SPECIAL SEMIGROUPS ON THE TWO-CELL

ESMOND DEVUN

A commutative semigroup S has property (α) if (1) S is topologically a two-cell, (2) S has no zero divisors, and (3) the boundary of S is the union of two unit intervals with the usual multiplication. A characterization of semigroups having property (α) will be given. Let (I, \cdot) denote the closed unit interval with the usual multiplication. Let M be a closed ideal of (I, \cdot) \times (I, \cdot) such that M contains ($I \times \{0\}$) \cup ($\{0\} \times I$), and $M \cap (I \times \{1\}) = \{(0, 1)\}$ or $M \cap (\{1\} \times I) = \{(1, 0)\}$. For each $a, b \in (0, 1)$ define a relation R(a, b; M) on (I, \cdot) \times (I, \cdot) by (x, y) $\in R(a, b; M)$ if (1) x = y or (2) $x, y \in (I \times \{0\}) \cup (\{0\} \times I)$, or (3) there exists an $s \in (0, \infty)$ such that x and y are in the same component of $M \cap \{(a^{st}, b^{s-st}): 0 \le t \le 1\}$.

LEMMA. The relation R(a, b; M) is a closed congruence.

THEOREM. A semigroup S has property (α) if and only if there exists a, b, M such that $(I, \cdot) \times (I, \cdot)/R(a, b; M)$ is isomorphic to S.

A central problem in the theory of topological semigroups is to characterize those semigroups whose underlying space is fixed. In general this problem is much too difficult; however, in some special cases considerable progress has been made. For example semigroups on the unit interval with identities are completely classified in [3], [4], and [7]. Some special cases on the two-cell have also been investigated [1], [2], [5], [6] and [7].

In this paper we are concerned with commutative semigroups having property (α). A semigroup S has property (α) if (1) S is topologically a two-cell, (2) S has no zero divisors, and (3) the boundary of S is the union of two unit intervals with the usual multiplication. A description of commutative semigroups satisfying property (α) will be given.

We begin by giving a method of constructing commutative semigroups having property (α). We will show later that this method yields all commutative semigroups having property (α).

Let (I, \cdot) denote the closed unit interval with the usual multiplication. Let M be a closed ideal of $(I, \cdot) \times (I, \cdot)$ such that M contains $(I \times \{0\}) \cup (\{0\} \times I)$ and $M \cap (I \times \{1\}) = \{(0, 1)\}$ or $M \cap (\{1\} \times I) =$ $\{(1, 0)\}$. For a, b contained in the open interval (0, 1) define the relation R(a, b; M) on $(I, \cdot) \times (I, \cdot)$ by $(x, y) \in R(a, b; M)$ if $(1) \ x = y$ or (2) $x, y \in (I \times \{0\}) \cup (\{0\} \times I)$ or (3) there exists an s contained in the positive reals such that x and y are in the same component of $M \cap \{(a^{st}, b^{s-st}): 0 \leq t \leq 1\}.$

LEMMA 1. The relation R(a, b; M) is a closed congruence, and hence $(I, \cdot) \times (I, \cdot)/R(a, b; M)$ is a semigroup.

