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PERMUTATIONS, MATRICES, AND GENERALIZED
YOUNG TABLEAUX

DONALD E. KNUTH

A generalized Young tableau of "shape" (pu p2, — ,Pm),
where pi ^ p2 ^ i> pm ^ 1, is an array Y of positive inte-
gers yij, for 1 S j ^ Pi, 1 S i ^ m, having monotonically non-
decreasing rows and strictly increasing columns. By extending
a construction due to Robinson and Schensted, it is possible
to obtain a one-to-one correspondence between m X n matrices
A of nonnegative integers and ordered pairs (P, Q) of gene-
ralized Young tableaux, where P and Q have the same shape,
the integer i occurs exactly an + + ain times in Q, and the
integer j occurs exactly au -f + amj times in P. A similar
correspondence can be given for the case that A is a matrix
of zeros and ones, and the shape of Q is the transpose of the
shape of P.

Figure 1 shows two arrangements of integers which we will call
generalized Young tableaux of shape (6, 4, 4, 1). A generalized Young
tableau of shape (plf p2, , pm) is an array of px + p2 + pm positive
integers into m left-justified rows, with pi elements in row i, where
Pi ^ p2 ^ ^ pm the numbers in each row are in nondecreasing
order from left to right, and the numbers in each column are in
strictly increasing order from top to bottom. (The special case where
the elements are the integers 1, 2, , N = pι + p2 + + Pm, each
used exactly once, was introduced by Alfred Young in 1900 as an aid
in the study of irreducible representations of the symmetric group on
N letters see [6].)

Consider on the other hand the 6 x 7 array

/0 0 1 0 0 0 0\

0 0 0 0 0 2 0

1 1 1 1 0 1 0

0 0 1 0 1 0 0

2 1 0 1 0 0 0

0 0 0 0 0 0 1)

having respective column sums (clf , c7) = (3, 2, 3, 2, 1, 3, 1) and row
sums (>!, , r6) = (1, 2, 5, 2, 4, 1). Note that in Figure 1 the integer
ί occurs Tι times in Q, and the integer j occurs cd times in P. In
this paper we shall give a constructive procedure which yields a
one-to-one correspondence between matrices A of nonnegative integers-
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(1.1) A =
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and ordered pairs of equal-shape generalized Young tableaux (P, Q)
such that the row and column sums of A correspond in the same
manner to the number of occurrences of elements in P and Q. In
particular, our procedure shows how to construct (1.1) from Figure 1
and conversely.

Figure 2 shows two generalized Young tableaux whose shapes are
transposes of each other. A modification of the first construction leads
to another procedure which gives a similar correspondence between
zero-one matrices A and such pairs of tableaux. For example, the
second construction associates the matrix

(1.2) A =

(0 0 1 0 0\

1 1 0 1 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 OJ

with Figure 2. When the column sums of A are all ^ 1 , the two
constructions are essentially identical, differing only in that P is
transposed.

Matrices A of nonnegative integers correspond in an obvious way
to two-line arrays of positive integers

(1-3)
UL U2 UN

V, V2 VN

where the pairs (uk, vk) are arranged in nondecreasing lexicographic
order from left to right, and where there are exactly ai3 occurrences
of the pair (i, j). For example, the matrix (1.1) corresponds in this
way to

(1.4)
1 2 2 3 3 3 3 3 4 4 5 5 5 5 6

3 6 6 1 2 3 4 6 3 5 1 1 2 4 7

Such two-line arrays can be regarded as generalized permutations, for
when A is a permutation matrix the corresponding two-line array is
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the permutation corresponding to A. When A is a zero-one matrix,
the pairs (uk, vk) in (1.3) are all distinct.

Our construction works with two-line arrays (1.3) instead of the
original matrices (although it is, of course, possible to translate every-
thing we do into the matrix notation). The special case where uk =
k, 1 <̂  k <̂  N, was treated by Craige Schensted in 1961 [7] in this
case A is a zero-one matrix with N rows, each row-sum being equal
to unity. Our first construction is identical to Schensted's in this
particular case. Another procedure which can be shown to be essen-
tially equivalent to Schensted's construction was published already in
1938 by Gilbert de B. Robinson [5, Sec. 5], although he described the
algorithm rather vaguely and in quite different terms.

Section 2 below presents Schensted's algorithm in detail, and § 3
uses that algorithm to achieve the first correspondence. A graph-
theoretical interpretation of the correspondence, given in § 4, allows
us to conclude that transposition of the matrix A corresponds to in-
terchanging P and Q hence we obtain a useful one-to-one correspon-
dence between symmetric matrices A and (single) generalized Young
tableaux.

