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ON THE GALOIS THEORY OF
SEPARABLE ALGEBRAS

H. F. KREIMER

This note presents a Galois theory for a separable algebra
A over a semi-local ring R without imposing any restrictions
on the presence of idempotent elements in 4. If suitable
restrictions are placed on the existence of idempotent elements
in 4, then such a Galois theory has been obtained by L. N.
Childs and F. R, DeMeyer; and the results presented here
are extensions of results obtained by Childs and DeMeyer.
In more recent work, DeMeyer has extended the Galois theory
to algebras over a class of commutative rings more general
than semi-local rings, After treating the simpler case of
algebras over a semi-local ring, it is indicated in an addendum
to this paper how the Galois theory presented here may also
be extended to algebras over this more general class of com-
mutative rings,

Galois theory. Throughout this paper, ring will mean ring with
identity element and subring of a ring will mean subring which
contains the identity element of the ring. Analogously, an algebra
over a commutative ring R will mean an R-algebra which is a unital
R-module and has an identity element, and a subalgebra of an algebra
will mean a subalgebra which contains the identity element of the
algebra. Let G be a group of automorphisms of a ring 4, and let
A¢ designate the subring of G-invariant elements of 4. If C is the
center of 4, let G, denote the subgroup of all automorphisms in G
which leave elements of C invariant. C is G-stable and G, is a normal
subgroup of G. Moreover, the restriction of elements of G to C
induces a faithfull representation of G/G, as a group of automorphisms
of C. The set E of central, idempotent elements of 4 is a Boolean
algebra in which the intersection enf is e-f, the union e U f is
¢ + f — e-f, and the complement of ¢ is 1 — ¢, for ¢, fe E. In agree-
ment with [14, Definition 3.7], define the closure of G to be the set
of all automorphisms ¢ of 4 for which there exist a positive integer
n,and g,€G and e¢;€ E for 1 £ ¢ < n, such that e¢;-7(x) = ¢;-0,(x) for
zed and 1 <4 <n and the identity element of E is the least upper
bound for the subset {¢;|1 <7 < n} of E. Call G closed if it is equal
to its closure.

Let I" be a subring of 4 and let A" designate the centralizer of
I' in 4. Also let M be a left 4-module and let N be a I"-submodule
of M. A canonical A-module homomorphism @ of A @, N into M is
determined by the correspondence of a.-x to a@ax for ac4 and
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xeN. It will be convenient to write M =A@, N when @ is an
isomorphism. Also, tacit use will be made of the following proposition
[13, Proposition 1.1]: If A is a separable algebra over a commutative
ring R such that 4 is a projective R-module, then 4 is a finitely
generated R-module. Finally, if 4 is a commutative ring and p is a
prime ideal in 4, let A, denote the local ring of 4 at p and let
M,=4,@,M.

In the sequel, let 4 be a given ring with identity element 1,
and let C be the center of A.

PROPOSITION 1. Let G be a group of automorphisms of A such
that G/G, vs finite. Let I' = A¢ and let Z be the center of I'. Assume
that G is a closed group of automorphisms of A over I' such that
G =G and C is a szparabls algebra over I' N C. Then A% =T ®;n.C
and Z @rncC is the center of A%. Moreover, if A is a finitely
generated, projective left Z @rnocC-module and p is a prime ideal in
Z, then A, is a free moduls over (Z @rncC),-

The proof consists of the following steps:

(1.1) A% = I" ®;7.C and Z ®,,.C is the center of A% .

Proof. C is a commutative ring and 7" N C is the subring of
G/Ginvariant elements of C. Since G/G, is finite and C is a separable
algebra over I' N C, C is an outer semi-Galois extension of I" N C [10,
Definition 2.4]. Clearly I" and C are subrings of A%. Since G, is a
normal subgroup of G, A% is G-stable. G, = G N G, and the restriction
of elements of G to A% induces a faithful representation of G/G, as
a group of automorphisms of 4%. Moreover, I" is the subring of G/G,-
invariant elements of A%. Letting Z’ be the center of A%, C = Z’
and C and Z’ are G/G,stable. Suppose there exists an idempotent
ec C and o ¢ G, such that g(ex) = ex for all xe C. Then og(e) = e; and,
setting z(x) = ¢-0(x) + (1 — e)-z for ze 4, it is readily verified that
7 is an automorphism of 4 which leaves the elements of C invariant.
Since G is closed, 7€ G,. Therefore, v = e-c(x) + (1 — e)x and ex =
¢-0(x) = o(ex) for all xe A%. Lemma 1.2 of [11] may be applied to
the group G/G, and subrings C and Z’ of A% to establish that
Z'=(I"'NZ)Q@rn:C and A% =I"Q@rn,Z'. Consequently, A% =1"@,..C.
Clearly A’ is the centralizer of 4% in A4; so Z' = A6 N A" and ' N Z' =
rnAar=2. Thus Z’ = Z@rq.C.

