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ON THE OSCILLATION OF SOLUTIONS
OF A CLASS OF LINEAR

FOURTH ORDER DIFFERENTIAL EQUATIONS

SHAIR AHMAD

The purpose of this paper is to study the oscillation pro-
perties of the solutions of the differential equation

(1) yli) = p(t)y

on (—oo, oo), where p(t) is positive and continuous for all t.
Three different types of oscillation are considered, and neces-
sary and sufficient conditions are given for the existence of
solutions of each type.

Oscillatory behavior of solutions of (1) has been studied by a
number of people (see [5]). Leighton and Nehari [3] have studied a
slightly more general class of self-adjoint linear differential equations
of fourth order and have given a number of results concerning oscil-
lation of solutions of (1). Hastings and Lazer [2] have shown that
under the additional assumptions PεC [α, oo), p(t) > 0 and p'(t) ^ 0,
(1) has two linearly independent oscillatory solutions which are bounded
on [α, oo). If further, limt-*«> p(t) = oo, then all oscillatory solutions
of (1) tend to zero.

We shall distinguish between oscillation in the positive sense and
that in the negative sense. A nontrivial solution of (1) is called
positively (negatively) oscillatory if its set of zeros is not bounded
above (below). It is called fully oscillatory if its set of zeros is neither
bounded above nor below. It is called positively (negatively) (fully)
nonoscillatory if it is not positively (negatively) (fully) oscillatory.

In order to gain some motivation, we consider the simple example

(2) y^ - y ,

whose solutions are of the form y — cxe
x + c2e~x + c3 sin x + c4 cos α?.

We note that y = e~~x + sin x is a positively oscillatory solution of (2)
which is not negatively oscillatory. Similarly, y = e* + sin x is a
negatively oscillatory solution which is not positively oscillatory. Fur-
ther, y = sin x and y — cos x are fully oscillatory.

We shall show that corresponding to the solutions y = ex and
y = e~x of (2) there are solutions w and z of (1), respectively, such
that w(t), w'(t), w"(t), w'"(t)>Q for all t s(-oo, DO) and z(t) > 0,
z'(t)<0, z"(t)>0, and z'"(t) < 0 for t e (-oo, oo). Under an ad-
ditional assumption it is shown that any other solutions wx and zx
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with these properties must be constant multiples of w and z, respect-
ively. The main theorem concerning positive oscillation states that
(1) has a positively oscillatory solution if and only if every positively
nonoscillatory solution y of (1) has the property that either there
exists a number t0 such that sgn y — sgn y(i), j = 1, 2, 3, for all t ^ t09

or sgn y{j) Φ sgn y{j+1), j = 0, 1, 2, for all t ε (— oo, oo). It then follows
that if (1) has one positively oscillatory solution, it has three linearly
independent positively oscillatory solutions. Two of these have the
property that every solution which is a nontrivial linear combination
of these two is also positively oscillatory. However, as suggested by
the solutions of (2), given any three linearly independent solutions of
(1), some linear combination of them is positively nonoscillatory. It is
also shown that duals of the theorems concerning positively oscillatory
solutions of (1) hold for the negatively oscillatory solutions. Finally, a
necessary and sufficient condition is given for the existence of a fully
oscillatory solution of (1) and it is shown that if (1) has one fully
oscillatory solution, then it has two linearly independent fully oscil-
latory solutions such that the zeros of any two independent linear
combinations of these solutions separate on (— oo, oo). Further, any
nontrivial linear combination of these two solutions is also fully oscil-
latory. As suggested by the solutions of (2), if yL and y2 are any two
independent linear combinations of these two solutions, then yt

{i) and
y2

{i) cannot have common zeros, i = 0, 1, 2, 3.

2 Positive oscillation* First we state two lemmas. See [2]
and [3] for proofs.

LEMMA 1. If y(t) is a nontrivial solution of (1) and a is a
number such that y(a), y\a)> y"{a), y'"{a) Ξ> 0, then y(t), y'(t), y"{t),
V'"(t) > 0 for all t > a.