Section 5 shows how to modify the preceding algorithms to obtain
the second correspondence. Finally in § 6 a combinatorial characteri-
zation is given of all matrices having a given value of P this leads
to an " algebra of tableaux."

As a consequence of the algorithms in this paper it is possible to
obtain a constructive proof of MacMahon's classical formulas for the
enumeration of plane partitions, as well as new enumeration formulas
for certain rather general kinds of plane partitions. These applications
will be reported elsewhere [1].

2* The insertion and deletion procedures* It is convenient
to regard a generalized Young tableau of shape (p19 p2, « ,pm) as a
doubly-infinite array

(2.1) Y =

with ϊjij — 0 if i or j is zero, yi5 = co if ΐ > m or j < p%, and 0 <
yiό φ co when 1 ^ i ^ m, 1 ^ j ^ p^ We simply border the tableau
with zeros at the top and left, and we put co symbols elsewhere.
Using the further convention

(2.2) CO < CO ,

this doubly-infinite array satisfies the inequalities

2/oo

2/lO

2/20

Voi

Vn

1/21

2/02

2/l2

2/22

2/03 * * *

2/l3 * ' '

2/23 * *
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/o o\ y^ — ViU + D' Via < Vu + Dj 9

for all i, i ^ 0 .

Convention (2.2) may appear somewhat strange, but it does not make
the transitive law invalid, and it is a decided convenience in what
follows because of the uniform conditions (2.3).

We can now describe Schensted's procedure for inserting a new
positive integer x into a generalized Young tableau Y. The following
algorithm contains parenthesized " assertions " about the present state
of affairs, each of which is easily verified from previously verified
assertions hence we are presenting a proof of the validity of the
algorithm at the same time as the algorithm itself is being presented.
(Cf. [2, pp. 2-3, 15-16].)

INSERT (x):
11. Set i«— 1, set xλ <— x, and set j to some value such that

Vis = °°.

12. (Now y{i_ι)ό <Xi< yij9 and x{ Φ oo.) If x. < yiU_1)9 decrease

j by 1 and repeat this step. Otherwise set xi+ί<—yi3' and set r f <—i.
13. ( N o w y i { i ^ ̂ x{< x i + ί = y i 3 ^ y i U + 1 ) 9 y { i - 1 ) 3 - <Xι< x i + 1 = y i 3 <

Va+DjΊ Ti = j, and xt Φ oo.) Set yi3+-Xi.

14. (Now yi{j_1} ^ yi5 = x{ < xi+1 ^ yiu+1), y(i-1)3 < yi3 = x{ < xi+1 <

Va+Djy Vi = 3, and ^ Φ oo.) If a;ί+1 ^ °o, increase i by 1 and return
to step 12.

15. Set s <— i and t*-~j, and terminate the algorithm. (Now the
conditions

(2.4) yst φ oo, χs+1 = y8{i+1) = y{8+1)f = oc

hold.)

The parenthesized assertions in steps 13 and 14 serve to verify
that Y remains a generalized Young tableau throughout the algorithm.
The algorithm always terminates in finitely many steps, since Y con-
tains only finitely many positive integers. The procedure not only
inserts x into the tableau, it also constructs two sequences of positive
integers

x = x1 < χ2 < < %s

(Z.o)
rι ^ r2 ;> >̂ rs = t,

where s and t are the quantities specified in the last step of the
algorithm.

As an example of this insertion process, let us insert x = 3 into-
the tableau
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1 3 3 5 8

2 4 6 6

The algorithm computes xL = 3, rλ = 4, x2 = 5, r2 = 3, $3 = 6, r3 = 3,
x4 = 8, r4 = 2, x5 = oo, s = 4, £ = 2 the tableau has been changed to

1 3 3 3 8

2 4 5 6
(2.7) Y =

3 5 6

4 8

The input value, 3, " bumped " a 5 from the first row into the second
row, where it bumped a 6 to row 3, etc.

The most important property of Schensted's insertion algorithm
is that it has an inverse we can restore Y to its original condition
again, given the values of s and t.

DELETE (s, t) :
Dl. Set j <— ί, ί <— s, x8+ι +— co.
D2. (Now yi3. < xi+1 < y{i+1)j and τ/̂  ^ co.) If yi{j+1) < &<+1 and

yi{j+ι) Φ oo, increase y by 1 and repeat this step. Otherwise set xi <—
yiό and n<—i

D3. (Now yiU^ ^ 2/<5. = ^ < xi+ί ^ 2/i(i+D, ^/(i-Di < yi3 = ^ < ^ + i <
2/( +i)y, n = i> and a?i ^ co.) Set yij+-xi+1.