(1.2) Let » be a prime ideal in Z, and let T = (Z @rncC),. T is
a semi-local ring and G acts transitively on the set of maximal ideals
of T.
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Proof. Let S = Z,. It follows from [3, §2, No. 1, Proposition 2]
that the inclusion map of 7 into Z ®,,.C induces an injection of S
into T by which S may be identified with a subring of 7, and every
element of G/G, induces an automorphism of T over S. Any element
of T has the form a/s, a € Z@®,.cC and sc¢ Z — p. If a/s is a G/Gy
invariant, then there exist ¢,€ Z — p such that ¢,-(o(a) — a) = 0 for
each o¢ G/G, by [3, §2, No. 2, Proposition 4]. Letting

t= 1l t,teZ—p and o(ta) =t-0(a) = ta

ge GGy

for all o € G/G,. Therefore tac " N (Z @r.cC) = Z and a/s = at/ste S.
Thus S is the subring of G/G-invariant elements of T. There is a
natural isomorphism of T = Z, @ ,(Z ®,..C) onto Z, @,.,C, and there-
fore 7' is a separable algebra over S by [2, Corollary 1.6]. Since T
is a commutative ring, T is an outer semi-Galois extension of S. But
S is a local ring and cannot have any nontrivial idempotents. It
follows from [10, Th. 2.3] that T must be a Galois extension of S
relative to some finite group H of automorphisms of 7. By [5, Th.
1.3, part (¢)], T is a finitely generated, projective S-module and the
left T-module Hom, (T, T') is generated by H. 7 is a semi-local ring
by the first lemma in [6], and it will now be shown that G acts
transitively on the set of maximal ideals of 7. Let m be a maximal
ideal in T and let ¢ = MN,cqi0,0(m). ¢q is a G/G,-stable ideal in T.
But by [14, Lemma 3.5], the left T-module Hom, (T, T) is generated
by the automorphisms of T induced by elements of G/G,. Therefore,
q is a left Hom, (7, T)-module and it follows from [5, Th. 1.3, part
(d)] that ¢ = T®.(SNq). Let m' be a maximal ideal in 7. T is
integral over S [15, p. 254] and SN m’ must be the unique maximal
ideal in S [15, p. 259]. Therefore, SN g SN m' and ¢=T-(SN q) C m'.
Since m' is a prime ideal, o(m) & m’ whence, since o(m) is a maximal
ideal in T, o(m) = m' for some o ¢ G/G,.

(1.8) If 4 is a finitely generated, projective left Z @,n.C-module
and p is a prime ideal in Z, then 4, is a free module over (Z @;,.C),.

Proof. Assume that A is a finitely generated, projective left
Z @rncC-module. Let p be a prime ideal in Z, let X = 4,, and let
T = (Z @rncC),- Since there is a natural isomorphism of X onto the
tensor product of T and A over Z @,,.C, X is a finitely generated,
projective left T-module. X is a free left T-module if the rank of
X over T is well defined [3, §5, No. 3, Proposition 5]; and X is
projective of rank n over T, for some integer n, if for every maximal
ideal m in T the left T,-module X, is free of rank » [3, §5, No. 3,
Th. 2]. But, for every maximal ideal m in T, the left T,-module X,
is free of finite rank by [3, § 5, No. 2, Th. 1]. Therefore, it remains
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only to show that, for two maximal ideals m and m’ in T, the rank
of the left T,-module X, equals the rank of the left 7, -module X,..
m' = v(m) for some 7€ @G, however; and one may readily verify that
any such 7 induces an isomorphism of T, onto T, and a one-to-one
semi-linear transformation of X,, onto X, . Consequently, the ranks
of these two free modules are equal.