Proof. We will first show R(a, b; M) is closed. Let $(\hat{r}_n, \hat{s}_n) \in$ R(a, b; M) for $n = 1, 2, 3, \dots$, with $(\hat{r}_n, \hat{s}_n) \rightarrow (\hat{r}, \hat{s})$. If an infinite number of the elements of the sequence satisfy (1) or (2), then $(\hat{r}, \hat{s}) \in$ R(a, b; M). Hence we can assume all of the elements of the sequence satisfy (3). This implies there exist sequences w_n, c_n, d_n such that $\hat{r}_n = (a^{w_n c_n}, b^{w_n - w_n c_n})$ and $\hat{s}_n = (a^{w_n d_n}, b^{w_n - w_n d_n})$ where w_n is a positive real number and $c_n, d_n \in [0, 1]$. Since $\hat{r}_n \to \hat{r}$ and $\hat{s}_n \to \hat{s}$, we have either (a) $w_n \to \infty$ or (b) $w_n \to w \in (0, \infty)$, $c_n \to c$ and $d_n \to d$. If (a) holds we have $a^{w_n c_n} \rightarrow 0$ or $b^{w_n - w_n c_n} \rightarrow 0$, and $a^{w_n d_n} \rightarrow 0$ or $b^{w_n - w_n d_n} \rightarrow 0$, hence $\hat{r}, \hat{s} \in (\{0\} \times I) \cup (I \times \{0\})$ and $(\hat{r}, \hat{s}) \in R(a, b; M)$. If (b) holds we use the fact that $(a^{w_n e_n}, b^{w_n - w_n e_n}) \in M$ for any e_n satisfying $\min(c_n, d_n) \leq e_n \leq \max(c_n, d_n)$. Let it be the case that $\min(c, d) \leq c_n$ $e \leq \max(c, d)$. Then there exists a sequence such that $\min(c_n, d_n) \leq c_n$ $e_n \leq \max(c_n, d_n) \text{ and } e_n \rightarrow e.$ Since $(a^{w_n e_n}, b^{w_n - w_n e_n}) \in M$ and M is closed we obtain $(a^{w_n e_n}, b^{w_n - w_n e_n}) \rightarrow (a^{we}, b^{w - we}) \in M$. Hence \hat{r} and \hat{s} are in the same component of $(M \cap \{(a^{wt}, b^{w-wt}): 0 \leq t \leq 1\})$, which implies $(\hat{r}, \hat{s}) \in R(a, b; M).$

To show that R(a, b; M) is a congruence, after a moments reflection, it becomes clear that we need only show $((x, 1)\hat{r}, (x, 1)\hat{s})$ satisfies property (3) whenever (\hat{r}, \hat{s}) satisfies property (3) and 0 < x < 1. Let $\hat{r} = (a^{wc}, b^{w-wc})$ and $\hat{s} = (a^{wd}, b^{w-wd})$ with $c \leq d$. Also $\{(a^{we}, b^{w-we}): c \leq e \leq d\} \subset M$. Since 0 < x < 1, there exist a $q \in (0, \infty)$ such that $(a^q, 1) = (x, 1)$. Using the fact that M is an ideal of $(I, \cdot) \times (I, \cdot)$ we see that

$$(x, 1)(a^{we}, b^{w-we}) = (a^q, 1)(a^{we}, b^{w-we}) = (a^{q+we}, b^{w-we}) = (a^{mf}, b^{m-mf}) \in M$$

for m = q + w and f = ew + q/w + q and $c \leq e \leq d$. This completes the proof.

One can observe that the map $\varphi: (I, \cdot) \times (I, \cdot) \to (I, \cdot) \times (I, \cdot)/R$ (a, b; M) which sends elements to their equivalence classes is a monotone map, and no equivalence class of R(a, b; M) separates $(I, \cdot) \times (I, \cdot)$. A theorem of Whyburn [8] reveals that $(I, \cdot) \times (I, \cdot)/R(a, b; M)$ is a two-cell. Also since $(I, \cdot) \times (I, \cdot)/R(a, b; M)$ is the homomorphic image of $(I, \cdot) \times (I, \cdot)$ which is commutative, it is commutative. Furthermore, the boundary of $(I, \cdot) \times (I, \cdot)/R(a, b; M)$ equals $\varphi((I, \cdot) \times \{1\}) \cup$ $\varphi(\{1\} \times (I, \cdot))$, and hence is the union two unit intervals with usual multiplication. Finally since $(I \times \{0\}) \cup (\{0\} \times I)$ is a completely prime ideal of $(I, \cdot) \times (I, \cdot), (I, \cdot) \times (I, \cdot)/R(a, b; M)$ has no zero divisors. Thus we have proved the following:

THEOREM A. $(I, \cdot) \times (I, \cdot)/R(a, b; M)$ is a commutative semigroup satisfying property (α).