D4. (Now T/^^D ^Xi< xi+1 = 2/iy ^ 2/i(y+1,, ^(i-D,- < ^ < a?ί+1 = yi5 <
Va+Dj, r* = i> and aji ^ oo.) If i Φ 1, decrease ΐ by 1 and re turn to
step D2.

D5. Set x+—x19 and terminate the algorithm. (Now x Φ co.)

This algorithm obviously terminates, since Y contains only finitely
many positive integers. The parenthesized assertions in steps D3 and
D4 show that Y remains a generalized Young tableau moreover, these
assertions uniquely define the value of j , and they are precisely the
same as those of steps 14 and 13, respectively. Hence the deletion
algorithm recomputes the sequences (2.5) determined by the insertion
algorithm, and it restores Y to its original condition. The reader may
verify, for example, that DELETE (4, 2) transforms (2.7) into (2.6).

Conversely, if we start with any generalized Young tableau, Y,
and if we choose two integers (s, t) such that (2.4) holds, the procedure
DELETE (s, t) will specify some positive integer x in step D5, and x
is removed from the tableau the subsequent operation INSERT (x)
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will put x back again, recompute s and £, and restore Y to its original
form. Thus INSERT and DELETE are inverses of each other.

We will now establish an important property relating the quantities
x, s, t in successive insertions (cf. Schϋtzenberger [8, Remarque 2]).

THEOREM 1. Let x, x' be positive integers. If INSERT (x), deter-
mining s and t, is immediately followed by INSERT (x'), determining
s' and V, then

x < xr if and only if s > s'
(2.8) ~

if and only iff>t.

Proof, ( a ) We prove first that

(2.9) x ^ x' implies s ^ s' and V > t.

Let the sequences (2.5) be denoted by xi9 rt (1 ^ i ^ s) and x\, r\ (1 ^
i <£ s') when a? and a;' are respectively inserted. Assume by induction
that s ^ ί and s' ^ ί and xζ ^ #' (this holds initially for ί = 1). Con-
sider the state of affairs at the beginning of step 13, when x\ is about
to be inserted. We have x{ — yi3 for j = ri9 hence jf — r[> j it
follows that xi+1 ^ yi{j+ι) ^ y^, = ^'+1. If s' = i then s ^ s' and ί' =
j ' > j ^ t, so (2.9) holds. On the other hand if s' > i then x'i+1 Φ OO,
hence xί+1 ^ oo, so s > i and the inductive hypothesis is valid for i
replaced by i + 1.

( b ) The theorem now follows if we can prove that

(2.10) xf < x implies s' > s and t ^ t'.

The proof is like part (a), but just different enough to require
care. Assume by induction that s ^ i and s' *z i and x\ < x{ (this
holds initially for ί — 1). Consider the state of affairs when x\ is about
to be inserted, as in part (a); we have j ^ r = j ' , hence x'ι+1 = T/̂  , ^
aji < £ci+1. In particular, x'i+ί Φ OO , so s' > ΐ. If s = i then t = j *z
j r ^ ί', so (2.10) holds. If s > ΐ then the induction hypothesis is valid
for i replaced by i + 1.

3* A one-to-one correspondence* We are now ready to give a
fairly direct correspondence between two-line arrays of positive integers

luγ u2 u
(3.1)

where the pairs (uk, vk) are arranged in nondecreasing lexicographic
order from left to right, and ordered pairs (P, Q) of generalized Young
tableaux having the same shape, where the elements of P are v19 v2, , vN
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and the elements of Q are u19 u21 , uN.
The procedure, which we will call construction A, starts with

*" empty " tableaux :

CO

CO

Poo = Poj = Pio = 0, p ^ =

(3.2) q00 = qQj = gi0 = 0, g^ =

for all i , i ^ l .

Then we do the following steps for k = 1, 2, , iV (in this order):

Al. INSERT (vk) into tableau P, determining values sk, tk in step
15.

A2. Set qSktk «- uk.

The reader may verify, for example, that this procedure takes
the two-line array (1.4) into the tableaux of Figure 1. It is clear
from the construction that P and Q have the same shape, since the
insertion procedure removes the ©o from row s and column t of the
tableau. Furthermore, since uv <; u2 <̂  ^ uN, and since step A2 inserts
an element on the ' periphery ' of ζ), it is clear that Q will be a
generalized Young tableau if we can verify that no equal elements fall
into the same column of Q. The latter property follows immediately
from Theorem 1, for uk = uk+1 implies that vk ^ vk+1, hence tk+ί > tk.