PROPOSITION 2. Let R be a semi-local ring; let A be a separable
R-algebra which is a projective R-module; and let ¢ be an automorphism
of A over R. Let I' be a separable R-subalgebra of A, and let Z be
the center of I'. If A, is a free left (Z @y C),~module for every
prime ideal p in Z, then there is an inner automorphism t of A such
that -0 leaves the elements of I' imvariant.

Letting 4° denote the opposite ring of 4, 4" is also a separable
R-algebra with center C. Therefore I" @z 4° is a separable R-algebra
with center T'= Z ®:C by [2, Proposition 1.5]; and it follows from
[2, Th. 2.3] that C, Z, and T are separable algebras over R, while
I’ ®:A° is a separable algebra over T. The crucial steps for the
proof of this proposition will be treated separately.

(2.1) T is a semi-local ring which extends Z.

Proof. The subring R-1 of A is a semi-local ring, since it is a
homomorphic image of R. Clearly 4 and I" are separable algebras
over R-1; A is a projective R-1-module; and ¢ is an automorphism
of 4 over R-1. Therefore, R may be replaced by R-1, and con-
sequently it may be assumed that 4 is a faithful R-algebra without
loss of generality. Therefore, C and Z are finitely generated, pro-
jective R-modules by the first lemma of [6]; and consequently, T' is
a finitely generated, projective R-module. By a second application
of the lemma of [6], it follows that 7T is a semi-local ring. Moreover
the inclusion map of R into C induces an injection of Z =Z @ R
into T by which Z may be identified with a subring of T.

Now let A, designate the structure of a left I" @z A-module on
A which is determined by the rule (v @ M)x = v-2-x for eI and X,
xe d; and let 4, designate the structure of a left I" ®y 4’-module on
A which is determined by the rule (v ® Mx = a(v)-x-n for ve " and
N aed. A, and 4, are finitely generated and projective as modules
over R; and, therefore, 4, and 4, are finitely generated and projective
as left modules over I"@®:4° and as left modules over T by [8,
Lemma 2].
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(2.2) If 4, is a free left T,-module for every prime ideal p in
Z, then 4, and 4, are isomorphic left I" @  A°-modules.

Proof. Assume that 4, = (4,), is a free left T,-module for every
prime ideal p in Z. Let m be a maximal ideal in T and let »p = Z N m.
Then p is a prime ideal in Z, T, = Z, @, T is naturally isomorphic
to Z,®:C, and o induces a one-to-one semi-linear transformation of
(4,), onto (4,), which has 1 ® o as its associated automorphism on
Z,®zC. Therefore, (4,), and (4,), are free left T,-modules of the
same rank; and, consequently, they must be isomorphic. There is a
unique extension of the canonical homomorphism of T onto the field
T/m to a homomorphism of T, onto T/m by [3, §2, No. 1, Proposi-
tion 1], and there are natural isomorphisms

(T/m) @r, (A1), = (T/m) @r, (T, @r4s) = (T/m) @:4; for © =1,2.

Therefore, (T/m) @, A;, © = 1, 2, are isomorphic left T-modules. Let
My, My, -+, M, be the distinct maximal ideals in T, and let ¢ = Nk, m;.
q is the radical of T, T/q is canonically isomorphic to the direct sum

k. T/m;, and (T/q) @, 4; is naturally isomorphic to the direct sum

k (T/m;) @y 4; for 1+ =1,2. Therefore, (T/q) @, 4% =1,2, are
isomorphic left T-modules. Since 4, and 4, are finitely generated,
projective left T-modules; a T-module isomorphism of (7/q) @, 4, onto
(T/q9) @, 4, may be lifted to a T-module homomorphism of 4, into 4,,
which must be an isomorphism by [9, Lemma 1.7]. But then 4, and
A, are isomorphic left I" @ A°-modules by [6, Th. 1.1].

To complete the proof of the proposition, suppose that ¥ is a
I’ @ A°-module isomorphism of 4, onto A, Then ¥(\) = ¥F@)-» for
all xe 4. Similarly Z7'(\) = T'(1)-» for e 4, and T'QD)-¥F(1) = 1 =
1)-¥*(1). Thus ?(1) is a unit in 4. Let 7 be the inner auto-
morphism of 4 given by the rule z(x) = ¥(1)™*-2-¥(Q) for xe 4. For
yel, ¥*()-y = ¥(v) = o(v)-¥(Q) and to(y) = 7.

