\sum(E \in \mathscr{E}) E y\right\|\right) \\
= & \left.\sum(E \in \mathscr{E}) \mathscr{F}(\|E y\|) \geqq \sum(E \in \mathscr{E}) \mathscr{F}(\|N(E x)(y) /\| E x \|) E x \|\right) \\
= & \mathscr{F}\left(\left\|\sum(E \in \mathscr{E})(N(E x)(y) /\|E x\|) E x\right\|\right)=\mathscr{F}(\|T(\mathscr{E}) y\|) .
\end{aligned}
$$

Consequently $\|T(\mathscr{E}) y\| \leqq\|y\|$.
In order to apply Theorem 12 , we must show that $T(\mathscr{A}) T(\mathscr{E})=$ $T(\mathscr{E})=T(\mathscr{E}) T(\mathscr{A})$ under the assumption that $\mathscr{E} r \mathscr{A}$. It is a routine matter to use Lemma 5 to check that $T(\mathscr{A})(A x)=A x$ for any A in \mathscr{A}, that $T(\mathscr{A})(E x)=E x$ for any E in \mathscr{E}, and that, therefore, $T(\mathscr{E})=$ $T(\mathscr{A}) T(\mathscr{E})$. Let z be a given element of the null manifold of $T(\mathscr{A})$. Then for each A in $\mathscr{A},(N(A x)(z) /\|A x\|) A x=A T(\mathscr{A}) z=0$ so that $N(A x)(A z)=N(A x)(z)=0$. Then $A x$ is James orthogonal to $A z$:

$$
\|A x+A z\| \geqq\|A x\|
$$

Then

$$
\begin{aligned}
& \mathscr{F}(\|E x+E z\|)=\mathscr{F}\left(\|\left(\sum(A E=A) A(x+z) \|\right)\right. \\
= & \sum(A E=A) \mathscr{F}(\|A x+A z\|) \geqq \sum(A E=A) \mathscr{F}(\|A x\|) \\
= & \mathscr{F}\left(\left\|\sum(A E=A) A x\right\|\right)=\mathscr{F}(\|E x\|),
\end{aligned}
$$

for every E in \mathscr{E}. Therefore, $\|E x+E z\| \geqq\|E x\|$ and, similarly, $\|E x+i E z\| \geqq\|E x\|$ if X is complex. In any case, $N(E x)(z)=$ $N(E x)(E z)=0$ for all E in \mathscr{E} and, therefore, z is in the null manifold of $T(\mathscr{C})$. Since the null manifold of $T(\mathscr{C})$ contains that of $T(\mathscr{A})$, we have $T(\mathscr{C}) T(\mathscr{A})=T(\mathscr{E})$.

By Theorem 12, there is a norm 1 projection T commuting with every $T(\mathscr{C})$ that is the limit in the strong operator topology of the net $T(\mathscr{E})$ and whose range is the subspace $\mathrm{cl} \cup(\mathscr{E} \in \pi) T(\mathscr{E})[X]$. Let us show that T commutes with the projections in \mathscr{P}. Let $E \in \mathscr{P}$. If $E x \neq 0$, let \mathscr{E} denote the set $\{E\}$ or $\{E, I-E\}$ that is a partition of x. Given $\mathscr{A} \in \pi$ such that $\mathscr{E} r \mathscr{A}$,

$$
\begin{aligned}
T(\mathscr{A}) E y & \left.=\sum(A \in \mathscr{A})(N A x)(E y) /\|A x\|\right) A x \\
& \left.=\sum(A E=A)(N(A x) E y) /\|A x\|\right) A x \\
& =\sum(A E=A)(N(A x)(y) /\|A x\|) E A x \\
& =E\left(\sum(A E=A)(N(A x)(y) /\|A x\|) A x\right) \\
& =E\left(\sum(A \in \mathscr{A})(N(A x)(y) /\|A x\|) A x\right) \\
& =E T(\mathscr{A}) y
\end{aligned}
$$

for all y in X. Consequently, for each y in X,

$$
\begin{aligned}
T E y & =\lim (\mathscr{E} r \mathscr{A}) T(\mathscr{A}) E y=\lim (\mathscr{E} r \mathscr{A}) E T(\mathscr{A}) y \\
& =E \lim (\mathscr{E} r \mathscr{A}) T(\mathscr{A}) y=E T y
\end{aligned}
$$

Therefore, $T E=E T$ provided $E x \neq 0$. If $E x=0$, then $(I-E) x \neq 0$ and $T(I-E)=(I-E) T$ by the same argument. From this, $T E=E T$ when $E x=0$.

