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SOME MEASURE ALGEBRAS ON THE INTEGERS

RICHARD SCOVILLE

The author constructs some abstract algebras whose ele-
ments are subsets of the positive integers, and such that the
measure of a set is its density. These algebras Sϊf are
"abstract" in the sense that the countable join in the underly-
ing lattice is not ordinary set union. However they are
"concrete" in the sense that the elements of the algebra are
sets, the notion of an integrable function is available and the
normed vector space of integrable functions can be shown to
be isometrically isomorphic to an ordinary L1 space. If a
function / is integrable, it is shown that its integral is given
by

where /* is a suitably chosen function differing from / only
on a set of density 0.

This construction differs from others (several are described
by Kubilius in his book on probabilistic methods in number
theory), because usually countable additivity is sacrificed,
whereas here the meaning of countable join has been altered.

The work was motivated by a desire to prove Theorems 3 and 4
which concern an application to sequences (mod 1). We also include
some remarks concerning the possibility of constructing probabilisti-
cally independent measure algebras. Furthermore by means of the
Cantor expansion of a number we construct an algebra which contains
all periodic sequences.

2. Construction of Ssf. Let (X, &, μ) be a probability space.
Let ^ S & be an algebra (not necessarily a σ-algebra) which
generates ^ i.e., & is the smallest (/-algebra containing ^ 7 We
refer to the members of & as Borel sets. Suppose also that a
sequence {zn} of elements from X is given satisfying

μ(I) = l im-J-cardί i l^eJ i = 1,2, ••-,#}, for all I

This sequence will remain fixed throughout the discussion. A set
B e & is called admissible if there is a set of integers A such that

μ(Bf]I) = UmjjrcaτdiJlzjel jeA j = 1,2, .. , N),
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A will be said to go with B. A set of integers A is said to have
density if

lim -— card {j\j e A; j = 1, 2, , N}
N N

exists. The value of the limit will be written dens (A). Moreover,
if dens (Ax — A2) = 0 we will write At S A2 (dens). We will write
Λ = A2 (dens) if At S A2 (dens) and A2 gΞ Ax (dens). We state now a
series of lemmas.

LEMMA 1. // A goes with B, then μ{B) = dens (A).

Proof. μ(B) = μ(BnX) = dens (A).

LEMMA 2. If A goes with B and if A = Ax (dens), then At goes
with B.

Proof. Obvious.

LEMMA 3. If I e ^ 7 then I is admissible and the set {j\zjel}
goes with I.

Proof. Obvious.

LEMMA 4. If B is admissible, then Bc is admissible.

Proof. If A goes with B, Ac goes with Bc.

LEMMA 5. // J5X and B2 are admissible with Bγ S B2 and if At

and A2 go with Bλ and B2 respectively, then Ax g A2 (dens).

Proof.

i c a r d ϋ l i e Λ - A2,j = 1, .- ,iV}

= A . card {j \j eA,- A2; z, e I; j = 1, , N}

^csiYdlJlJeA, - A2;zj$l;j = 1, •• ,iVr}
N

cavάtflJeAl Zjel j = 1, •••, N}

-^carά {j\je A,; z^ I j = 1,2,
N
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Hence

^ c a r d f i l i e Λ - A2;j = 1, --,N}

g μ(Bc

2 Π /) + μ(B,n Ic), ί

Now since ^ generates ^ , μ(I A (B2 — BJ) can be made as small as
we wish so we see that

lim — card {j \j e Ax — A2; j = 1, , N} = 0 .
N N

LEMMA 6. If Ax and A2 go with B, then Ax — A2 (dens).

Proof. This follows from Lemma 5.

LEMMA 7. If Bλ and B2 are admissible with B1(]B2= 0 then
we can find sets A1 and A2 going with Bx and B2, respectively, such
that Aι Π A2 = 0 .

Proof. Suppose A1 and Az go with Bλ and B2. Then Al goes
with Bc

2, and since S i S B U i S A3 (dens). Hence A3 — A1 = Az (dens),
so by Lemma 2 we may set A2 = A3 — A.lβ

LEMMA 8. If Bi Q B2 are both admissible then so is B2 — Bλ.