The inverse construction, which we will call construction B, starts
with two generalized Young tableaux, P and Q, of shape (pL, p2, •••,
pm); let N — pi + p2 + + pm be the total number of elements. We
•do the following steps for k — N, , 2, 1 (in this order):

Bl. Find skf tk such that qSktk is the largest positive integer ele-
ment of Q, where tk is as large as possible. Set uk <— qSktk and then
set q.ktk^oo.

B2. DELETE (sk, tk) from tableau P, determing a value x in step
D5 set vk +— x.

The algorithm clearly reverses construction A. Conversely, if we
apply construction B to any given pair of generalized Young tableaux
having the same shape, we can see by Theorem 1 that the pairs (uί9

^i), {w2, v2), , (uN9 vN) are in lexicographic order, i.e., that uλ <^
^2 ^ ^ U>N a n d that uk = uk+1 implies vk ^ vk+1. It follows readily
that construction A reverses construction B, hence the one-to-one
€orrespondence is established.

THEOREM 2. Constructions A and B, which are inverses of
each other, establish a one-to-one correspondence between two-line
arrays and generalized Young tableaux having the properties stated
above.
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By the previously mentioned correspondence between two-line arrays
and matrices of nonnegative integers, we have therefore verified the
first result advertised in § 1.

4* A graph-theoretical viewpoint• The correspondence in the
preceding section can be looked at in another way, if we try to build
the P and Q tableaux one row at a time instead of using the insertion-
procedure. The first rows of P and Q can be interpreted in terms of
a certain labelled directed graph, which might be called the " inversion
digraph" Dί of the given generalized permutation (3.1); similarly the
second rows of P and Q are related to the " second-order inversion,
digraph" D2 derived from Dlf and so on. We will now study this,
graph-theoretical interpretation of Schensted's construction, in order to
deduce further properties of the correspondence.

Given a two-line array

(4.1)
U2

v2

UN

vN

we construct its corresponding " inversion d i g r a p h " DL as follows :.
There are N vertices, to which t h e respective labels (u19 O , (u2J v2), •,,
(uN, vN) are at tached in t h e discussion below, when we refer to a.
vertex (u, v) we mean any one of t h e vertices whose label is (u, v).
An arc passes from vertex (u, v) to vertex (uf, v'), when (u, v) Φ {ur, v')v

if and only if

(4.2) u ^ur and v ^ vr.

Furthermore we construct arcs between vertices with identical labels-
by putting all vertices with given label (u, v) into some arbitrary order,
say V19 V2y , Vk, and drawing arcs from F< to Vό if and only if i < j \
For example, Figure 3 shows the inversion digraph corresponding to

(1,2) (3,2)

(1,3) (1,3)

FIGURE 3.

(1,3)
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1 1 1 1 2 3

2 3 3 3 1 2

When the two-line array is a permutation of the integers {1, 2, ,

JSf}, the number of arcs in Ό1 is equal to C%] minus the number of

inversions in the permutation according to the classical theory, hence

the name " inversion digraph." It is easy to see in the general case

that D1 has no oriented cycles, and in fact it is the digraph of a partial

ordering. Note that our definition of DL does not require that the

pairs (uk, vk) of (4.1) be in lexicographic order from left to right only

the pairs themselves are used. Furthermore (4.2) is symmetric in u

and v, hence the inversion digraph of

Vi V-y « « V N

•(4.3) -
V^i U2 UN

•is isomorphic to the inversion digraph of (4.1). This observation will
be important to us later.

We now partition the vertices of Dι into disjoint classes Cl9 C2, ,
as follows : C1 contains the "source" vertices, i.e., those with no arcs
leading in to them and for I >̂ 1, Cι+1 consists of all vertices which
are sources when the vertices of d U U Ct (and all arcs touching
them) are removed. For example in Figure 3 we have

C, = {(1, 2), (2, 1)} ,

C2 = {(1, 3), (3, 2)} ,

Cs = {(1, 3)} ,

C4 = {(1, 3)}.

(The vertices denoted by (1, 3) in C2, C3, C4 are actually distinct, because
of our conventions for dealing with vertices having equal labels.) The
reader may easily verify that, in general, Cι consists of all vertices
V such that the longest path to V in D1 has length I — 1. This

partitioning is closely related to the well-known procedure for " topolo-
gical sorting" [2, pp. 258-268].