For all \mathscr{A} in $\pi, T(\mathscr{A})[X] \subseteq S(x ; \mathscr{P})$; hence, $T[X] \subseteq S(x ; \mathscr{P})$. And given $E \in \mathscr{P}$, if $E x \neq 0$, then, letting \mathscr{E} be the above partition of $x, S(x ; \mathscr{E}) \subseteq T[X]$. This completes the proof of Theorem 13 .

THEOREM 14. Let \mathscr{P} be a complete Boolean algebra of \mathscr{F}-projections on a Banach space that is reflexive and smooth. Then the weakly closed algebra $\mathscr{W}(\mathscr{P})$ of operators on X generated by \mathscr{P} is equal to its second commutant.

Proof. Bade [1] shows that if \mathscr{P} is complete, then $\mathscr{W}(\mathscr{P})$ is the uniformly closed algebra of operators generated by \mathscr{P} and it consists, furthermore, of exactly those (bounded linear) operators of X which leave invariant every closed linear manifold invariant under \mathscr{P}.

Suppose A is in the second commutant of $\mathscr{V}(\mathscr{P})$. For each x in X, let T^{x} denote the norm one projection whose range is $S_{x}=S(x$; $\mathscr{P})$. Then T^{x} commutes with $\mathscr{V}(\mathscr{P})$ so that $A T^{x}=T^{x} A$ for all x in X. From this, we have that A leaves each S_{x} invariant: $A S_{x}=$ $A T^{x} X=T^{x} A X \subseteq T^{x} X=S_{x}$. If M is a closed subspace left invariant under \mathscr{P}, then $S_{m} \subseteq M$ for all m in M; whence, $A(m) \in A S_{m} \subseteq S_{m} \subseteq$ M for each m in M. Therefore, A leaves M invariant. Therefore, $A \in \mathscr{W}(\mathscr{P})$.
4. A class of examples. Let (S, Σ, μ) be a measure space with the property FSP (a measurable set of infinite measure contains a measurable subset of finite positive measure). This condition is discussed in [9]. We consider an Orlicz space L_{M} over (S, Σ, μ) where the complimentary Young's functions M and N are normalized $(M(1)+$ $N(1)=1$), satisfy Δ_{2} conditions, and have continuous, strictly increasing derivatives denoted m and n, respectively. Then L_{M} is reflexive and [9; Corollary 2.1] the Luxemberg norms in both L_{M} and L_{N} are strongly differentiable. Furthermore, the weak derivative of a norm 1 function f_{0} in L_{M} is given by $f \rightarrow \int f m\left(f_{0}\right) d \mu$.

Lemma 15. If $0 \leqq f \in L_{M}$, then $m\left(\frac{f(x)}{\|f\|}\right)=\frac{m(f(x))}{\|m f\|}$ for almost
all $x \in S$.
Proof. If $h=\alpha g$ for $\alpha \geqq 0$ and if $h, g \geqq 0$ a.e., we have equality for h and $m(g)$ in Holder's inequality: $\|h\|\|m g\|=\int h m(g) d \mu$. Then $\int f m\left(\frac{f}{\|f\|}\right) d \mu=\|f\|=\int f\left(\frac{m(f)}{\|m(f)\|}\right) d \mu$ so $m(f /\|f\|)$ and $m(f) /\|m f\|$ are normers for f. Since L_{M} is smooth, normers are unique.

Lemma 16. Assume the existence of sets of arbitrarily small positive measure. If $f, g \in L_{M}$ with $0<\|f\|<\|g\|$, then $0<\|m f\|<$ $\|m g\|$.