Proof. Let Λ and A2 go with J5X and J52, respectively. By the
preceding lemmas we can assume that Ax S A2. Then for any I

μ((B2 -

^ Λ ^ e I j - 1,

- lim jL card {i|i e Λ; ̂  61;i = 1, , iV"}

= lim-ί-card { i l i G Λ - A. z. el j = 1, ••-,#}

LEMMA 9. 1/ J5i, 5 2 , , is α sequence of mutually disjoint
admissible sets, then U-B* is admissible.

Proof. Let Ax, A2> , be a sequence of mutually disjoint sets
going with Bιt B2, , respectively. Since

lim j L c a r d ϋ l i e ^ i = 1, « ,iV} =



772 RICHARD SCOVILLE

we may assume, by removing a finite number of elements from A4 if
necessary, that for all i

-jTcard {j\je At; j = 1, •••, JV} < μ(B%) + 2-' for all N .

Let A = [jAi and let Je J C Then

A . card {j\zj e A; j = 1, , N}

= Σ-^r card \j\zje I; je Ai] j = 1, — , JSΓ} .

Now passage to the limit within the summation is justified since, by
(1), the series is dominated by the series Σ (M-B ) + 2-ί) Hence we
get

Mm — card {j\z, e I; je A j = 1, •••, JV}

LEMMA 10. 7%e admissible sets form a σ-algebra.

Proof. This is a simple consequence of Lemmas 8 and 9.

THEOREM 1. Every Borel set is admissible.

Proof. This is obvious from Lemma 10 since the sets of ^~ are
admissible.

We denote by J ^ the collection of all sets of integers which go
with some B e &. Then it is clear from the preceding discussion that
j ^ ; modulo sets of density 0, is isomorphic as a lattice to ^ modulo
sets of measure 0. We omit the details since the situation will be
clearer after the definition of Lι(j*f). However we will make one
comment on the lattice operation in s%f. For any sets {AJ from Jzf
going with sets {Bt} from &, let VA; be a set going with ui?*. Of
course VÂ  is unique in Szf modulo sets of density 0, but in addition
the following is true.

THEOREM 2. Let Au A2, , be sets from j ^ . Let D be any set
having density equal to dens (VA*) and suppose D Ξ2 A{ (dens), ί =
1, 2, . Then D = VA* (dens).

Proof. Since D — vAtQD — [J?=ί A< (dens), and since

dens (l> - U Ai) = dens (D) - dens (() A,) ,
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we see that d e n s φ — VA+) = 0, i.e., D g V^(dens). But since
dens (JO) = dens (VA<) we have also VA{ £ D (dens). Hence D =
VAi (dens).

This characterizes VAi9 modulo sets of density 0, as the smallest
set having a density and containing all the sets A19 A2, •••.

3* Applications to sequences (mod 1). Let T be the unit circle
in the complex plane, and let {zn} be a sequence of points in T. We
will say that {zn} has the distribution μ if μ is a probability measure
on T such that for any "interval," I, of T (i.e., any connected subset
of T) satisfying μ{dl) = 0, we have

μ(I) = I n n - ^ card { i l^e/ i - 1, — , JSΓ} .

If we let ^ be the algebra of sets generated by those / for which
μ(dl) = 0, the preceding work is applicable and we get as special
cases the following two theorems.

THEOREM 3. If {zn} has the distribution μ, and if μ — μat + μc

where μat is the atomic part of μ, then there exists a set A of integers,
unique to within a set of density 0 such that, for any interval I
satisfying μ(dl) = 0,

μat(I) = lim^

THEOREM 4. If {zn} has the distribution μ, and if μ — μί + μ2

where μγ is absolutely continuous with respect to Lebesgue measure
and μ2 is singular with respect to Lebesgue measure, there exists a
set A of integers, unique to within a set of density 0 such that

μJJ) — lim — card {j \j e A; z3- e I; j = 1, , N}

and

μ2(I) = lim A- card {j \j e Ac; zά e J, j = 1, . - , N}

for any interval I for which dl is μ-null.