Now we will take a commutative semigroup S satisfying property (α) and find $a, b \in (0, 1)$ and an ideal M such that $(I, \cdot) \times (I, \cdot)/R(a, b; M)$ is isomorphic to S.

We begin this section by letting the boundary of S equal $U \cup V$ where U and V are unit intervals with the usual multiplication. Without much difficulty it can be shown that $S = U \cdot V$ and $U \cap V =$ $\{z, i\}$ where z is the zero for S and i is the identity for S. Letting $f: (I, \cdot) \to U$ and $g(I, \cdot) \to V$ be isomorphisms and defining $h: (I, \cdot) \times$ $(I, \cdot) \to S$ by $h(x, y) = f(x) \cdot g(y)$, we see that h is a continuous homomorphism from $(I, \cdot) \times (I, \cdot)$ onto S.

LEMMA 2. If $h(x_1, y_1) = h(x_2, y_2) \neq z$, then one and only one of the following holds:

(1) $x_1 = x_2$ and $y_1 = y_2$ (2) $(x_1 - x_2)(y_1 - y_2) < 0.$

Proof. Let $h(x_j, 1) = u_j$ and $h(1, y_j) = v_j$, j = 1, 2. If (1) is not true, then suppose $x_1 > x_2$. This is the case if and only if there exist $u \in U$, $u \neq i$ such that $uu_1 = u_2$. Now $y_1 \ge y_2$ if and only if there exist v such that $vv_1 = v_2$. Since $h(x_1, y_1) = h(x_2, y_2)$ we have $u_1v_1 = u_2v_2$ or $u_1v_1 = (u_1v_1)(uv)$ which implies $u_1v_1 = (u_1v_1) \cdot u^n \cdot v^n$ for $n = 1, 2, 3, \cdots$. Hence, $u_1v_2 = (u_1v_1) \cdot \lim u^n \cdot \lim v^n = z$. This is a contradiction. Note for $x \neq 0$, $\{h(x, y): 0 \le y \le 1\}$ is an arc in S.

LEMMA 3. If $s \in S \setminus \{z\}$, then there exist (x_1, y_1) , $(x_2, y_2) \in h^{-1}(s)$ such that for all $(x, y) \in h^{-1}(s)$ we have $x_1 \ge x \ge x_2$ and $y_2 \ge y \ge y_1$.

Proof. Set $x_1 = \sup \{x: h(x, y) = s\}$. Construct a sequence $(q_n, r_n) \in h^{-1}(s)$ with $q_{n+1} \ge q_n$ such that $\lim q_n = x_1$. Noting that $r_{n+1} \le r_n$, set $y_1 = \lim r_n$. Since $s = h(q_n, r_n)$ and $(q_n, r_n) \to (x_1, y_1)$ we have $h(x_1, y_1) = \lim h(q_n, r_n) = s$. This implies x_1 is the maximum x and y_1 is the minimum y such that h(x, y) = s. A similar argument yields an $(x_2, y_2) \in h^{-1}(s)$.

LEMMA 4. If $s \in S \setminus \{z\}$, then $\pi_1(h^{-1}(s))$ is connected.

Proof. Let $x_1 < x < x_2$ with (x_1, y_1) , $(x_2, y_2) \in h^{-1}(s)$. We will show

there exist a \bar{y} such that $h(x, \bar{y}) = s$. The arc $\{h(x, y): 0 \leq y \leq 1\}$ must intersect one of the two arcs $\{h(x_1, y): y_1 \leq y \leq 1\}$ and $\{h(x_2, y): y_2 \leq y \leq 1\}$. Suppose it intersects the latter, then there exist y, y'such that $h(x, y') = h(x_2, y)$. Hence, if one chooses $\bar{y} = y'y''$ where $yy'' = y_2$, then $h(x, \bar{y}) = h(x, y'y'') = h(x, y')h(1, y'') = h(x_2, y)h(1, y'') =$ $h(x_2, yy'') = h(x_2, y_2) = s$. This completes the proof.

