A MULTIPLIER THEOREM

LOUIS PIGNO

Let G be a locally compact abelian group and φ a complex-valued function defined on the dual Γ . In this paper we prove that φ is a multiplier of type $(L^1 \cap L^{\infty}, L^1 \cap C)$ if and only if $\varphi = \hat{f}$ for some $f \in L^1(G)$.

Throughout the paper M(G) denotes the measure algebra of the locally compact group G, $L^{p}(G)$ $(1 \leq p \leq \infty)$ the usual Lebesgue space of index p formed with respect to left Haar measure on G, C(G) the set of all bounded continuous complex-valued functions on G and $C_{o}(G)$, the set of all $f \in C(G)$ which vanish at infinity.

For a locally compact abelian group G with dual Γ the Fourier transform \hat{f} of a function $f \in L^1(G)$ is defined by

$$\hat{f}(\gamma) = \int_{g} f(x) (-x, \gamma) dx$$
 $(\gamma \in \Gamma)$.

The Fourier-Stieltjes transform $\hat{\mu}$ of a measure $\mu \in M(G)$ is defined by

$$\hat{\mu}(\gamma) = \int_{\mathcal{G}} (-x, \gamma) d\mu(x)$$
 $(\gamma \in \Gamma)$.

For $y \in G$, the translate f_y of the function f is defined by

$$f_y(t) = f(t - y) \qquad (t \in G) .$$

The translate μ_y of the measure $\mu \in M(G)$ is defined by

$$\mu_y(E) = \mu(E-y)$$

where E is any Borel set in G.

A complex-valued function φ defined on Γ is said to be a multiplier of type $(L^1 \cap L^{\infty}, L^1 \cap C)$ if given $f \in L^1(G) \cap L^{\infty}(G)$ there corresponds a $g \in L^1(G) \cap C(G)$ such that $\varphi \hat{f} = \hat{g}$. The set of all multipliers of type $(L^1 \cap L^{\infty}, L^1 \cap C)$ will be denoted by $(L^1 \cap L^{\infty}, L^1 \cap C)$. The multiplier problem $(L^1 \cap L^{\infty}, L^1 \cap C)$ is then the determination of necessary and sufficient conditions which insure that $\varphi \in (L^1 \cap L^{\infty}, L^1 \cap C)$. The multiplier problems, $(L^1 \cap L^{\infty}, L^1 \cap C_o)$, $(L^1 \cap C_o, L^1)$, etc., are defined similarly.

For the classical groups T and R, the multiplier problem $(L^1 \cap L^{\infty}, L^1 \cap C_o)$ has been solved by Zygmund [9] and Doss [1, p. 191], respectively. The solution for G = T has also been given by Verblunsky [8, p. 303]. Edwards [3, pp. 376-378] has solved the

problem for compact groups satisfying the first axiom of countability. Hewitt and Ross have recently solved the problem (to appear in [5]) for all compact groups. We prove for arbitrary LCA groups the following theorem:

Theorem 1. $(L^{\scriptscriptstyle 1}\cap L^{\scriptscriptstyle \infty},\ L^{\scriptscriptstyle 1}\cap C)=(L^{\scriptscriptstyle 1}\cap L^{\scriptscriptstyle \infty},\ L^{\scriptscriptstyle 1}\cap C_{\scriptscriptstyle o})=L^{\scriptscriptstyle 1}(G)^{\scriptscriptstyle \wedge}$.

Proof. By $L^{1}(G)^{\wedge}$ we mean the set of \hat{f} on Γ which are Fourier transforms of functions $f \in L^{1}(G)$. Suppose $\varphi = \hat{f}$ for some $f \in L^{1}(G)$. If $g \in L^{1}(G) \cap L^{\infty}(G)$ then, by [6, p. 4], the convolution $f * g \in L^{1}(G) \cap C_{0}(G)$. Thus $\varphi \in (L^{1} \cap L^{\infty}, L^{1} \cap C)$ and $(L^{1} \cap L^{\infty}, L^{1} \cap C_{o})$.

Next suppose $\varphi \in (L^1 \cap L^{\infty}, L^1 \cap C)$. We first show that $\varphi = \hat{\mu}$ for some $\mu \in M(G)$. Assume temporarily that G is compact. Since $\varphi \in (L^{\infty}, C)$ we have $\varphi \in (L^{\infty}, L^{\infty})$. By a result of Edwards [3, p. 374] $\varphi = \hat{\mu}$ for some $\mu \in M(G)$.