Proof. The proof uses only the fact that μγLμ2\ there are
disjoint Borel sets Bγ and B2 such that μSB) = μ{B1{\B)1 and μ2(B) =
μ(B2f)B). Since the intervals having μ-null boundaries generate ^ Bt

and Bo are admissible. The conclusion of the theorem follows.
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4* Representation of Lι(X) as a space of sequences* In this
section we define a space D{J*f) of sequences (actually equivalence
classes of sequences) which is isometrically isomorphic to U{X).

If / is a sequence of real numbers, / will be called measurable
if for all real numbers # in a dense set, we have

Dx = {j\f(j)< x) e j*.

The function a(x) = dens (Dx) is nondecreasing and of course can be
extended to a nondecreasing function defined for all x. We will loosely
refer to any such extension as the distribution of / . A measurable
sequence / will be called integrable if its distribution a satisfies

( i ) [° da(x) = 1 and (ii) Γ \x\da(x) < oo .

If / is integrable, let M(f) = [° xda(x). Let L be the set of all
J—oo

integrable sequences.

LEMMA 11. If feL has the distribution a, then Dxej^ for
every x for which a is continuous.

Proof. We give only a sketch. Suppose a is continuous at xQ.
Then for all x, y with x < x0 < y and Dx, Dy e j ^ we have Dx £ DXo £ Dy,
so it is clear that dens (Dx) exists. We must show that DXQ goes
with a Borel set BXQ. Since Dx and Dy are in j ^ they go with Borel
sets Bx and By with Bx^By(μ). Set BXQ = Γ\By., the intersection
being taken over a decreasing sequence {y^ converging to x0. Then it
is easily verified that DXQ goes with BXQ, proving the lemma.

We define a map φ from L to U{X) as follows: let / G L and
construct a sequence of partitions Pn — (•••, α-i,», αOtn, α l fΛ, •) of the
real line having the following properties:

( i ) mesh ( P . ) < 2 - ^ = 1,2,...)
(ii) α2 i ί Λ + 1 - ai>n(n = 1, 2, •; i = 0, ± 1 , ± 2 , •)
(iii) α i>n is a point of continuity of a.

Define

Di,n = {7 |«i,» ^ /O') < «i+l,»}

and let B ί f Λ be a Borel set such that Ώin goes with #, n. Define, in

Lι(X),

{flrΛ} is clearly a Cauchy sequence in L^X). Let #(/) = l i m ^ . The
limit may be taken either a.e. or in Lι(X).
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LEMMA 12. φ(f) does not depend on the choice of the partitions

The proof is omitted. Suffice it to say that φ(f) could have been
defined by a "spectral" integral of the form

= Γ
J-o

where Dx = {j\f(j) < x) goes with Bx.

THEOREM 5. If f and g are in L and if f has the distribution
a, then φ(f) = φ(g) if and only if

{J\f(J) <%} = {J\9(J) < x] (dens)

for every x for which a is continuous.

Proof. Assume the condition is satisfied. If we choose partition
points at which both a and β (the distribution of g) are continuous,
we get immediately φ(f) = φ(g).

Conversely, suppose that φ(f) — φ(g) and that x is a point of
continuity of both a and of β. Then as in the proof of Lemma 11
we see that both the sets {j \ f(j) < x) and {j \ g(j) < x} go with
{z\Φ(f)(z) < x) and hence are equal (dens). It then follows that a = β
on a dense set so the points of continuity of a are precisely the points
of continuity of β. This proves the theorem.

We now set / = g if φ(f) = φ(g), and let [/] be the equivalence
class containing /. The collection of all equivalence classes [/] (/ e L)
will be denoted by L\Szf).

LEMMA 13. If feL then there is a sequence /* e L with f —
f* (dens) such that

N N 3=1

Here we have used the notation f = g (dens) to mean that the
set {j\f(j) Φ g(j)} has density 0. If / = g (dens) then surely f=g9

but the converse need not be true as the example f(j) = 1/j and
g(j) — 0 shows.

