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EXPANSIVE AUTOMORPHISMS OF
BANACH SPACES

MURRAY EISENBERG AND JAMES H. HEDLUND

This paper treats two classes of invertible bounded linear
operators on Banach spaces—expansive and uniformly expan-
sive automorphisms—which include the hyperbolic automor-
phisms. Conditions for an automorphism to be expansive or
uniformly expansive are given in terms of the location of its
spectrum and approximate point spectrum with respect to the
unit circle.

One of the tools used in [3] to determine all expansive automor-
phisms of compact connected Lie groups was the following result:

THEOREM 0. Let T be an automorphism of a finite-dimensional
real or complex normed linear space. Then a necessary and sufficient
condition for T to be expansive is that | λ ] Φ 1 for each complex
characteristic root λ of T.

Theorem 0 was deduced in [2] as a special case of a more general
theorem, concerning topological vector spaces over arbitrary nondiscrete
scalar fields, whose proof used algebraic methods leaning heavily on
the assumption of finite dimensionality. In the present paper we use
analytic considerations to treat the infinite-dimensional case.

The results we obtain were suggested by the following observation.
In the finite-dimensional case, the condition for an automorphism to
be expansive amounts to its being hyperbolic for some norm; in any
Banach space, an automorphism is hyperbolic for some norm precisely
when its spectrum is disjoint from the unit circle.

1* Preliminaries* If B is a real or complex Banach space, we
shall call any bounded linear operator on B having a bounded inverse
on B an automorphism of B.

The most convenient definition of "expansive" for our purposes
is the following.

DEFINITION 1. An automorphism T of a Banach space B is said
to be expansive provided for each xe B with \\x\\ — 1 there exists
some nonzero integer i such that || T'ιx\\ 2̂  2.

In this definition any norm equivalent to the given norm on B
may be used, and the constant 2 may be replaced by any constant
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strictly greater than 1. Moreover, an automorphism T of B is ex-
pansive if and only if there exists a constant c > 0 such that 0 Φ x e B
implies || T*x\\ ^ c for some integer i. Hence T is expansive precisely
when it is "unstable," in the sense of Utz [9], for the norm metric,
and precisely when it is "expansive," in the sense of Bryant [1], for
the uniformity which B possesses as an abelian topological group.

. The property named next will turn out to be something new only
in the infinite-dimensional case.

DEFINITION 2. An automorphism T of a Banach space B is said
to be uniformly expansive provided there exists some positive integer
i such that xeB with ||a?|| = 1 implies || Tlx\\ ^ 2 or || T^x\\ ^ 2.

Here again, any equivalent norm may be used, and 2 may be
replaced by any constant c > 1.

We recall the following definition which will play an auxiliary
role.

DEFINITION 3. An automorphism T of a Banach space B is said
to be hyperbolic provided there is a splitting

B = BS®BU, T= Γ S 0 Tu,

where Bs and Bu are closed T-invariant linear subspaces of B, TS = T\ Bε

is a proper contraction (that is, || Ts\\ < 1), and Tu = T\ Bu is a proper
dilation (that is, \\T^\\ < 1).

For an automorphism T, we denote its spectrum by A(T), its
compression spectrum by Γ(T), its approximate point spectrum by
Π(T), its point spectrum by Π0(T), and its spectral radius by r(T).
We denote the unit circle {λ: |λ| — 1} in the complex plane by C.

The lemma below is well known (compare [6]), but a proof is
included for the sake of completeness.

LEMMA 1. Let T be an automorphism of a complex Banach space
B. Then T is hyperbolic with respect to some norm equivalent to the
given norm of B if and only if Λ(T) Π C = 0 .

Proof. Assume that for some equivalent norm || || we have a
splitting B = BS@BU1 T = TS@TU as in Definition 3. Since ||Ts \\ < 1
and I IT"111 < 1, Λ(T.) and Λ(TU) = {A{T~ι))~ι are both disjoint from C,
so the same is true of Λ(T).

Conversely, assume Λ(T) Π C = 0 . Define
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Au = {\eΛ(T):\\\>l}.