Any inner automorphism of a ring 4 leaves the elements of C
invariant. Let R be a semi-local ring; let 4 be a separable R-algebra
which is a projective R-module; and let G be a group of automorphisms
of A over R. /A is a separable algebra over C and C is a separable
algebra over R by [2, Th. 2.3]. Therefore, C is a semi-local ring
by the first lemma of [6], and it follows from [2, Th. 3.6] that every
element of G, is an inner automorphism. Thus G, is the subgroup
of inner automorphisms in G. Let C(G) be the subalgebra of 4 which
is generated over C by all units of 4 giving rise to inner automorphisms
contained in G. Call G complete if every inner automorphism of A
by a unit of C(G) is an element of G. Call G regular if G is com-
plete, C(G) is a separable algebra over C, and G is the closure of a
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group H of automorphisms of A such that H/H, is finite. Let I” be
a R-subalgebra of 4 and let Z be the center of I". Call I" regular
if I" and I" N C are separable algebras over R; A" is generated as an
algebra over C by its units; and, for every prime ideal p in Z, 4, is
a free left (Z @rnc C),~module.

It can be shown that the conditions of regularity given in the
preceding paragraph are a generalization of the definitions of regu-
larity presented in [6]. Indeed, if 4 is a ring with no nontrivial,
central idempotents, then every group of automorphisms of 4 is closed.
Now let 4 be a separable algebra over a commutative ring R, such
that 4 is a projective R-module; let I” be a separable R-subalgebra
of 4; let Z be the center of I'; and assume that Z@,,.C has no
nontrivial idempotents. It is demonstrated in the proof of [6, Th.
2.1 R] that the subalgebra Z-C of 4 is separable over R and isomorphic
to Z&,0cC. I'NC=2ZNC is a separable algebra over R by [6,
Corollary 1.7]; and 4 is a finitely generated, projective Z @rncC-
module by [8, Lemma 2]. Suppose further that R is a semi-local
ring. Then Z@,,C is a semi-local ring by the first lemma of [6];
and it follows from [3, §4, No. 3, Corollary 2, and §5, No. 2, Th. 1]
that the rank of the left Z@,,, C-module 4 is well defined. Therefore,
A is a free left Z@, .. C-module by [3, §5, No. 3, Proposition 5];
and it follows readily that 4, is a free left (Z @ ., C),-module for
every prime ideal p in Z.

LEMMA. Let A be a separable algebra over a commutative ring
R; let G be a group of automorphisms of A over R, such that G/G,
is finite; and let G be the closure of G. Every automorphism of C
over A°N C is the restriction to C of an element of G.

Proof. A is a separable algebra over C and C is a separable
algebra over R by [2, Th. 2.3]. 4°N C is the subring of G/G,-invariant
elements of C and C is a separable algebra over 4N C. Since C is
commutative, C is an outer semi-Galois extension of A°N C; and it
follows from [10, Definition 2.4] and [14, Proposition 3.15] that C is
weakly Galois over 4°N C. Let 7 be an automorphism of C over
AN C. 7 ig in the closure of G/G, by [14, Proposition 3.14]. There-
fore, there exist a positive integer =, and o¢,e¢ G and idempotents
e;e€ C for 1 <1 < n, such that ¢;-7(x) = ¢;-0,(x) for xeC and 1 <1< n
and 1 = Jr,e; in the Boolean algebra of idempotent elements of C.
A set {¢;|1 <1 = n} of pairwise orthogonal idempotents in C, such
that >\»,e;, =1, is defined inductively by the rules & = e, and
e, =¢-(1—>jze;) for 2<1i=<mn. Moreover, 7(x) = >\, &;-7(x) =

7, €;-0,(x) for xe C. One may also verify that an endomorphism @
of the R-algebra 4 is given by the rule @(x) = X, &;-0,(x) for zec 4.
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@ extends 7, and similarly =7 can be extended to an R-algebra endo-
morphism  of 4. @V and ¥® are endomorphisms of 4 over C, and
it follows from [2, Corollary 3.4] that @y and +® are automorphisms
of A. Therefore, » must be an automorphism of 4. Clearly e G.

THEOREM. Let R be a semi-local ring; let A be a separable
R-algebra which is a projective R-module; and let G be a regular
group of automorphisms of A over R. The classical Galois corre-
spondence is a bijection between the set of regular subgroups of G
and the set of regular subalgebras of A which contain A°.