Proof. First assume that a is continuous at 0. We can clearly
treat the positive and negative parts of / separately so we assume
also that / Ξ> 0. Let 0 = δ19 <52, <?3, be an increasing sequence of
numbers at which a is continuous and such that lim δn = °o. Let
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(0 otherwise .

Since

Hm-^Σ/.ω= \'*+1xda(x),

we can modify fn on a set of density 0 (actually a finite set) so that
for all N the modified function f* satisfies

Let/* = Σ / *. Then

{j\f(j) Φ f*(j)} ε \J\M > X} (dens)

for every N so that / = / * (dens). Moreover

Again the interchange of limits is justified by the dominated con-
vergence, and we have

1 N ( * c o

l l l l l • S , J \J) — 1 tklλ>UL\Jj)

N N 3=1 JO

proving the lemma for those / for which a is continuous at 0. For
any / choose xQ at which a is continuous. Consider g = f — x0, apply
the preceding to get g* and set / * = g* + x0. Clearly / * has all the
desired properties.

THEOREM 6. The space h\sf) is a vector space.

Proof. We must show that L is closed with respect to addition and
to multiplication by real numbers and that furthermore f+g = f + gf

and cf = cf whenever f = f and g = g\ Suppose / and g are in L.
We must show that for all numbers x in a dense set, Ax = {j\f(j) +
g(j) < %} e *$/. For each rational number ri9 let A{ — {j\f(j) < x — re
g{j) < ?**}. For any M > 0 and ε > 0, choose N so large that a sub-
collection of the numbers rly r2, , rN partitions the interval [ — M, M]
with a mesh less than ε. Then for any j e Ax_ε — (Ji^i A% we have
fϋ) + diJ) < ^ - ε and either f(j) <x - n for all r< e [-M, M], f(j) ^
x — r< for all r{ e [-M, M] or for some rit r5 e [-M, M], f(j) < x — ri9

f(j) ^ x — ro . In the first case f(j) < x — M + ε, in the second
f(j) > x + M — ε, and in the third, since j 0 Aiy g(j) ̂  rίβ Since we
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may suppose | r< — rά | < ε we get in the third case f(j) + g(j) ̂  x — ε.
Hence the third case is impossible and we have

A,_. - \JA, S {j\f(j) > x + M-ε}U{j\f(3) < x - M + e} .
ί = l

Now since \Jf=1 Aι g V A; (dens), we see that dens (Ax_ε — N/A*) = 0,
i.e., Ax-e £ VAi (dens). Let T(α) = dens (VA<). Clearly A, 3 A< for
all i, so we get for every x and every ε > 0,

dens (Ax) ^ dens (VA<) = Γ(α)

and

dens (A,_e) ^ dens (VA<) = Γ(α) .

Here we have used the notation dens and dens for lower and upper
density respectively. Replacing x by x + ε in the second inequality
we get

T(x) ^ dens (Ax) ^ dens (Ax) ^ T(x + ε) .

This shows that Ax has a density if x is a point of continuity of T
and Theorem 2 then gives 4 e j / , since Ax = VAi (dens).

Note that for such x, the set Ax goes with the Borel set
{z Iφ(f) + φ(g) < x}( = {z I φ(f) + ̂ ) ^ aj}^)). Hence φ(f + g) = φ(f) + φ(g).
The only nontrivial point left is to prove that — fe L whenever fe L.
But {j I -f(j) <x} = {j |/(i) < -x) = {j \f(j) ^-x}c = {jI/O') < -x}c G j ^
whenever — cc is a point of continuity of α:. This finishes the proof.

At the outset one is tempted to call a sequence /, "measurable,"
if for all x, {j\f(j) <x}estf. However, consider the following: let
D be a set not in Szf and define f(j) = —1/j and

9(3) = •

fl
3

1 _

3

1

3'

3

j eD .

Then {i |/(i) + g(j) < 0} = D £ jy; so that / + g is not "measurable"
even though / and g are.

THEOREM 7. // LX(J^) is sm eπ the norm | [/] | = Λf(|/|) ίAen ^
is απ isometric isomorphism of Lι{Jzf) and Lι(X).