LEMMA 2. // y(t) is a nontrival solution of (1) and a is number
such that y(a) ^ 0, y'(a)<Z0, y"{a) ^ 0 and y"\a) ^ 0, then y(t)>0,
2/'(*)<0, y"(t) > 0 and y"\t) < 0 for all t < a.

We note if y is a solution of (1), then so is —y. Hence it follows
from Lemma 1 that y(a), yf{a), y"(a), y"\a) ^ 0 (but not all zero)
implies y(t), y'(t), y"(t), y"'{t) < 0 for all t > a. Similarly, it follows
from Lemma 2 that if y is a nontrivial solution such that y(a) ^ 0,
y'{a) ^ 0, y"{a) ^ 0 and y'"(a) ^ 0, then y(t) < 0, y'{t) > 0, y"(t) < 0 and
y'"(t) > 0 for all t < a.

Throughout the remainder of this paper we let z0, z19 z2, and z%

denote solutions of (1) defined on (-oo, oo) by the initial conditions
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for i, j = 0, 1, 2, 3.

THEOREM 1. There exists a solution w of (1) such that w(t), wr(t),
w"(t), w'"(t) > 0 for all t.

Proof. For each natural number n, let con9 cln, c2n and c3n be
numbers satisfying

Co»*o (-n) + c l Λ ^ (-w) + c2nz2 {-n) + c3nz3 (~n) = 0 ,

Con̂ ί (-W) + ClΛSJ[ (~W) + C2X {-%) + Csn̂ ί (~^) = 0 ,

coχ (-n) + cιnz[f (-n) + c2χ (-n) + c3X (~n) = 0 ,

Co Cί-^) + cι%z["(-n) + c2X'(-n) + c,X"(-n) > 0 ,

Let #Λ — co%^o + cln«! + c2%^2 + c3%2;3. The existence of numbers cOw, c l n,
c2n, and cSΛ, satisfying the above conditions, is easy to verify. For
one can choose such numbers satisfying the first three equations and
the last equation. Since z0, zlf z2 and zz are linearly independent, yn

is a nontrivial solution of (1). I t follows from the Uniqueness Theorem
that y'"{-n)Φθ. If yT(-n)<0, then -cOn, -cln, -c2n, and ~ c 8 n

satisfy the required conditions.
Since for each natural number n, c\% + c\n + c\n + c\n = 1, there

exists a sequence nk of natural numbers such that the sequences
{cOnk}> {cmk}> {c2nk} and {c3%}) converge to numbers c0, c lf c2 and c8, res-
pectively, satisfying

cϋ + c? + cj + d = 1 .

Let w = CQ̂O + CyZi + c2z2 + czzz. Now, suppose that wU)(tQ) < 0 for
.some j = 0, 1, 2, 3, and for some number ί0. Then, since {τ/̂ } (ί0)} con-
verges to ws(i0), there exists a natural number N such that y{J]

k{t)<Q
for all % > N. But this leads to a contradiction since for —nk< t0,
l/^fo) > 0 by Lemma 1, as y{Jk

}(-nk) ^ 0 for all i = 0, 1, 2, 3. This
shows that wU)(t) ^ 0 for all j "= 0, 1, 2, 3, 4, and all ί. Further, since
w is a nontrivial solution, there is no number τ such that wU) (τ) = 0
for all j = 0, 1, 2, 3. Therefore, it follows that w satisfies the require-
ments of the theorem.

THEOREM 2. There exists a solution z(t) of (1) such that z(t)> 0,
jsT(t) < 0, z"(t) > 0 and z"'{t) < 0 for all t.

Proof. The proof is similar to that of Theorem 1. We modify
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each yn to satisfy the conditions yn(ri) = y'n(ri) = y"(n)=:O and y'"(n) <0,
and use Lemma 2.

Throughout this paper, w and z represent the solutions of (1)
given in Theorems (1) and (2), respectively.

LEMMA 3. If y is a positively nonoseillatory solution of (1) which
has a zero in common with some positively oscillatory solution of (1),
then there exists a number t0 such that y, y\ y" and y"r have the same
constant sign on [t0, °°).