REMARK 1. By using Lemma 2 we note that the \bar{y} obtained in the proof above is unique.

LEMMA 5. If $s \in S \setminus \{z\}$, then for all (x_1, y_1) , $(x_2, y_2) \in h^{-1}(s)$ we have $(\sqrt{x_1x_2}, \sqrt{y_1y_2}) \in h^{-1}(s)$.

Proof. Suppose $x_2 > x_1$, then $x_1 < \sqrt{x_1x_2} < x_2$, and there exist a unique y such that $h(\sqrt{x_1x_2}, y) = s$. Now $s^2 \neq z$, and $h(x_1x_2, y_1y_2) = s^2 = h(x_1x_2, y^2)$. Hence $y = \sqrt{y_1y_2}$.

REMARK 2. Note that $h^{-1}(z) = I \times \{0\} \cup \{0\} \times I$.

LEMMA 6. If $s \in S \setminus \{z\}$, then there exist $(x_1, y_1), (x_2, y_2) \in h^{-1}(s)$ such that $h^{-1}(s) = \{(x_1^t x_2^{1-t}, y_1^t y_2^{1-t}): 0 \leq t \leq 1\}.$

Proof. Let (x_1, y_1) , (x_2, y_2) be the ordered pairs obtained in Lemma 3. By inducting on the previous lemma we see $\{(x_1^d x_2^{1-d}, y_1^d y_2^{1-d}): 0 \leq d \leq 1, d \text{ a dyadic rational}\} \subset h^{-1}(s)$. Taking the closure of this set we get $\{(x_1^t x_2^{1-t}, y_1^t y_2^{1-t}): 0 \leq t \leq 1\} \subseteq h^{-1}(s)$. Since $h^{-1}(s)$ cannot property include this set, they are equal.

Let $J = \{s: s \in S \text{ and } h^{-1}(s) \text{ is not a point}\}$. Note that J is an ideal of S, and hence $h^{-1}(J)$ and $h^{-1}(J)^*$ are ideals of $(I, \cdot) \times (I, \cdot)$.

LEMMA 7. If $s \in J \setminus \{z\}$, then there exist $a, b \in (0, 1)$ such that $h^{-1}(s) \subset \{(a^t, b^{1-t}): 0 \leq t \leq 1\}$.

Proof. Let (x_1, y_1) , (x_2, y_2) be the ordered pairs obtained in Lemma 3. We know $x_1 > x_2 > 0$ and $y_2 > y_1 > 0$. Both x_1 and y_2 cannot be equal to 1 for if both were we would have $h(1, y_1) = h(x_2, 1)$ contradicting the fact that $U \cap V = \{z, i\}$. We shall assume $y_2 \neq 1$, hence there exist β such that $0 < \beta < 1$ and $y_1^{1-\beta} = y_2$, also $0 < x_1 \leq 1$ and hence there exist γ such that $0 \leq \gamma < 1$ and $x_2^{\gamma} = x_1$. Setting $a = (x_2 x_1^{\beta-1})^{1/\beta}$ and $b = (y_2^{-\gamma} y_1)^{1/(1-\gamma)}$, it can be shown by simple algebraic manipulation that $a, b \in (0, 1)$ and $h^{-1}(s) \subset \{(a^t, b^{1-t}): 0 \leq t \leq 1\}$.

Note that there exist t_1 and t_2 such that $h^{-1}(s) = \{(a^t, b^{1-t}): 0 \leq t_1 \leq t \leq t_2 \leq 1\}.$

We will now show that the $a, b \in (0, 1)$ obtained in the previous theorem is somewhat unique.

