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A MULTIPLIER THEOREM

Louis PIGNO

Let G be a locally compact abelian group and φ a com-
plex-valued function defined on the dual Γ. In this paper
we prove that φ is a multiplier of type (L1 n L°°, L1 n C) if
and only if φ = / for some feL\G).

Throughout the paper M(G) denotes the measure algebra of the
locally compact group G, LP(G) (1 ̂  p ^ oo) the usual Lebesgue space
of index p formed with respect to left Haar measure on G, C(G) the
set of all bounded continuous complex-valued functions on G and
C0(G), the set of all / e C(G) which vanish at infinity.

For a locally compact abelian group G with dual Γ the Fourier
transform / of a function feU(G) is defined by

= \ f(x)(-x,Ύ)dx
JG

The Fourier-Stieltjes transform μ of a measure μ 6 ikf(G) is defined

by

β(y) = \ (-x,Ύ)dμ(x) ( 7 e Γ ) .

For y eG, the translate / y of the function / is defined by

fy{t)=f{t-y) (teG).

The translate /̂ ^ of the measure μeM(G) is defined by

μy(E) = μ(E - y)

where E is any Borel set in G.
A complex-valued function φ defined on Γ is said to be a mul-

tiplier of type (L1 Π L°°, L1 Π C) if given / e L\G) Π I/°°(G) there cor-
responds a g e L\G) f] C(G) such that φf = g. The set of all mul-
tipliers of type (L1 Π L°°, L1 Π C) will be denoted by (L1 Π L°°, L1 Π C).
The multiplier problem (L1 Π L°°, Lι Π C) is then the determination of
necessary and sufficient conditions which insure that φ e (L1 Π L^.L1 ΠC).
The multiplier problems, (L1 Π L°°, L1 Π Cβ), (L1 Π Co, L

1), etc., are de-
fined similarly.

For the classical groups T and R, the multiplier problem
(L1 Π 1/°, ί/1 Π Co) has been solved by Zygmund [9] and Doss
[1, p. 191], respectively. The solution for G — T has also been given
by Verblunsky [8, p. 303]. Edwards [3, pp. 376-378] has solved the
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problem for compact groups satisfying the first axiom of countability.
Hewitt and Ross have recently solved the problem (to appear in [5])
for all compact groups. We prove for arbitrary LCA groups the
following theorem :

THEOREM 1. (L1 n L~, L1 n C) = (L1 n L~, L1 n Co) = L\G)A .

Proof. By L\G)A we mean the set of / on Γ which are Fourier
transforms of functions feL\G). Suppose φ—f for some feL\G).
If geL1{G)Γ\Lco{G) then, by [6, p. 4], the convolution f * ge
U{G) Π C0(G). Thus φe (L1 Π I/°°, L1 Π C) and (L1 Π L°°, L1 Π Co).

Next suppose φeiL1 f] L°°, L1 Π C). We first show that φ = μ
for some μeM(G). Assume temporarily that G is compact. Since
φe(L~, C) we have φe(L~, L°°). By a result of Edwards [3, p. 374]
φ — μ ίoτ some μ e M{G).

If G is a noncompact LCA group we proceed as follows.
φ e (L1 Π L~, I/1 n C) implies φ e (L1 Π Co, L% Doss [1, p. 189] has proved
that, for G — R, £>e (L1 Π Co, L

ι) if and only if φ = μ for some
μeM(R). We have been able to generalize his proof to noncompact
LCA groups, but the proof is rather lengthy. Frank Forelli has
recently given a simple proof that (L1 Π Co, L

1) = M(G)A. (See
Theorem 3.2 of [4].)

So for feL\G)ΐ\L~(G)

r

JG

where g = μf and g G Lι(G) Π C(G). We now show that μ is absolutely
continuous with respect to Haar measure. Let A be any relatively
compact Borel subset of G and ψ the characteristic function of A.
Then the convolution ψ * μ is equal a.e. to a continuous function.
Thus for each relatively compact Borel subset A of G the function

x > μ (x + A)

is equal a.e. to a continuous function. This implies by the following
theorem that dμ(x) =f(x)dx for some feL^G) and hence concludes
the proof.

THEOREM 2. Let G be a locally compact group and μ e M(G) such
that for each relatively compact Borel subset A of G, the function
x—>μ(xJ

rA) is equal locally a.e. to a continuous function on G.
Then dμ(x) = f(x)dx for some feLι{G).

Compare this with Theorem 2 of [2, p. 407], where μ can be any
Radon measure but where G is assumed to be a first countable LCA
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group. In this connection see also 1.6 of [7, p. 230J. The proof of
the present theorem may be obtained by simple modifications of the
proof of Theorem (35.13) of [5], which we omit.

Remark. Let G be a noncompact LCA group. Since

(L1 Π Co, L
1) = M(G)A

we have that

ilί(G)Λ

= (&

= (L1

= (L1

= (L1

= (L1

= {U

= (L1

n
n
n
n
n
n
n
n

C,U)

Lp,

Lp,

C,l

c.,
Co,

C,i

u n LP)
v n LP)
L1 n LP)

L1 n c.)
LιΓ\C)

Lιf]C)

where M(G)A is the set oί μ on Γ which are the Fourier-Stieltjes
transforms of measures μeM(G). For infinite compact groups it is
false that (C, L1) - M(G)A since (L2, U) = L~(Γ).

The author wishes to thank the referee for bringing to his at-
tention theorem (35.13) of [5] and for the reference to [4]. Theorem
(35.13) enabled the removal of the (unnecessary) hypothesis that G
be first countable in Theorem 1.
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