First let H be a regular subgroup of G, let I" = A%, and let Z
be the center of I. Clearly 4° = I'. Let K be a group of auto-
morphisms of 4 such that K/K, is finite and H is the closure of K.
It is easily verified that H is a closed group, K is a subgroup of H,
and 4% = I'. Since C is a separable algebra over R by [2, Th. 2.3],
C must be a separable algebra over I" N C. By Proposition 1, A% =
I’ ®racC and Z@,.cC is the center of A%. It will be shown by the
following steps, that I” is a regular subalgebra of 4 and H is the
group of all automorphisms of 4 over I'.

(8.1) A% ig a separable algebra over /"N C and C(H) is the
centralizer of A% in A. Moreover, C is a projective I" N C-module of
which 7" N C is a direct summand.

Proof. Since H, is the subgroup of all inner automorphisms in
H, it is obvious that A%c = A°U", But C(H) is a separable algebra
over C; and, therefore, 4”0 is a separable algebra over C and C(H)
is the centralizer of 4% in 4 by [8, Th. 2]. Since C is a separable
algebra over R, A"¢ is a separable algebra over R. Consequently, A7
is a separable algebra over I"'N C. Furthermore, K/K, is a finite
group of automorphisms of C and I"N C is the subring of K/K,-
invariant elements of C. Therefore, C is a projective I" N C-module
by [11, Lemma 1.5]; and it follows from [1, Proposition A. 3] and [12,
Proposition 1] that "' N C is a I" N C-module direct summand of C.

(3.2) I’ is a regular subalgebra of /.

Proof. Since A% = I"@rqc C, it is evident that A7 is the central-
izer of A% in A. Therefore, 4" = C(H) and 4" is generated as an
algebra over C by its units. Also C@®;C is a projective (I"N C)®=(" N C)-
module by [4, Chapter IX, Corollary 2.5]. Since C is a separable
algebra over R, C is a projective C ®;C-module; and, therefore, C is
a projective ("N C) @z(I"N C)-module. But 'NCisa (I'NC)®z(I'NC)-
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module direct summand of C. Therefore, I" N C is a projective
C'NCO@-{" N C)module and I' N C is a separable algebra over R.
I’ is a separable algebra over "N C by [2, Proposition 1.7]; and,
consequently, I" is a separable algebra over B. Since Z®,.;C is the
center of A7, Z@rn.C is a separable algebra over R by [2, Th. 2.3]
and /4 is a finitely generated, projective left Z ®,,. C-module by [8,
Lemma 2]. For every prime ideal p in Z, 4, is a free left (Z®@rncC),-
module by Proposition 1. Thus I" is a regular subalgebra of A.

(3.3) H is the group of all automorphisms of 4 over I'.

Proof. If H is the group of all automorphism of A over I, then
H is a subgroup of H and H, is the group of all inner automorphisms
of 4 over I'. But every inner automorphism of A over I' is given
by a unit in 4" = C(H). Since H is complete, it follows that H, = H,.
H/H, is the group of all automorphisms of C over I" N C by the
preceding lemma; and, therefore, H/H, = H/H, and H = H.

Now let I" be a regular subalgebra of 4 which contains 4% and
let H be the group of all automorphism of 4 over 7°. In the first
part of the proof, it has been established that G is the group of all
automorphisms of 4 over A% G/G, is the group of all automorphisms
of C over 4°N C, C is a separable algebra over 4° N C, and 4°N C
is the subring of invariant elements of C with respect to some finite
subgroup of G/G,. Furthermore, since 4 and I" are separable algebras
over R, they are separable algebras over "N C. H must be a sub-
group of G, and the proof will be completed by showing that H is
regular and I" = A~.

(4.1) H is the closure of a group K such that L = K/K, is finite
and C*t=1I"nNnC.

Proof. Since I'N C is a separable algebra over R, I'NC is a
semi-local ring by the first lemma of [6], 4 is a projective I'N C-
module by [8, Lemma 2], and 7" N C is a separable algebra over
AN C. There exists a finite group L of automorphisms of C such
that 7" N C is the subring of L-invariant elements of C by [11, Lemma
1.5]. Let p be any automorphism of C over /"N C. Then poe G/G,
and there exists 0e G which extends 0 to an automorphism of 4
over I' N C. By Proposition 2, there exists an inner automorphism ¢
of 4 such that 7.0 leaves the elements of I" invariant. But then
7.0 is an automorphism of A over I which coincides with o on C.
Thus every automorphism of C over "N C can be extended to an
automorphism of /4 over I, and H/H, is the group of all automorphisms
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of C over ' N C. Let K be the subgroup of H such that H, = K and
K/H,= L. Clearly K, = H,, and therefore K/K, = L which is finite.
Letting K be the closure of K, it follows from the preceding lemma
that K must contain representatives from all the cosets of H/H,.
Since H, < K, K = H.