By the spectral decomposition theorem (see, for example, [8, §148]),
there exist closed T-invariant linear subspaces Bs and Bu of B such
that B = B8@BU, T= TS®TU, Λ(TS) = Λ., and Λ(TU) = Λu, where
Ts and Tu are the restrictions of T to Bs and Bu respectively. Since

r(T8) < 1 and rfT"1) < 1, we may renorm Bs and Bu so that \\TS\\ < 1
and HΓ"1!! < 1 (see, for example, [5]). Then these norms on B8, Bu

may be used to renorm B, and T is hyperbolic for this new norm.

2* Main results*

THEOREM 1. Let T be an automorphism of a complex Banach
space B. Then:

(1) If Λ(T) f] C = 0 , then T is uniformly expansive.
(2) If T is uniformly expansive, then Π(T) Π C — 0 .
(3) If Π{T) D C = 0 , then T is expansive.
(4) If T i s e x p a n s i v e , t h e n Π0(T) f]C = 0 .
( 5 ) T%β converses of implications (1), (3), ami (4) all fail, even

when B is a Hilbert space.

Proof. ( 1 ) In view of Lemma 1, we need only show that T is
uniformly expansive provided it is hyperbolic for the given norm of
B. Assume we have a Γ-invariant splitting jδ = ΰ s 0 5 , , T = TS(B Tu

with | |Γ β | | < 1, ||2V11| < I- Choose a constant c with

m a x { r ( Γ s ) , r ( Γ - 1 ) } < c < l .

By the spectral radius formula, there exists a positive integer i such
that

\\Ti\\<c\ \\TΓ\\<c\ c ^ l / 4 .

Renorm B by setting

when x = xs + xu with xs e Bs, xu e Bu.
We show T is uniformly expansive using this new norm. Let

xeB with \x\ = 1. Write a; = α;s + %u, where xseBs1 xueBu. Then
||a?.|| ^ 1/2 or \\xu\\ ̂  1/2. If ||α?.|| ^1/2, then ||α?.|| ^ || TJ|| || Γ.^.H, so

\T~*x\ ̂  \\TPX8\\ ^ \\Ti\r IKII ^ 4(1/2) - 2 .

Similarly, if \\xu\\ ̂  1/2, then | Γ ^ | ^ 2.
( 2 ) Suppose there exists some Xe Π(T) f] C. Since the properties
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that T be uniformly expansive and that Π(T) be disjoint from C are
unaffected when T is multiplied by a scalar of modulus 1, we may
assume λ = 1. There exists a sequence (xn \ n = 1, 2, •) in B with
\\xn\\ = 1 for each n and \\Txn - xn\\ -*0. Then ||a?n - Tιxn\\ -»0 for
every integer i. For small ε > 0 and any integer i, there is some n
for which | | Γ χ | | < 1 + ε and |]Γ~X|| < 1 + ε. Hence T is not
uniformly expansive.

(3) Suppose T is not expansive; in other words, suppose there
exists xeB with | |g| | = 1 and | |T%#|| <̂  2 for every integer n. Define
E to be the least closed linear subspace of B which is invariant under
T and T"1 and which contains x, and set S = T\E. Clearly S is not
expansive. Since Π(S) c Π{T), it suffices to show Π(β) Π C Φ 0 .

We show first that | λ | ^ 1 for each λ e Γ(S). Let λ e Γ(S). Then
λ eΠ0(S*), where S* is the automorphism induced by S on the dual
E* of E. Choose f e J S * with ||?/*|| = 1 and S*y* = Xy*. By defini-
tion of E, ζS^, y*y Φ 0 for some integer i; set c = ζSΉ, y*y. For
each positive integer n,

<β^x, y*} = <S% (S*)w7/*> = <β% λw7/*> - λ%c ,

so that

It follows that | λ | ^ l . (Actually, Γ(S) a C. In fact, the same
argument as above but with negative n shows that |λ | Ξ> 1 for each
XeΓ(S).)