If (u, v) and (u\ vf) are distinct vertices of the same class Cu there
is no arc joining them it follows from the construction that u Φ uf

and v Φ vr. Furthermore if u < v! then v' < v, and conversely there-
fore we can arrange the vertices of Ct into the following order:

<4.4) Ct = (ull9 vtl), (ul2, vl2), , (ulnχ, vlnι)

where

Uu < Ul2 < < Ulnι

Vn > Vl2 > > Vlnι .
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LEMMA 1. The digraph Όγ constructed above has the following
relation to the correspondence defined in §3 : If the nonempty vertex
classes are CΊ, •••, Cd, the first row of P at the end of the construc-
tion is

( 4 . 6 ) v l n χ , v 2 n ? J •••, v d n d

(in the notation of (4.5)), and the first row of Q is

(4.7) u119 u2l, •••, udί.

Moreover if we denote the two sequences (2.5) obtained during the
operation INSERT (vk) by

iA ox Vk = ίc*i < xk2 < < xkSk,
(4.o)

rkι ^ rk2 ^ ^ rkSk = tk ,

ί/̂ βn the pair (uk, vk) of (3.1) belongs to class Cx if and only if I — rkι.

Proof. We want to show that the vertices of class I are those
pairs (uk, vk) which affect the Z-th element of the first row of P during
the insertion process. The proof is easily carried out by induction on
N; for if we add a new vertex (uN+1, vN+1) which is lexicographically
greater than all other vertices of Dly no new arcs lead from this vertex,
while there are arcs leading from a vertex of class Cz to this new
vertex if and only if vlnι < vN+ί.

COROLLARY (Schensted). The number of columns in the generaliz-
ed Young tableaux P, Q corresponding to (3.1) is the length of the
longest nondecreasing subsequence of the sequence vί9 v2, * 9vN.

Proof. We have observed that Cd is nonempty if and only if there
is a path of length d — 1 in D^ such a path corresponds to a non-
decreasing subsequence of length d.

We now have characterized the first rows of P and Q in terms
of the labelled digraph Dx. Since Schensted's construction behaves on
row (i + 1) in essentially the same way as it does on row ί (inserting
elements that were bumped down from row i), we can see how to
characterize the remaining rows of P and Q. Assuming that the i-th
order inversion digraph Ό{ has been defined, we will construct Di+1 by
leaving out one vertex of each class and by changing the labels. If
class Cι of Di is given by (4.4) and (4.5), we include nx — 1 vertices
labelled

(4.9) (ul2, vu), (uιz, vl2), , (ulnι, vl{nι_ύ)
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in Di+1. After the vertices of Di+1 have been determined in this way,
from all classes of Di9 the arcs of Di+ι are defined in precisely the
same manner of we have defined the arcs of D{.

The vertex labels of Di+1 correspond to a two-line array. A few
moments' reflection will show that, in view of Lemma 1, construction
A in § 3 builds rows 2, 3, of P and Q in precisely the same way
as it would build rows 1, 2, if it were given the two-line array
corresponding to D2 instead of the original two-line array. Hence the
second rows of P and Q are respectively given by (4.6) and (4.7) cor-
responding to D2, and in general the digraph D{ corresponds to the
i-th rows of P and Q as Dλ corresponds to their first rows. This
leads to the following result.

THEOREM 3. If the nonnegative integer matrix A corresponds to
the generalized Young tableaux (P, Q), then the transposed matrix Aτ

corresponds to (Q, P).

Proof. The two-line array corresponding to Aτ is obtained from
(3.1) by interchanging the two lines and rearranging the columns in
lexicographic order. (Cf. (4.3).) We have observed that the resulting
graph Ό\ is isomorphic to D^ this isomorphism associates vertex (v, u)
of Ώ\ with vertex (u, v) of Dλ. The construction of Di+1 from Df

shows that the same isomorphism relates DJ to Dif hence the theorem
follows from Lemma 1.

For the special case of permutation matrices, Robinson [5, p. 755]
essentially stated Theorem 3 without proof; a proof was given by
Schiitzenberger [8].

THEOREM 4. The construction of § 3 yields a one-to-one corre-
spondence between symmetric matrices A of nonnegative integers,
having respective column sums (cίy c2, « ,cΛ), and generalized Young
tableaux P, having c{ occurrences of the integer i. In this corre-
spondence the number of columns of P having an odd length is the
trace of A.

Proof. Since A is symmetric, A = Aτ, hence by Theorem 3 P =
Q in the correspondence. It remains only to verify the connection
(suggested by Schiitzenberger) between odd-length columns and the
trace of A.

When A = Aτ, there is a corresponding symmetry in the digraph
D, since the vertex (u, v) occurs as often as the vertex (v, u). The
automorphism (u, v) <-> (v, u) shows that each class Cx has the form
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, . . Uι = (Ull9 Ulnι), (ul2, Wί(Wl-i)), , {Uln

utι<ul2< < ulnι.