LEMMA 8. If s, s' $\in J \setminus \{z\}$, and suppose $h^{-1}(s) = \{(a^t, b^{1-t}): t_1 \leq t \leq t_2\}$, then there exists $w \in (0, \infty)$ such that $h^{-1}(s') = \{(a^{wt}, b^{w-wt}): t_1' \leq t \leq t_2'\}$.

Proof. Let $h(x_1, y_1) = s$ and $h(x_2, y_2) = s'$. From the previous lemma we know there exist $c, d \in (0, 1)$ such that $h^{-1}(s') = \{(c^t, d^{1-t}):$ $t'_1 \leq t \leq t'_2\}$. For $(x, y) \in h^{-1}(s) \cdot (x_2, y_2)$ we have h(x, y) = ss', also for $(x', y') \in (x_1, y_1)h^{-1}(s')$ we have h(x', y') = ss'. But $h^{-1}(s) \cdot (x_2, y_2) = \{(a^{u\delta}, b^{u-u\delta}): \delta_1 \leq \delta \leq \delta_2\}$ and $(x_1, y_1)h^{-1}(s') = \{(c^{v\eta}, d^{v-v\eta}): \eta_1 \leq \eta \leq \eta_2\}$. However, there exist $p, q \in (0, 1)$ such that $h^{-1}(ss') = \{(p^2, q^{1-\lambda}): \lambda_1 \leq \lambda \leq \lambda_2\}$. This implies $a^u = p = c^v$, $b^u = q = c^v$ or $c = a^{u/v}, d = b^{u/v}$.

NOTATION. Let Comp (a^w, b^{1-w}) be the component of $h^{-1}(J) \cap \{(a^t, b^{1-t}): 0 \leq t \leq 1\}$ containing (a^w, b^{1-w}) .

LEMMA 9. If $s \in J \setminus \{z\}$, and if $\{(a^t, b^{1-t}): t_1 \neq t_2 \text{ and } t_1 \leq t \leq t_2\} \subset h^{-1}(s)$, then $h^{-1}(s) = \text{Comp } (a^{t_1}, b^{1-t_1})$.

Proof. Let $(a^w, b^{1-w}) \in \text{Comp}(a^{t_1}, b^{1-t_1})$ and suppose $w < t_1$ and $h(a^w, b^{1-w}) = s' \neq s$. Now $\{h(a^t, b^{1-t}) \colon w \leq t \leq t_1\}$ is a curve in J containing s and s'. Also for each $q \in [w, t_1]$ there exist β_q, γ_q such that $\beta_q < \gamma_q$ and $h^{-1}(a^q, b^{1-q}) = \{(a^t, b^{1-t}) \colon \beta_q \leq t \leq \gamma_q\}$. Moreover, for $s_1, s_2 \in$ and $s_1 \neq s_2$ we have $h^{-1}(s_1) \cap h^{-1}(s_2) = \emptyset$. Hence $\{h^{-1}(s) \colon s \in \{h(a^t, b^{1-t}) \colon w \leq t \leq t_1\}\}$ is an uncountable collection of disjoint closed intervals contained in the interval $\{(a^t, b^{1-t}) \colon 0 \leq t \leq 1\}$. This is impossible.

LEMMA 10. If $s \in J$, then sS = sU = sV.

Proof. If s = z, then $zS = zU = zV = \{z\}$. Let $s \neq z$ and h(x, y) = s = h(x', y') with x > x' and y' > y. Choose x'', y'' such that xx'' = x' and y'y'' = y. Let $(\bar{x}, 1) \in \{(t, 1): x'' \leq t \leq 1\}$. We will show there exists $(1, \bar{y}) \in \{(1, s): y'' \leq s \leq 1\}$ such that $s \cdot h(\bar{x}, 1) = s \cdot h(1, \bar{y})$. Now $s \cdot h(\bar{x}, 1) = h(x, y) \cdot h(\bar{x}, 1) = h(x\bar{x}, y)$ and $x \geq x\bar{x} \geq x'$. Hence there exists a unique \tilde{y} such that $y \leq \tilde{y} \leq y'$ and $h(x\bar{x}, \tilde{y}) = s$. Choose \tilde{y} such that $\bar{y}\tilde{y} = y$. We see $y'' \leq \bar{y} \leq 1$, and

$$s \cdot h(1, \overline{y}) = h(x\overline{x}, \widetilde{y}) \cdot h(1, \overline{y}) = h(x\overline{x}, \overline{y}\widetilde{y}) = h(x\overline{x}, y)$$