We have Λ(S) Π C Φ 0 , for otherwise S would be (uniformly)
expansive by (1). Choose λ 6 Λ(S) Π C. Either λ e bdy Λ(S) or λ e int yί(*S).
If λ 6 bdyΛ(S) we are done, since bdy Λ(S) c /7(>S). Suppose λ e intΛ(S).
Choose a sequence (λΛ | n = 1, 2, •) in Λ(S) such that |λΛ | > 1 for
each n and λ^-^λ. By what was proved above, no XneΓ(S), hence
each XneΠ(S). Since Π(S) is closed, XeΠ(S) also.

The proof of (4) is trivial and valid for any normed space. The
examples in the next section establish (5).

COROLLARY 1. Each hyperbolic automorphism of B is uniformly
expansive.

COROLLARY 2. When B is finite-dimensional, an automorphism
of B is expansive if and only if it is uniformly expansive.

Although we are unable to determine whether, in general, an
automorphism is uniformly expansive if its approximate point spectrum
is disjoint from C, we do have the following special result.
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THEOREM 2. Let T be an automorphism of a complex Hilbert
space H. Then a necessary and sufficient condition for T to be
uniformly expansive is that Π(T) (Ί C = 0 .

For the proof we require an algebraic lemma.

LEMMA 2. Given any n complex numbers cly

 β , c w , there exists

λ e C such that Re (Σ?=i λ ^ ) ^ 0.

Proof. Define / by f(z) = Σ i CJZJ> let Γ = f(C)> a n ( i suppose
0 ? Γ . It will suffice to show that the winding number Ind [Γ, 0] of
Γ with respect to 0 is positive, for then arg/(λ) = 0 for some λe C.
We have

Γ,0] = J-ί iί-^J-ί .
2πi )r z 2πi ic f(χ)

Now / is analytic inside C and /(0) = 0, so by the argument principle
Ind[Γ, 0] ̂ 1 .

Proof of Theorem 2. Necessity follows from Theorem 1. To
prove sufficiency, suppose T is not uniformly expansive. Then foi
each positive integer n there exists xneH with ||α?ft|| = 1 and

We are going to use Lemma 2 to construct for each n a vector yne H
and a number XneC such t h a t 11 (T — XnI)Vn 11 ̂  A(log n)~112 \\yn\\,

where A is a fixed constant independent of n. The desired conclusion
will then follow. In fact, let λ e C be a limit point of {λn: n = 1, 2, •}.
-Given e > 0,

^ II(Γ- λ j t y j + II(λn - X)yn\\

for large enough n. Hence XeΠ(T).
Fix a positive integer n; we construct the desired yne H and

Xn e C. Set

yn = mγ,^Tjxn,
j = k

where m ^ 0 and k ^ 0, k < m, are integers still to be determined,
depending only on w, and where λ e C is still to be determined,
depending on m and k. An easy computation gives

\\Vn\\2 = SlIΓXll2 + 2ReW£"Vc3. ,
i* ii
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where each cά is a sum of terms of the form ( Γ X , Tm~ίxn). By
Lemma 2 we may choose XeC such that the second term above is
nonnegative. Then

(*) ll2/JI2^ΣΊl^J|2.
j=k

Set Xn = λ"1. Then
(**) \\(T - Xj)yn\\ ^ \\Tmxn\\ + | | T & ^ | | .

To determine m and k, upon which the choice of λ depends, we
consider three cases.

Case ( i ) . \\Tjxn\\2 ^ (logn)/n for 0 ^ j ^ n. Take m = n and
A: = 0. From (*), \\yn\\2 ^ logn; from (**) and the choice of xn,

\\(T-XnI)yn\\<^\\T«xn\\ + \\xn\\^3.

Hence

Case (ii). \\Tjxn\\2 ̂  (logn)/n for -n^j^ 0. Take m = 0 and
k = —n. Exactly as in case (i) we find

Case (iii). Cases (i) and (ii) both fail to apply. Let

c ^ l since T is not uniformly expansive. Then \\Tjxn\\ ^ c~j and
\\T~dxn\\ >̂ c~j for every j . Since case (i) fails to hold there is an
integer m, 0 < m <: n, for which \\Tmxn\\2 < logn/n, and we take the
least such m. Then m satisfies c~2m ^ | | Γ m ^ | | 2 < log n/n9 so that
m > B log ^ with B = (4 log c)~\ Similarly, since case (ii) fails there
is an integer Jc, —n^k<0, with | | Γ ^ | | 2 < logn/n. We take the
greatest such k, which must satisfy k < — Blogn.