Proof. Since y is a positively nonoseillatory solution of (1), there
exists a number t0 such that y, y\ y" and y"' are each of constant
sign on [t0, °o). Let u be a positively oscillatory solution and τ a
number such that u(τ) = y(τ) — 0. An application of Rolle's Theorem
to the function u/y shows that there exists a number s > t0 such that

u'(s)y(s) - u(s)y\s) = 0 .

Hence there exist nonzero constants ct and c2 satisfying

CjU (s) + c2y (s) = 0 ,

CjU'is) + c2y\s) = 0 .

Let Y(t) be the solution of (1) given by

Y(t) = cMt) + c2y(t) .

Since u is positively oscillatory and y is not, Y ^ 0. Thus we can not
have Γ"(s) = F;"(s) = 0. Further, sgn Y"(s) = sgn Y'"(s). For, other-
wise, Y would be of constant sign to the left of s, by Lemma 2, con-
tradicting Y(τ) = 0. Hence, sgn Y(t) = sgn Γ ( i )(ί), j = 1, 2, 3, for all
t > s, by Lemma 1. In order to complete the proof of this lemma,
it is sufficient to show that sgn y"(t) = sgny'"(t) on [t0, ©o). Suppose
sgn y"(t) Φ sgn y'"(t) on [t0, ©o). Then j / " is bounded on [£0, °°) But
this is impossible since u is positively oscillatory and sgn Y'"(t) — sgn
Yw(t) for t > s implies that l i m ^ | Y"(t) \ = co. This completes tha
proof.

THEOREM 3. Tλe following two conditions are equivalent:
(A) There exists a positively oscillatory solution of (1).
(B) If y is any positively nonoseillatory solution of (1), then

either there exists a number tQ such that

sgny(t) = sgni/('")(i), i = 1, 2, 3 ,

for all t ^ t0, or
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sgn y<»(t) Φ sgn yiH1)(t), j = 0,1, 2 ,

for all t ε (~oof oo).

Proof. Assume (A) holds, and let y be a positively nonoscillatory
solution. Then there exists a number t0 such that y, yf, y" and y"r

are each of constant sign on [t0, oo). We note that if sgny{j)(t)φsgn
2/<'+1>(ί),i = 0,l,2,for all t e (ί0, oo], then sgny{>Ί(t) Φ sgny{*'+1)(t),
j — 0,1, 2, for all £ e (— °°, °°), by Lemma 2. Let % be a positively
oscillatory solution and s > tQ with w(s) = 0. Let c be a nonzero con-
stant such that

y(s) + cz(s) = 0 .

Let Y=y + CZ. If 7 Ξ 0 , then y satisfies condition (B). Suppose Y^O.
Assume, without loss of generality that y > 0 on [t0, oo). It is easy
to verify that if y does not satisfy condition (B), then we must have
V, y'y y" > 0 and y'" < 0 on [t01 oo). Thus, lim^^ y(t) = oo, and con-
sequently, Y is positively nonoscillatory since z is bounded on [tQ, oo).
Hence by Lemma 3, there exists a number tx such that sgn F = sgn Y{j\
j = 1, 2, 3, for t > t,. It follows that l i π w | F ; /(ί) | = oo since sgn Γ" ' =
sgn Y{i) for ί > tt. But this is a contradiction since y" and z" are
both bounded on [t01 oo), as y" y"r < 0 and z" zm < 0. This completes
the proof of the first half of Theorem 3.

In order to prove that (B) implies (A), we construct two linearly
independent positively oscillatory solutions u+ and v+ similar to what
was done in [2]. Some of the details have to be modified since we
do not require p(t) to satisfy the same hypothesis as in [2] For the
sake of completeness we go through the construction of u+ and v+.

For each natural number n, let 60Λ, 63w, c2n and cZn be numbers
satisfying

(3) 6L + h\n = cL + c\n = 1 ,

(4) bOnzo(n) + b3nz3(ri) = 0 ,

(5) c2wz2(w) + cSnί?3(n) = 0 .

Define njt) and vjt) to be the solutions of (1) given by

un(t) = 6o^o(t) + 68Λ(ί) *

v»(t) = c2nz2(t) + c3nz3(t) .