= $h(x, y) \cdot h(\overline{x}, 1) = s \cdot h(\overline{x}, 1)$.

The same method yields for each $(1, \bar{y}) \in \{(1, s): y'' \leq s \leq 1\}$ an $(\bar{x}, 1) \in \{(t, 1): x'' \leq t \leq 1\}$ such that $s \cdot h(1, \bar{y}) = s \cdot h(\bar{x}, 1)$. Let $s' \in S$. Then there exist m, n positive integers and x_0, y_0 such that $x'' \leq x_0 \leq 1, y'' \leq y_0 \leq 1$ and

such that $h(x_0^n, y_0^m) = s'$. Hence $s \cdot s' = s \cdot h(x_0^n, y_0^m) = s \cdot h(x_0, 1)^n h(1, y_0)^m$. But there exist \hat{x}, \hat{y} such that $x'' \leq \hat{x} \leq 1$ and $y'' \leq \hat{y} \leq 1$ and

$$s \cdot h(x_0, 1)^n \cdot h(\hat{x}, 1)^m = s \cdot h(x_0, 1)^n \cdot h(1, y_0)^m = s \cdot h(1, \hat{y})^n \cdot h(1, y_0)^m$$
 .

That is $s \cdot U = s \cdot S = s \cdot V$.

LEMMA 11.
$$h^{-1}(J) \cap (\{1\} \times I) = \{(1, 0)\} \text{ or } h^{-1}(J) \cap (I \times \{1\}) = \{(0, 1)\}.$$

Proof. Suppose this is false. Then there exist (x, 1), $(1, y) \in h^{-1}(J)$ and 0 < x < 1 and 0 < y < 1. From the previous theorem, letting h(x, 1) represent the element s, we obtain $x' \neq 0$ such that h(x, 1)h(1, y) = $h(x, 1) \cdot h(x', 1) = h(xx', 1)$. Also letting h(1, y) represent the element s, we get $y' \neq 0$ such that h(x, 1)h(1, y) = h(1, y')h(1, y) = h(1, yy'). So h(xx', 1) = h(1, yy'). But this contradicts the assumption that $U \cap V = \{z, i\}$.

LEMMA 12. If $(1, d) \in h^{-1}(J)^*$, then $(1, c) \in h^{-1}(J)$ for $0 \leq c \leq d$.

Proof. Let $(1, d) \in h^{-1}(J)^*$. One sees immediately that $\{(x, y): 0 \leq x < 1, 0 \leq y < d\} \subset h^{-1}(J)$. Let $a, b \in (0, 1)$ be as in Lemma 7. For 0 < c < d we have $(1, c) = (1, b^w)$, and hence there exists t, such that $\{(a^{tw}, b^{w-tw}): 0 < t < t_1\} \subset h^{-1}(J)$. From Lemma 9 there exists an $s \in S$ such that $h(a^{wt}, b^{w-wt}) = s$ for $t \in (0, t_1)$. Using the continuity of h we get $\lim_{t\to 0} h(a^{wt}, b^{w-wt}) = h(1, b^w) = s$. That is $(1, c) \in h^{-1}(J)$. For c = 0, h(1, c) = h(1, 0) = z which is always in J.

The same method of proof also shows that if $(d, 1) \in h^{-1}(J)^*$, then $(c, 1) \in h^{-1}(J)$ for $0 \leq c < d$.