By the choice of m and k, \\T3'xn\\ ̂  ||Γ*a?n|| for all k <L j < m..
From (*) we obtain

\\Vn\\2 ^(m-k) \\Tkxn\\2 ^ (2B\ogn) \\Tkxn\\2 .

Now

H T ^ J I 2 < logn/n ^ ||T*+Ia?n|| ^ c \\Tkxn\\ .

From (**) we obtain | | ( Γ - Xj)yn\\ ^ (1 + c) | |Γ f c ^ | | 2 . Hence in this
case

\\(T- \J)y%\\ £ (1 +
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To conclude the proof, set A = max {3, (1 + c)(2 logc)1/2}.

3* Examples* The examples below establish assertion (5) of
Theorem 1.

EXAMPLE 1. The bilateral shift on separable Hilbert space is
unitary and, a fortiori, not expansive, but it has no eigenvalues.

EXAMPLE 2. Let H be a separable Hilbert space with orthonormal
base (en\n = 1, 2, •) and let T be the diagonal operator on H given
by T(en) — Xnen, where 0 Φ Xn $ C and λΛ —> 1. Then T is expansive,
for 0 Φ x e H implies (x, en) φ 0 for some n, so that

for some integer i sufficiently large in absolute value. However,
leΠ(T).

Notice that if we take λ2 = λ15 the new automorphism S of H
given by S(e^ = e1 and S(en) = Xnen for n > 1 is not expansive, yet
A(S) - Λ(T).

The preceding is a counterexample to the converse of Theorem 1
(3) when B is a Hilbert space. Next we construct a counterexample
for an arbitrary separable Banach space.

EXAMPLE 3. Let B be any (infinite-dimensional) separable Banach
space. Choose a maximal biorthogonal family (en, eΐ)n with \\e*\\ = 1
for every index n. We may take the index class of this family to
be {1, 2, •}, for it is countable since the unit sphere in the dual B*
of B is weak-* separable. The Hahn-Banach theorem says that
(e* I n = 1, 2, •) must be total. Let K be the compact operator
given by ^ = E » ^ f t < - , e*X, where λn = Z~n HeJΓ1 ^ 3~Λ n = l, 2, •••.
Let T = I + K, where J is the identity operator. Since \\Kx\\ £ \\x\\/2,
\\Tx\\ ̂  \\x\\/2 for all xeB. Hence T is an automorphism of B.
Clearly leΠ(T).

To see that T is expansive, let xeB with | |.τ| | = 1. For some
n, ζx, ety Φ 0. For each positive integer i, ^T{x, efy = (1 + Xn)Kχi eΐ)>
so ilΓ^ϋ ^ (1 + XnY \<x, β?>|. Hence | | T ^ | | ^ 2 for large enough L

EXAMPLE 4. Let H be a separable Hilbert space. We construct
a uniformly expansive automorphism T of H with

= A = {λ:
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More specifically, Π0(T) = 0 , Π(T) = bdy A, and C c int A = Γ ( Γ ) =

Π0(T*), so t h a t the adjoint T * of Γ is not even expansive.

Let (β%)ϋoo be an orthonormal base of H. Define the weighted

bilateral shift T of H by

(2V 2 eB+ι, n ^ 0 ,

Γ β . = l

To see t h a t T is uniformly expansive, let xeH with | |a;| | = 1. Write

x = y + ce0 + z, where y is orthogonal to en for all w ^ 0 and z is

orthogonal to en for all n ^ 0. Now | |?/| |2 + | c | 2 + | | ^ | | 2 = | | ^ | | 2 = 1,

If \\y\\2 + M 2 ^ l / 2 , then

if | c | 2 + p l l 2 ^ 1/2, then | | Γ - ^ | | 2 ^ (2-ι/Y) 2(|c| 2 + \\z\\2) ^ 4.