(Cf. (4.5).) Hence Cz contains 0 or 1 elements of the form (u, u) ac-
cording as nt is even or odd; and so trace (A) is the number of
classes in which nt is odd. Furthermore the graph D2 contains as
many vertices of the form (u, u) as the number of classes in which nx

is even (cf. (4.9) and (4.10)); hence it corresponds to a symmetric
matrix A2 such that trace (A) + trace (A2) = d — number of nonempty
classes of Dx = number of columns of P. Let P2 be P with its first
row removed; by induction on the number of rows of P, we know that
P2 has trace (A2) odd columns, hence P has d — trace (A2) = trace (A)
odd columns.

5* A dual correspondence* Let us say a "dual tableau" is an
arrangement of positive integers which is like a generalized Young
tableau except that the rows (instead of the columns) are required
to have distinct elements. Thus, every dual tableau is the transpose
of a generalized Young tableau and conversely.

If Y is a dual tableau, we can insert a new element x into it
using a procedure almost identical to Schensted's construction of § 2.
The algorithm INSERT* (x) may be defined to be the same as INSERT
(x), except that the signs < and <̂  are interchanged throughout the
latter algorithm. (An element now bumps down another element equal
to itself.) Similarly we obtain an algorithm DELETE* (s, t) by chang-
ing DELETE (s, t) in the same way. The reader may readily verify
that, as before, INSERT* (x) and DELETE* (s, t) are inverse to each
other, and that Y remains a dual tableau throughout each algorithm.
We also have

THEOREM 1*. Let x, x' be positive integers. If INSERT* (x), deter-
mining s and t, is immediately followed by INSERT* (#'), determining
s' and t', then

x < xf if and only if s ^ s'

%j ana only %j t• > t.

Proof. In the proof of Theorem 1, change the symbol < to ^
wherever it appears; and change ^ to <, except in the two instances
" Vuί+1) ^ yiS," and " yid, ^ Xι" where the ^ is to be retained. (Do
not change the symbols > and ^ , which have been used consistently
for indices instead of elements.) The result is a proof of Theorem 1*.

Now consider a two-line array of positive integers
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U2 UN)
(5.2)

where the pairs (uk, vk) are all distinct and arranged in increasing
lexicographic order. (Such arrays correspond to matrices A of zeros
and ones.) Starting with empty tableaux P and Q as in (3.2), we
perform the following steps for k = 1, 2, , N (in this order):

Al*. INSERT* (vk) into the dual tableau P, determining values
sk, tk in step 15*.

A2*. Set q8ktk+~uh.
By Theorem 1* and an argument like that of § 3, this makes Q

a generalized Young tableau, while P is a dual tableau. The inverse
procedure consists of the following steps for k — N, , 2,1 (in this
order):

Bl*. Find sk9 tk such that qSJctk is the largest positive integer
element of Q, where tk is as large as possible. Set uk <— qSkt]c and then

B2*. DELETE* (sk9 tk) from tableau P, determining a value x in
step D5*; set vk*-~ x.

By Theorem 1* this procedure will produce a two-line array (5.2)
of distinct pairs in increasing lexicographic order, when given any dual
tableau P together with a generalized Young tableau Q of the same
shape. Therefore we have a correspondence between such pairs of
tableaux and zero-one matrices.

The graph-theoretic equivalent of this construction, corresponding
to § 4, is obtained by changing (4.2) to

(5.3) u^u' and v < vr.

This lack of symmetry makes it impossible to find a simple relation
between the tableaux corresponding to a matrix and its transpose; in
general the latter two pairs of tableaux can be quite different.

6* Further properties* Let us now concentrate momentarily on
the P tableau, independently of Q. By varying Q, we will in general
find many arrays A corresponding to the same P tableau, and it is of
interest to look for characteristic properties of such arrays.

THEOREM 5. Let x, xf, x" be positive integers and let Y be a
generalized Young tableau. If x ^ xf < x" the sequence of operations

(6.1) INSERT (x"), INSERT (x), INSERT {x')

has the same effect on Y as the sequence

(6.2) INSERT (x), INSERT (α"), INSERT (otf).
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// x < xf ^ x", the sequence

(6.3) INSERT (&'), INSERT (.τ), INSERT (x")

has the same effect as

(6.4) INSERT (a?'), INSERT (α"), INSERT (x).

Proof. Using notation like that in the proof of Theorem 1, we
will show that the sequences in question have the same effect on
the first row of Y, and that the corresponding elements x2, x2, x" will
(by induction) yield the same results on the remainder of Y. By con-
vention let us say that INSERT (oo) is the null operation; when x" =
oo the theorem holds trivially.