By (3) there exists a sequence {nk} of natural numbers and numbers
bOy δ3, c2, c3 such that the sequences {60ΛJ, {63%A}, {c2ΛJ,}, and {c3%k} con-
verge to bot 63, c2 and c3, respectively, where bl + b\ = c\ + c\ — 1. Let
i^+ and t;+ be the solutions of (1) given by
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u+(t) - bozo(t) + b3z3(t) ,

Suppose %+ is positively nonoscillatory. Since (B) holds and
(u+)'(0) = 0, there exists a number t0 such that for all t > t0,

sgn u+(t) = sgn (w+)(i)(ί), i = 1, 2, 3 .

Let τ be any number greater than ί0. Since K^(r)}, « f c (r)}, w"fc(r),.
and <"(τ) converge to w+(τ), u(+)'(τ), (u+)"(τ), and (u+)'"(τ), respectively,,
there exists a natural number N such that

sgn wnjfc(r) = sgn u%(τ), j = 1, 2, 3 ,

for all % > i\Γ. Hence, by Lemma 1,

sgn unjc(t) = sgn wΛjb

(J)(ί), i = 1, 2, 3 ,

for all t > T and nk > i\Γ. But this is a contradiction since unjc(nk) = 0
for all natural numbers w&. Therefore, w+ is positively oscillatory.
Simillarly, v+ is also positively oscillatory (note: v+(0) = 0), This
completes the proof of Theorem 3.

COROLLARY. // (1) has a positively oscillatory solution and y is-
any positively nonoscillatory solution, then either l i m ^ | y(t) \ = oo
or lim^-^ | y(t) \ = oo.

REMARK. An argument, similar to the one given to show that
u+ is positively oscillatory, can be given to show that any nontriviaL
linear combination of u+ and v+ is positively oscillatory.

We note that u+ and v+ are linearly independent since, otherwise,
we would have u+ = Jczs, k Φ 0 contradicting the fact that u+ is
positively oscillatory.

THEOREM 4. If (1) has one positively oscillatory solution, then it
has three linearly independent positively oscillatory solutions.

Proof. The existence of one positively oscillatory solution implies-
condition (B) of Theorem 3 and hence the existence of two linearly
independent positively oscillatory solutions u+ and v+

9 as constructed
in the proof of Theorem 3. In order to find a third positively oscil-
latory solution, let c be a nonzero constant satisfying

u+(0) + cz(0) = 0 .

Let y+(t) — u+(t) + cz(t). Suppose y+ is positively nonoscillatory. Since
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condition (B) holds and y+(0) = 0, there exists a number ί0 such that
for all t > ί0,

sgn y+(t) - sgn {yψ\t), j = 1, 2, 3 .

Therefore, l i m ^ | τ/+(£) | — °°, which is a contradiction since u+ is
positively oscillatory and z is bounded on [tQ, oo). That ?/+, w+, and v+

are linearly independent follows. For, otherwise, z would be a linear
combination of u+ and v+ and hence positively oscillatory.

REMARK. We note that in view of Theorems (3) and (4), condition
(B) is equivalent to the existence of three linearly independent
positively oscillatory solutions.

The following theorem gives a necessary condition for the essential
uniqueness of the solution z(t).

THEOREM 5. Suppose that (1) has no positively oscillatory solution.
If y is any solution satisfying

sgn y{j)(t) Φ sgn y{j+1)(t), j = 0,1, 2 .

for all t, then y = c z for some constant c.

Proof. Suppose that y and z are linearly independent. Let c be
a constant such that 2(0) + cy(0) = 0. Let Y — z + cy. Since Y is
positively nonoscillatory, there exists a number ί0 such that none of
Y, Y\ Y" and Y'" change sign on [t01 oo). Assume, without loss of
generality that Y and, hence, Y(4) are positive on [t0, oo). We note
that Y is bounded on this interval since y and z are both bounded.
Therefore, we must have Y'" < 0, Y" > 0 and Y' < 0 for all t ^ t0.
But this contradicts the fact that Y(0) = 0, thus proving the theorem.