(4.2) H is regular and I" = A%,

Proof. It is evident that H is closed, A¥ = A%, and 4N C =
Ct =I' N C; and it follows from Proposition 1, that 4% = A* @qc C.
C is a finitely generated, projective I" N C-module by [11, Lemma 1.5];
and it follows from [1, Proposition A.3] and [12, Proposition 1] that
I'NC is a I' N C-module direct summand of C. C is a faithfully flat
I' N C-module by [10, Lemmas 1.5 and 1.6], and the inclusion map
of I" into A” induces an injection of I"@,.cC into A% by which
I'®;.cC may be identified with a subring of 4. I'®;C is a
separable algebra over C by [2, Corollary 1.6], and obviously A" is
the centralizer of I"@®,..C in 4. By [8, Th. 2], 4" is a separable
algebra over C and I"®,,,C is the centralizer of 4" in 4. But every
inner automorphism of A over I" is determined by a unit in 4" and
A" is generated as an algebra over C by its units. Therefore C(H) = 4.
Thus C(H) is a separable algebra over C, and clearly H must be
complete. Consequently, H is a regular subgroup of G. Moreover,
gince A"0 is the centralizer of C(H) in 4, I" @;nc C = A". Since C
is a faithfully flat I" N C-module, I" = A7,

Addendum. The Galois theory, which has been presented here
for a separable algebra over a semi-local ring, can be extended to a
separable algebra over a more general type of ring; and such an
extension will be considered now. Let R be a commutative ring and
let B(R) be the Boolean algebra of idempotent elements of R. If xz
is a prime ideal in B(R) and M is an R-module; let R, be the ring
of fractions of R with respect to the multiplicatively closed set
B(R) — «, and let M, = R,®;M. In [7], F. R. DeMeyer considers
the following condition on R.

(*) R, is a semi-local ring for every prime ideal x in B(R).

R, is a homomorphic image of R for every prime ideal z in B(R)
by [14, Equations 2.5 and 2.6]; and, therefore, any semi-local ring
will satisfy condition (*). The first lemma in [6] may be generalized
to include the following result.
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LEMMA. Let RS SZ A be rings with S separable over R and
commutative, and A finitely generated and projective over R. If R
satisfies condition (*), then S satisfies condition (*).

Proof. Suppose that R satisfies the condition (*), and let 2 be
a prime ideal in B(S). B(R) is a subring of B(S) and y = 2 N B(R)
is a prime ideal in B(R). Therefore, R, is a semi-local ring. More-
over, S, = R,®:S is a separable algebra over R, by [2, Corollary
1.6], and A, = R, ®: A is a finitely generated and projective module
over R,. Since R, is a flat R-module [3, §2, No. 4, Th. 1], the
inclusion maps of R into S and S into A induce injections of
R,=R,®:R into S, and S, into A4,, by which R, and S, may be
identified with subrings of A4,. It follows from the first lemma of
[6] that S, is a semi-local ring. By [3, §2, No. 1, Corollary 2 and
No. 2, Proposition 6] the canonical homomorphism of S into S, factors
as the composition of the canonical homomorphism of S into S, and
a unique homomorphism of S, into S,. But the canonical homo-
morphism of S into S, is epiec, and therefore S, is a homomorphic
image of S,. Consequently, S, must be a semi-local ring, and S
satisfies the condition (*).

Let R be a commutative ring which satisfies condition (*); let
A be a separable R-algebra which is a projective R-module; and let
G be a group of automorphisms of 4 over R. A is a separable algebra
over C and C is a separable algebra over R by [2, Th. 2.3]. There-
fore, C satisfies condition (*) by the preceding lemma, and it follows
from [7, Th. 4] that every element of G, is an inner automorphism.
The definitions of regular group of automorphisms and regular sub-
algebra may be applied to 4, and the proof of the theorem of this
paper can be carried out in this case once the following generalization
of Proposition 2 has been established.