If G is a noncompact LCA group we proceed as follows. $\varphi \in (L^1 \cap L^{\infty}, L^1 \cap C)$ implies $\varphi \in (L^1 \cap C_o, L^1)$. Doss [1, p. 189] has proved that, for $G = \mathbf{R}$, $\varphi \in (L^1 \cap C_o, L^1)$ if and only if $\varphi = \hat{\mu}$ for some $\mu \in M(\mathbf{R})$. We have been able to generalize his proof to noncompact LCA groups, but the proof is rather lengthy. Frank Forelli has recently given a simple proof that $(L^1 \cap C_o, L^1) = M(G)^{\wedge}$. (See Theorem 3.2 of [4].)

So for $f \in L^1(G) \cap L^{\infty}(G)$

$$g(x) = \int_{a} f(x-t)d\mu(t)$$
 a.e.

where $\hat{g} = \hat{\mu}\hat{f}$ and $g \in L^1(G) \cap C(G)$. We now show that μ is absolutely continuous with respect to Haar measure. Let A be any relatively compact Borel subset of G and ψ the characteristic function of A. Then the convolution $\psi * \mu$ is equal a.e. to a continuous function. Thus for each relatively compact Borel subset A of G the function

$$x \longrightarrow \mu (x + A)$$

is equal a.e. to a continuous function. This implies by the following theorem that $d\mu(x) = f(x) dx$ for some $f \in L^1(G)$ and hence concludes the proof.

THEOREM 2. Let G be a locally compact group and $\mu \in M(G)$ such that for each relatively compact Borel subset A of G, the function $x \to \mu(x + A)$ is equal locally a.e. to a continuous function on G. Then $d\mu(x) = f(x) dx$ for some $f \in L^1(G)$.

Compare this with Theorem 2 of [2, p. 407], where μ can be any Radon measure but where G is assumed to be a first countable LCA

group. In this connection see also 1.6 of [7, p. 230]. The proof of the present theorem may be obtained by simple modifications of the proof of Theorem (35.13) of [5], which we omit.

Remark. Let G be a noncompact LCA group. Since

 $(L^{\scriptscriptstyle 1}\cap C_{\scriptscriptstyle o},\,L^{\scriptscriptstyle 1})=M(G)^{\scriptscriptstyle \wedge}$

we have that

$$egin{aligned} M(G)^{\wedge} &= (L^{1} \cap C, \, L^{1}) \ &= (L^{1} \cap L^{P}, \, L^{1}) \ &= (L^{1} \cap L^{P}, \, L^{1} \cap L^{P}) \ &= (L^{1} \cap C, \, L^{1} \cap L^{P}) \ &= (L^{1} \cap C_{o}, \, L^{1} \cap L^{P}) \ &= (L^{1} \cap C_{o}, \, L^{1} \cap C_{o}) \ &= (L^{1} \cap C_{o}, \, L^{1} \cap C) \ &= (L^{1} \cap C, \, L^{1} \cap C) \ &= (L^{1} \cap C, \, L^{1} \cap C) \end{aligned}$$

where $M(G)^{\wedge}$ is the set of $\hat{\mu}$ on Γ which are the Fourier-Stieltjes transforms of measures $\mu \in M(G)$. For infinite compact groups it is false that $(C, L^1) = M(G)^{\wedge}$ since $(L^2, L^2) = L^{\infty}(\Gamma)$.

The author wishes to thank the referee for bringing to his attention theorem (35.13) of [5] and for the reference to [4]. Theorem (35.13) enabled the removal of the (unnecessary) hypothesis that G be first countable in Theorem 1.

REFERENCES

- 1. R. Doss, On the multiplicators of some classes of Fourier transforms, Proc. London Math. Soc. (2) 50 (1949), 169-195.
- 2. R. E. Edwards, Translates of L^{∞} functions and of bounded measures, J. Austr. Math. Soc. 4 (1964), 403-409.
- 3. ____, On factor functions, Pacific J. Math. 5 (1955), 367-378.
- 4. A. Figà-Talamanca and G. I. Gaudry, Multipliers and sets of uniqueness of L^p (to appear Michigan Math. J. 17 (1970))
- 5. E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. II, Springer-Verlag, Heidelberg and New York, 1970.

6. W.Rudin, Fourier analysis on groups, Interscience, New York, 1962.

7. _____, Measure algebras on abelian groups, Bull. Amer. Math. Soc. 65 (1959), 227-247.

8. S. Verblunsky, On some classes of Fourier series, Proc. London Math. Soc. (2) 33 (1932), 287-327.

9. A. Zygmund, Remarque sur un théorème de M. Fekete, Bull. Acad. Polonaise Sci. Lett. (1927), 343-347.

Received December 10, 1969.

KANSAS STATE UNIVERSITY