THEOREM 6. Let yly y2 and yz be any three linearly independent
solutions of (1). If (1) has a positively oscillatory solution, then some
linear combination of yx, y2 and yz is positively nonoscillatory.

Proof. It is easy to verify that w, z, u+ and v+ form a basis
for the solutions of (1), where u+ and v+ are the positively oscillatory
solutions of Theorem 3. For, z is bounded on [0, oo) and lim^^
w(t) = oo; while, w is bounded on (— oo, 0] and l i m ^ ^ z(t) — oo. Hence
ylf y2 and yz can be written as

y2 = bλu
+ + b2v

+ + bzw + b±z ,
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yz = ctu
+ + c2v

+ + czw + c4z .

Let dlf d2 and d3 be numbers (not all zero) satisfying

dLat + d2b1 + dsct = 0 ,

dxtta + C?262 + d3C2 — 0 .

Then y = d ^ + d2?/2 + cZ3ί/3 is a linear combination of w and z and
hence positively nonoscillatory.

3* Negative oscillation* We note that y(t) is a negatively oscil-
latory solution of (1) if and only if Y(t) is a positively oscillatory
solution of

(Γ) Γ ( 4 ) = P F ,

where Y(t) = y(-t) and P(ί) = p ( - ί ) Further,

sgn i/(ί) = sgn y^>(ί), j - 1, 2, 3 ,

for all ί ε (—oo, £0] (and hence for ί, by Lemma 1) if and only if

sgn Y^(t) Φ sgn F J + 1 ) ( ί ) , i = 0,1, 2 ,

for all t ε [ —10, ©o) (and hence for all ί, by Lemma 2). Similarly,

sgn yU)(t) Φ sgn yij+1)(t), i = 0,1, 2 ,

for all έ ε (—°°, ί0] if and only if

sgn Y(t) - sgn Y">(t), j - 1, 2, 3 ,

for all t ε [—ί0, oo).

Thus, one can reduce the study of negatively oscillatory solutions
of (1) to that of positively oscillatory solutions. We now state the
duals of the preceding theorems concerning positively oscillatory
solutions for negatively oscillatory solutions. The proofs follow from
the above observations and the results established in the previous
section.

LEMMA 3'. If y is a negatively nonoscillatory solution of (1)
which has a zero in common with some negatively oscillatory solution
of (1), then there exists a number t0 such that

sgn y<»(t) Φ sgn y«+ί)(t), j = 0,1, 2 ,

for all t ε (— oo, tQ].

THEOREM 3'. The following two conditions are equivalent:
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(A') There exists a negatively oscillatory solution of (1).
(B') If y is a negatively nonoscillatory solution of (1), then

either there exists a number tQ such that

sgn γU)(t) Φ sgn yii+1)(t), j = 0,1, 2 ,

for all ί £ (-oo, f0], or

sgn y = sgn ΐ/ω, i = 1, 2, 3 ,

/or αiϊ t ε (— oo9 oo).

THEOREM 4\ // (1) has one negatively oscillatory solution, then
it has three linearly independent negatively oscillatory solutions.

THEOREM 5'. Suppose that (1) has no negatively oscillatory
solution. If y is any solution such that

sgn y(t) = sgn y{j)(t), j = 0,1, 2 ,

for all t, then y — cw for some constant c.

THEOREM 6'. Let yL, y2 and y3 be any three linearly independent
solutions of (1). If (1) has a negatively oscillatory solution, then
some linear combination of yu y2 and y3 is negatively nonoscillatory.

4* Full oscillation*

THEOREM 7. The following two conditions are equivalent :
(A") There exists a fully oscillatory solution of (1).
(B") Conditions (B) and (B') both hold.

Prooof. The fact that (A") implies (B") follows from Theorems
(3) and (3'). Suppose that (B") holds. For each natural number n9

let cQn, cln and c2n be numbers satisfying

Conjoin) + c^z^n) + c2nz2(n) = 0 ,

<W*o(-^) + c^i-n) + c2nz2(-ri) = 0 ,

^On "T* Cίrtt + C2n = 1 .