PROPOSITION 3. Let R be a commutative ring which satisfies con-
dition (*); let A bz a separable R-algebra which ts a projective
R-module; and let o bz an automorphism of A over R. Let I' be a
separable R-subalgebra of A, and let Z be the center of I'. If A, is
a free left (Z @z C),-module for every prime ideal p in Z, then there
is an inner automorphism t of A such that t-c leaves the elements
of I' invariant.

Proof. I' is a finitely generated module over Z by [2, Ths. 2.1
and 2.3], Z is a finitely generated module over R by the first lemma
in [6], and therefore I" is a finitely generated module over R. Let
n be a positive integer and let {a;|1 <17 < n} be a set of generators



ON THE GALOIS THEORY OF SEPARABLE ALGEBRAS 739

for the R-module I". Let x be a prime ideal in B(R). R, is a semi-
local ring; and, by [2, Corollary 1.6], 4, = R,®z4 is a separable
R,-algebra with center C, = R,®,C and I', = R, @[ is a separable
R,-algebra with center Z, = R,@®:Z. Also 4, is a projective R,-
module, and 1® ¢ is an automorphism of 4,. Since R, is a flat
R-module [3, §2, No. 4, Th. 1], the inclusion map of I" into A induces
an injection of I, into 4, by which I", may be identified with a
subalgebra of 4,. Let q be a prime ideal in Z,, let i(x/Z) be the
canonical homomorphism of Z into Z,, and let » = {i(x/Z)} " 1(q9). By
[3, §2, No. 2, Proposition 6 and No. 5, Proposition 11], p is a prime
ideal in Z and (Z,), = Z,. There is a natural isomorphism of /, onto
Z,@:4, and it follows readily that (4,), = 4, and (Z,@®:,C.), = (Z @:(),.
Now suppose that 4, is a free left (Z @z C),-module for every prime
ideal p in Z. By Proposition 2, there is an inner automorphism 7
of A, such that 7-(1 Qo) leaves the elements of I', invariant. Since
R, is isomorphic to R/R-x [14, Equation 2.6], 4, is isomorphic to
A/4-x and there must exist elements b(x),c(®) in 4 such that
b(x)-c(x) = 1(mod 4-x), c¢(x)-b(x) = 1(modA.-2) and b(x)-0(a;)-c(x) =
a;(mod 4-x) for 1 <4 =< n. By [14, Lemma 2.8], there exists e(x)e X
such that b(x)-c(x)-(1 — e(®)) = 1 — e(x), c(x)-b(x)- (L — e(x)) = 1 — e(x),
and b()-0(a;)-c(x)-(1 — e(®)) = a; (1L — e(x)). Since 1 —e(x) ¢ %, the
ideal of B(R) which is generated by the set {1 — e(x) |2 is a prime
ideal in B(R)} cannot be contained in any prime ideal of B(R) and
therefore must equal B(R). Thus, in the Boolean algebra B(R), 1
must be a linear combination of finitely many of the 1 — e¢(x). But
if m is a positive integer and x, is a prime ideal in B(R) for
1<j7<m, such that 1 is a linear combination of the elements
1 — e(x;) in B(R), then 1 must be the least upper bound for the
subset {1 —e(x,;) |1 <7 < m} of B(R). A set {f;|1 <j =< m} of pair-
wise orthogonal idempotent elements of R, such that 3, f;, =1, is
defined inductively by the rules f, =1 — e¢(z,), and

fi= @ —e@)-(1 = £1)

for 2 <7 <m. Setting b =37, f;-b(x;) and ¢ = 37, f;-c(x;), one
obtaing that b.¢ =1=c¢-b and b-0(a;)-¢c = a; for 1 <£¢ <n. Thus
¢ = b™; and, letting 7 be the inner automorphism of 4 given by the
rule z(\) = b-n-b7' for M€ 4, to(a;) = a; for 1 <7 < n. Since {a;|1 <1< n)
is a set of generators for the R-module I, zo(v) = v for all veI'.
Finally, let it be observed that in the definition of a regular
subalgebra I" of an algebra A over a commutative ring R, the require-
ment that I" N C be separable over R is redundant. Indeed, let R
be a commutative ring and let 4 be a separable R-algebra which is
a projective R-module. Let I" be a separable R-subalgebra of 4, let
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Z be the center of I", and observe that 'NC=2ZNnC. C and Z
are separable R-algebras by [2, Th, 2.8], and ZN C is a separable
R-algebra by [7, Lemma 10].
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