It is not difficult to verify that if x does not displace x" in (6.1),
then the elements x2,x'2, x2 are identical for sequences (6.2) and (6.1),
and x2 ^ x2 < x". On the other hand if x does displace x" in (6.1)
then the first row of Y in its original state had the form

• y yr y"

where y ^ x <g x' < x" < y' ^ y". After (6.1), the first row of Y becomes

• y x xf

and x" = yr, x2 = x", x[ — y". If instead we use (6.2), the first row

becomes

• y x %'

and x2 = y', x2 — y", x'2 = x". By induction (using the fact that (6.3)
is equivalent to (6.4)),

INSERT (y), INSERT (α"), INSERT (y")

has the same effect as

INSERT (y')9 INSERT (y"), INSERT {x") ,

hence (6.1) is equivalent to (6.2).
A similar but somewhat simpler proof shows that (6.3) is equivalent

to (6.4).

Note that, once the two-line array (3.1) has been put into lexico-
graphic order, the P tableau constructed in § 3 is a function of the
sequence v19 v2, , vN only. In general let (vL, v2, , vn) be any
sequence of positive integers, and let P(vlf v2, , vn) be the generalized
Young tableau obtained by starting with an empty tableau and sue-
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cessively performing the operations

INSERT (vλ), INSERT (v2) , INSERT (vn).

We will write

{v19 , vn) = {w19 . . , wn) if and only if

P(v19 , v J = P(w19 - , wn).

According to Theorem 5,

(Vi, , Vn) = (v19 , Vk_l9 Vk+ι, Vk, Vk+2, , Vn)

if

(6.6) vk ^ vk+2 < ^ + 1 or vk < v ^ ^ vfc41 .

Symbolically, if a < b < c, we have

(6.7) αcb = cα6, 6αc = bca, aba = baa, bob = bba.

Using these elementary transformations we can usually find several

sequences equivalent to a given one; for example,

(4, 2, 1, 1, 2, 3) = (4, 1, 2, 1, 2, 3) = (1, 4, 2, 1, 2, 3)

= (1, 4, 2, 2, 1, 3) = (4, 1, 2, 2, 1, 3) = (4, 1, 2, 2, 3, 1)

= (1, 4, 2, 2, 3, 1) = (1, 2, 4, 2, 3, 1) = (1, 2, 4, 2, 1, 3)

= (1, 2, 2, 4, 3, 1) .

In fact, it is somewhat surprising that the elementary transformations

of Theorem 4 precisely characterize those sequences which yield the

same P tableau:

THEOREM 6. P(v19 , vn) — P(wλ, , ιvn) if and only ίf(vL, , vn)

can be transformed into (wlt , wn) by a sequence of the elementary

transformations (6.6).

Proof. Let P(vL, •• , ^ ) be a generalized Young tableau Y of

shape (p19 , pm); and let (uί9 , un) = (yml, , ymPm, , y2L, ,

VzP2, Vn, '-> VIP) I t is easy to show t h a t P(vlt , vn) = P(u19 , 1 Λ̂);

hence in view of Theorem 5 it suffices to prove t h a t (vί9 ••, ι;w) can

be transformed into the " canonical" sequence (uL9 , un) for the

tableau F u s i n g only the operations (6.6). By induction on n, we need

only prove the following s tatement: If x is a positive integer, if

(u19 •• 9un) is the canonical sequence for a generalized Young tableau

Y, and if (u[9 , vfn9 u'n+1) is the canonical sequence for Y after the

operation INSERT (x) has been performed, then (u19 •• 9un9x) can be

transformed into (u[, « , ^ + 1 ) using the operations (6.6).
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This necessary condition is easily proved, for if we assume that

y ι ^ ^ y ά _ , ^ x < y 5 ̂  y j + 1 ^ . . . ^ y k y l ^ j ^ k ,

we have

(Vi, , 2/Λ, #) = = (l/i, , 2/y-i, Vj, V, Vj+i, ' , 2/A)

by rules (6.6); hence we can simulate the insertion algorithm (since
yj = x2, etc.).

COROLLARY. If P(vlf , vn) = P(w19 « , ww) αwd P(vm+1,

J°(^l, ' * ' , VM, ^a- i , , VΛ) = P(W!, , Wm, Wm + 1, , Wn) .

This corollary can be expressed in terms of matrices as follows:
We denote the P tableau corresponding to matrix A by P{A). Let

be two (mL 4- m2) x w matrices partitioned into m1 x n and m2 x n
submatrices. If P(At) = P(S2) αwrf P(A2) = P(B2), ί^βπ P(A) = P(B).
A similar statement holds for the Q tableau, by taking transposes (cf.
Theorem 2).