Proof. Set $K=\|g\| /\|f\|>1$. Choose $x \in S$ such that $0<m(g(x)) /$ $\|m(g)\|=m(g(x)) /\|g\|)$. Set $a=|g(x)| / K>0$. For any measurable set E, let f_{E} be the function constant on E at the value a, and agreeing with $|f|$ outside of E. By diminishing the measure of E, the function f_{E} may be brought in the norm of L_{M} as close to $|f|$ as desired. Furthermore, $\left\|m\left(K f_{E}\right)\right\|-\|m f\|$ approaches $\|m(K f)\|-$ $\|m f\|>0$ as E decreases. It is therefore, possible to choose a set E of positive measure so small that

$$
m(g(x) /\|g\|)\left(\|f\| /\left\|f_{E}\right\|\right)\left\|m\left(K f_{E}\right)\right\|>m(g(x) /\|g\|)\|m f\|
$$

Select $y \in E$ such that $m\left(K f_{E}(y)\right)=m\left(K f_{E}(y) / \|\left(K f_{E} \|\right)\right)\left\|m\left(K f_{E}\right)\right\|$. Computing, we have

$$
\begin{aligned}
& m(g(x) /\|g\|)\|m g\|=m(g(x))=m(K a)=m\left(K f_{E}(y)\right) \\
= & m\left(f_{E}(y) /\left\|f_{E}\right\|\right)\left\|m\left(K f_{E}\right)\right\|=m\left(a /\left\|f_{E}\right\|\right)\left\|m\left(K f_{E}\right)\right\| \\
= & m\left((g(x) /\|g\|)\left(\|f\| /\left\|f_{E}\right\|\right)\right)\left\|m\left(K f_{E}\right)\right\|>m(g(x) /\|g\|)\|m f\| .
\end{aligned}
$$

Cancelling $m(g(x) /\|g\|)$ finishes the argument.
Perhaps Lemma 16 is true without restrictions on the measure space. We have not settled this.

Define $\mathscr{F}(\lambda)=\|f\|\|m f\|=\int|f| m(f) d \mu$ where f is any function in L_{M} of norm λ. From Lemma 16, it is clear that \mathscr{F} is well defined and strictly increasing. To show continuity, let E be any set of finite positive measure and a $(\lambda)=\lambda /\left\|\chi_{E}\right\|$. Then $a(\lambda)$ is continuous and

$$
\mathscr{F}(\lambda)=\int a(\lambda) \chi_{E} m\left(a(\lambda) \chi_{E}\right) d \mu=\int a(\lambda) m(a(\lambda)) \chi_{E} d \mu=a(\lambda) m(a(\lambda)) \mu E,
$$

a continuous function.
Each measurable set E gives rise to the characteristic projection $f \rightarrow \chi_{E} f$.

Lemma 17. Every characteristic projection is an \mathscr{F}-projection.
Proof.

$$
\begin{aligned}
\mathscr{F}(\|f\|) & =\int f m(f) d \mu=\int_{E} f m(f) d \mu+\int_{S \backslash E} f m(f) d \mu \\
& =\int\left(\chi_{E} f\right) m\left(\chi_{E} f\right) d \mu+\int\left(\chi_{S \backslash E} f\right) m\left(\chi_{S \backslash E} f\right) d \mu \\
& =\mathscr{F}\left(\left\|\chi_{E} f\right\|\right)+\mathscr{F}\left(\left\|\chi_{S \backslash E} f\right\|\right) .
\end{aligned}
$$

References

1. W. G. Bade, On Boolean algebras of projections and algebras of operators, Trans. Amer. Math. Soc. 80 (1955), 345-359.
2. E. Bishop and R. R. Phelps, A proof that every Banach space is sub-reflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98
3. J. A. Clarkson, Uniformly convex space, Trans. Amer. Math. Soc. 40 (1939), 396414.
4. F. J. Cunningham Jr., L-structure in L-spaces, Trans. Amer. Math. Soc. 95 (1960), 274-299.
5. N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
6. R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292.
7. -, Characterizations of reflexivity, Studia Math. 23 (1964), 205-216.
8. E. R. Lorch, On a calculus of operators in reflexive vector spaces, Trans. Amer. Math. Soc. 45 (1939), 223.
9. M. M. Rao, Smoothness of Orlicz spaces, Koninkligke Nederlandse Akademic Von Wetenschappen 68 (1965), 672-690.
10. F. E. Sullivan, A norm characterization of L^{p}-spaces, Doctoral Dissertation, University of Pittsburgh, 1968.
11. - Norm characterization of real L^{p}-spaces, Bull. Amer. Math. Soc. 74 (1968), 153-154.

Received July 23, 1968, and in revised form February 25, 1970.
The University of Pittsburgh