To determine A{T), note initially t h a t | | Γ Λ | | = | | Γ " * | | = (2i/"2")Λ

for every ^ ^ 1. Hence /ί(T) c A. Now T* is the weighted back-

wards shift

T*en =

2i/ 2 e_ l f « ^ 1 ,

1
=e«- ^ 0 .

To find Π0(T*), fix a complex number λ ^ O . Then T*x = Xx for
some vector 0 Φ X = Σ-« c%β% if and only if

^ - 1 ,

2:0,

21/2 ""'"

2l/Ycw+1,

that is, cn = (λ/21/2 )ncQ and c_% = (l/2i/2 λ)Λc0 for all π ^ 1. Since
a ^O, the series Σ c* e» converges if and only if |λ/2l/2 | < 1 and
|l/2i/~2~λ| < 1, that is, λeint A.

It follows that Λ(T) ZD clsΓ(T) = A. A computation similar to
the above shows that 770( Γ) = 0 , and elementary estimates give that
Π(T) - bdy A.

EXAMPLE 5. Let A be the annular region {z: 1/2 < \z\ < 2} in
the complex plane and let H be the space of all analytic functions
belonging to the complex Hubert space L2(A, m), where m is planar
Lebesgue measure. Then [4] if is a separable Hubert space. The
analytic position operator T on H given by Tf(z) = zf(z) is an auto-
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morphism of H. It is proved in [4] that Λ{T) is the closure of A
and Π{T) is the boundary of A. Thus C c Λ(T), yet T is uniformly
expansive by Theorem 2.

We sketch a direct proof that T is uniformly expansive which
avoids the computation of Λ(T) given in [4]. Take fe H with | |/ | | = 1
and define

φ(r) = r Γ |/(rβ") \2dt (1/2 < r < 2).
Jo

Thus 1 = I I/I |2 = Γ ?>(r)dr. Since / is analytic, φ(r) > 0. It follows
Jl/2

from Holder's inequality that log<£>(r) is a convex function of logr:
if r — rlrl"* with 0 ^ t ^ 1, then <£>(r) ̂  φir^φ^^K One concludes
that 9 is a continuous function having no local maximum in (1/2, 2).

52 C2 f 1

φ(r)dr = 1, either \ φ(r)dr ^ 2/3 or I φ(r)dr ^ 1/3. In the
1/2 J l Jl/2 Γ2

former case the geometrical properties of 9? imply that \ φ(r)dr ^ 1/3,
J3/2

so that S 2

r2nφ(r)dr
1/2

^ (3/2)2* j
3/2

S 3/4

φ(τ)dτ >̂ 1/6, so that
1/2

||Γ~VII2 ^ (4/3)2%/6. Hence max{||Γn/||, | |Γ" /II} ^ ( ^ V / β for all

4* Remarks* Implications (1) and (3) of Theorem 1 no longer
hold if we take real instead of complex scalars. In fact, let 5* be
any nonzero complex Banach space and let Γ* be the multiplication
in 5* by the complex number i. Then the automorphism T of the
real Banach space subordinate to B* is an isometry, but Λ(T) = 0 .

Now let T be any automorphism of a real Banach space B.
Denote by T* the induced automorphism of the complexification B*
of B (see [7, Th. 1.3.1], for example). There is a norm-preserving
real-linear isomorphism / of B into £* with fT = T*f; also £* - B © B
as a real Banach space, and T* = T@T. Hence T is hyperbolic
(uniformly expansive, expansive, respectively) precisely when T* is.
It follows that Theorem 1 (l)-(4) remain valid in the real case if
A(T), Π(T), ΠQ(T) are replaced by Λ(T*), Π(T% Π0(T*).

We return to the complex case. The set of all uniformly expansive
automorphisms of a Banach space B is easily seen to be open in the
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set of all automorphisms of B. It would be interesting to know
whether the former set is dense in the latter.

Added in proof. Techniques similar to those used here show that
Theorem 2 remains valid for an arbitrary Banach space. Also, the
uniformly expansive automorphisms are not even dense in the expan-
sive automorphisms. Proofs will appear in a paper by the second-
named author.
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