The corollary can also be used to define an associative binary
operation on generalized Young tableaux if we let

P(^i» , vm)P(vm,19 , vn) = P(vlf , vn).

Some very special cases of this associative operation were discovered
by Schensted in his original paper [5]. Perhaps some further properties
of the correspondence can be deduced from a deeper study of this
" tableau algebra."

Similar properties can be developed for the dual correspondence
of § 4. If we interchange < and < in Theorem 5 and change INSERT
to INSERT*, we obtain Theorem 5*, which leads to a corresponding
Theorem 6* and its corollary in an analogous way. We can also show
that the elementary transformations (6.6) allow us to build the dual
tableau P* of a sequence by working on columns instead of rows during
the insertion algorithm, and inserting the elements in the order vn, ,
v2, vγ. Therefore P(vn, •• ,v1) is the transpose of P*(v19 , vn); this

i n t e r e s t i n g r e l a t i o n impl ies t h a t the number of rows of P(v19 •••,^0

is the length of the longest strictly decreasing subsequence of (v19 •••,

vn). (The latter result is due to Schensted [7].) The details underly-
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ing these observations are straightforward and left to the reader.
Let us conclude our remarks by deriving a further consequence

of Theorem 6:

THEOREM 7. Let τr(l), •••, π{m) be a permutation of the integers
{1, 2, , m}. There is a constructive one-to-one correspondence between
the set of all nonnegative integer m x n matrices with row sums
Ov ••>?%») cmd those with row sums (rπ(1), •• ,r j r ( m )) such thatf if A
corresponds to J5, we have P(A) — P(B).

Proof. Since any permutation is a product of adjacent transposi-
tions, we may assume without loss of generality that π merely inter-
changes k and k + 1. Let us partition

where A1 has k — 1 rows, A2 has 2 rows, and A3 has m — k — 1 rows*
Let the row sums of k be (r, s); it suffices to construct a 2 x n matrix
B2 such that P(A2) = P(52) and such that the row sums of B2 are (s,r),
since the corollary to Theorem 6 tells us that P(A) = P(B) when

The tableau Q(A2) has r Γs and (s — £) 2's in its first row, and
it has t 2?s in its second row, for some t <; min (r, s). We now define
β 2 by saying that P(B2) = P(A2) and Q(B2) has s Γs and (r - t) 2's
in its first row, t 2's in its second row. The correspondence of § 3
determines a unique B2 with this property, so the mapping A2<-^B2

is reversible.

COROLLARY. Let px^> p2^> ^ pm ^ 1, ami #i + Vz + + Pm =

N = 7\ + ?̂ 2 + + rw, where rly r2, α?̂ β positive integers. Let
τr(l), , τr(m) 6s α permutation of the integers {1, 2, , m}. Γ/^βre

is α constructive one-to-one correspondence between the set of all gene-

ralized Young tableaux of shape (ply « ,ί?m) having r1 Ys r2 27s, •••,

rm m's, and those tableaux of the same shape having rΓ ( 1 ) Vs, rπ(2).

2's, •••, rrΛm) m's.

Proof. Let P be any fixed generalized Young tableau of shape

(Pu •> ί>w)> a n ( i consider the correspondence of Theorem 7 as Q varies
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over all tableaux of the same shape, having rt occurrences of element i.

In other words, the number of ways to fill a shape with specified
numbers of elements of different kinds is actually independent of the
order of those elements.

7* Generating functions* Let x = (x19 •••,#„) be a vector of
formal variables, and let

summed over all generalized Young tableaux Y of shape p = (ply p2, ,
pm) that have been filled with the elements xL < x2 < < xn each
repeated any number of times. For example, we have

corresponding to the tableaux

11 11 12 13 22 23 12 13

2 3 2 3 3 3 3 2 *

Dudley E. Littlewood [4> p. 191] has shown by group-theoretic means
that {x; p] is a symmetric function of the x's, which is identical to a
function studied by Jacobi, Schur, and others.

The two correspondences we have exhibited therefore provide a
constructive proof of Littlewood's identities [3, Theorem V]

m n -I

Π TΊ L - Vίr . . . r

Π π / i i τ w \ _ v L . . . 0 ,
1 1 \ L "Γ ^ i ΐ / i / — 2-1 \X1> " '•> &n

summed over all shapes p, where pτ denotes the transposed shape.
The Jacobi-Trudi identity and the Naegelsbach-Kostka identity [4,
pp. 88-89] can also be established combinatorially by means of our
correspondences, as shown in [1].
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