Similarly, let bίn, b2n and bZn be numbers satisfying

Z>IA(W) + b2nz2(n) + b3nzs(n) = 0 ,

hM-ri) + b2nz2(-n) + bZnzz{-n) = 0 ,

δϊ + δi + δί. = 1 .

Define Un(t) and Fw(ί) to be the solutions of (1) given by
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Un(t) = conzo(t) + clnzx{t) +

K(ί) = &χΛ(O + b2nz&) + 68Λ(*)

There exist subsequences {conj), {cln]c} and {c2njc} of {cOw}, {c1%} and {c2n}r

respectively, and numbers c0, cx and c2 such that

lim {c0Λ } = c0, lim {clw } = cx , lim {c2n]e} = c2 ,

cj + c\ + cj = 1 .

Let U(t) — cozo(t) + CjZ^t) + c2s2(ί). One can verify, using an argument
similar to the ones used in proofs of Theorems (3) and (3'), that U is
fully oscillatory.

The solutions Vn(t) give rise to a solution V(t) of the form

V(t) = δA(ί) + &A(t) + δ3^3(ί) ,

which is fully oscillatory. Similarly, any linear combination of U and
V is also fully oscillatory.

REMARK. The solutions U and V of Theorem 7 are linearly indepen-
dent. To see this it is sufficient to show that cQ Φ 0. Suppose c0 = 0, sα
that U= cxzx + c2z2. Since 17(0) = U'"(0) = 0, either sgn UU) = sgn Uu+1),
j = 1, 2, 3, for all t > 0, or sgn J7(i) ̂  sgn Uu+1), j = 0,1, 2, for all
ί < 0. Hence U is not fully oscillatory, a contradiction.

THEOREM 8. Let U and V be the solutions of Theorem 7. If YL

and Y2 are two independent linear combinations of U and V, then
Yl5) and F2

( i ) cannot have any common zeros, j = 0,1, 2, 3.

Proof. Suppose that Yίj)(s) = Y2

ij)(s) = 0 for some j = 0,1, 2, and
some number s. Then there exist nonzero constants ct and c2 satisfying

(6) c.Y^is) + ctYi»(8) = 0 ,

(7) cJΓi^is) + c2Y2

tJ+1)(s) = 0 .

Let Γ = c 1Y 1+c 2F a . Then by Lemmas (1) and (2), Y is either positively
or negatively nonoscillatory contradicting the fact that every linear
combination of U and V is fully oscillatory. If j = 3, the proof is
similar we replace (7) by

(70 cίY^(s) + c2Y^(s)^0.

THEOREM 9. // (1) has one fully oscillatory solution, then it has
two independent fully oscillatory solutions U and V such that every
nontrivial linear combination of U and V is fully oscillatory, and
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the zeros of any two independent linear combinations of U and V
separate on (—°°, °°). Further, U, V, z and w form a basis for the
solutions of (1).

Proof. We simply prove that the zeros of any two independent
linear combinations Y1 and Y2 of U and V separate on (—°°, <*>),
since the remaining assertions are now obvious. Assuming that U
and V are the solutions of Theorem 7, let tt and ί2(ίL < ί2) be any two
consecutive zeros of Γi. Suppose that Y2 has no zero between tL and
t2. Then by Theorem 8, Y2 does not vanish in the interval [t1912].
Thus, (YJY2y, and hence Y2Yl—YxYl, vanishes at some point s bet-
ween tj_ and t2. Therefore, there exist nonzero constants ct and c2

satisfying

c^s) + c2Y2(s) = 0 ,

cJΓϊ{s) + c2Y2\s) = 0 .

But this leads to a contradiction, since the solution y = cJΓ^ + c2F2

cannot be fully oscillatory by Lemmas (1) and (2).

REMARK. Since U, V, w and z form a basis for the solutions of
(1), it follows that any fully oscillatory solution of (1) which is bounded
on (-oo, oo) must be a linear combination of U and V. One might
conjecture that every fully oscillatory solution is a linear combination
of U and V. We note that this is not true for positively or negatively
oscillatory solutions. In fact, y = sin x + e~x is a positively oscillatory
solution of (2) which is not a linear combination of sin# and cos#.
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