Proof. It is clear from what has already been done that φ is an
isometric isomorphism of Lι(s$?) into U(X). We must show that φ
is onto, so let ψ e L\X) and suppose ψ has distribution a, a(x) —
μ{z\ψ(z) < x). Choose partitions Pn as before in the definition of φ.
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For each n let A'itn go with the Borel set {z\φ(z) < ai>n}. We can
suppose that for all i, A'itn £ A'i+1>n and that A'itn+1 gΞ A'jtn whenever
α ί fW+1 ^ α i f Λ Set Ai>n = A'i+Un and define

MJ) = Σ aitnχA Jj)

and let /(?') = limn/Λ0"). Now if α*,* < x < ak+1,n,
J f e - l J f c + i

A'k,n = V Λ.. S {?|/(?) < x} £ V Λ. = 4+,.. (dens) .

This shows that if # is a point of continuity of a, the set {i|/(i) < x)
is in jy: This is what we wanted to prove.

5* Examples* In the first example we exhibit two algebras
and jsf2 that are independent; i.e., for any Aλe j#ί, A2e j^J, the set
AiΠAg has density and dens (A1f]A2) = dens (Ax) dens (A2). Let T be
the unit circle, let X = T x T, let μ x μ be normalized Lebesgue (i.e.,
Haar) measure on X, let ^ be the Borel sets of X, and let ^ be
the algebra generated by the rectangles of X. Let {z, w) e X be such
that the sequence {(z, w)n} — {(̂ %, wn)} is uniformly distributed in X.
Let j ^ be the algebra determined by this sequence and let j^[ and
j^f2 be the algebras determined by {zn} and {wn}, respectively. Let
A1 e Ĵ Γ and A2 e j^J go with Borel sets Bx and B2 e &. We will show
that, in J ^ ^ goes with Bλ x T and 4̂2 goes with T x JB2 Then it
will follow that AιΠA2 goes with (Bι x T)Γ\(T x B2) = 5X so that
dens ( 4 Π Λ ) = (μ x ^)(^i x A) = dens (AJ dens (A2). But the fact
that Ax goes with 5X x T is clear: let A[ go with Bt x T and consider
I x TeJ?: Then

U) = (/< x ^((-B, x r)n(/ x T))

= lim J - card {j \ (z, w)j el x T; j e A[; j = 1, , N}
N N

= lim -— card {j \ zj e I; j e A[; j = 1, , N} .

Hence A[ — Aλ (dens).
In this second example, we let X = [0,1] and let & be the Borel

sets of X, We are concerned with the sequence {zn} defined by

3=2. Q\

where nά is the remainder obtained by dividing n by j , 0 ^ nά < j .
Let r be a rational number in [0,1). We show that {zn} is uni-

formly distributed in X by showing that
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lim — card {n | zn ^ r; n = 1, , N} = r

Let A; and K be such that r = ife/lΏ Note that zw ^ A /iΠ if and
only if n2/2l + + nκ/Kϊ < k/Kl, for suppose the latter. Then
n2/2l + + nκ\K\ ^k- 1/Kl, so that zn^k- 1/Kl + Σ7=*+i3-VH =
A:/iΠ. The converse follows from the fact that for any n, nά — n for
j > n. It follows that the set {n\zn <S Λ/EΓ!} is periodic with period
K\ so its density is

_i_card{™ J?2- + . . . + ^<k/Kl;n = 0, . . . , m - l } = ft/JΏ = r .

THEOREM 8. Tfce algebra s/, constructed by means of the sequence
{zn}, contains all periodic sequences.

Proof. Let K ^ 2 and let p be between 0 and K — 1. Let

^ V (iΓ 1)! ^ iί! ' (K 1)1- 1)! ^ iί! ' (K - 1)1 Kl

It is not difficult to see that nκ == [iί! zn] (mod if) so if znel then
nκ = p and conversely. Hence {w|2Λ e /} = {n\n = ί> (modjfiΓ)}. This
proves the theorem.

Thanks are due to Professors L. Carlitz and 0. Stackelberg with
whom the author had many discussions during the preparation of this
paper.
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