COROLLARY 13. If $(x, 1), (1, y) \in h^{-1}(J)^*$, then x = 0 or y = 0.

Let S be a commutative semigroup satisfying property (α). If $J \neq \{z\}$, then there exist $a, b \in (0, 1)$ which satisfies the conditions of Lemma 7. If $J = \{z\}$, let a = 1/2, b = 1/2. From Theorem A we see that $(I, \cdot) \times (I, \cdot)/R(a, b, h^{-1}(J)^*)$ is a commutative semigroup satisfying property (α). Moreover, the following theorem holds.

THEOREM B. The semigroups S and $(I, \cdot) \times (I, \cdot)/R(a, b, h^{-1}(J)^*)$ are isomorphic.

Proof. Consider the diagram

644

when h and φ are the maps described earlier. We will show the relation $h\varphi^{-1}$ is an iseomerphism. To prove this we need only show that for $(x, y) \in (I, \cdot) \times (I, \cdot), \varphi^{-1}\varphi(x, y) = h^{-1}h(x, y)$. Let $(x, y) \in (I, \cdot) \times (I, \cdot)$. If x = 0 or y = 0 then $\varphi^{-1}\varphi(x, y) = (\{0\} \times I) \cup (I \times \{0\}) = h^{-1}h(x, y)$. Also if $\varphi^{-1}\varphi(x, y) = \{(x, y)\}$, then $h^{-1}h(x, y) = \{(x, y)\}$. Suppose $\varphi^{-1}\varphi(x, y)$ is not a point and $\varphi^{-1}\varphi(x, y) = the$ component of $(h^{-1}(J)^* \cap \{(a^{tw}, b^{w-tw}): 0 \leq t \leq 1\})$ containing $(x, y) = \{(a^{wt}, b^{w-wt}): t_1 \leq t \leq t_2, t_1 \neq t_2\}$. Hence $\{(c, d): c < a^{wt}, d < b^{w-wt}$, for some $t \in [t_1, t_2]\} \subset h^{-1}(J)$. Let $w_n = w^{1+(1/n)}, n = 1, 2, 3, \cdots$, then $a^{w_n t} < a^{wt}$ and $b^{w_n - tw} < b^{w-tw}$ for $t_1 \leq t \leq t_2$. This implies $\{(a^{w_n t}, b^{w_n - w_n t}): t_1 \leq t \leq t_2\} \subset h^{-1}(J)$. Using Lemma 9 we see

$$h(a^{w_n t_1}, b^{w_n - w_n t_1}) = h(a^{w_n t}, b^{w_n - w_n t_1}) = h(a^{w_n t_2}, b^{w_n - w_n t_2})$$

for $t_1 \leq t \leq t_2$. Also $\lim h(a^{w_n t}, b^{w_n - w_n t}) = h(a^{wt}, b^{w - wt}) = h(x, y)$ for $t_1 \leq t \leq t_2$. And we have $h^{-1}h(x, y) = \varphi^{-1}\varphi(x, y)$. The induced homomorphism theorem implies $h\varphi^{-1}$ is an iseomorphism.

I wish to thank Professor Haskell Cohen for his understanding help. Also I would like to thank Dr. J. T. Borrego for his helpful comments.

BIBLIOGRAPHY

D. R. Brown, Topological semilattices on the two-cell, Pacific J. Math. 15 (1965) 35-46.
H. Cohen and H. S. Collins, Affine semigroups, Trans. Amer. Math. Soc. 93 (1959), 97-113.

3. H. Cohen and L. I. Wade, Clans with zero on an interval, Trans. Amer. Math. Soc. 88 (1958), 523-535.

4. W. M. Faucett, Compact semigroups irreducibly connected between two idempotents, Proc. Amer. Math. Soc. 6 (1955), 741-747.

5. J. A. Hildebrant, On uniquely divisible semigroups on the two-cell, Pacific J. Math. 23 (1967), 91-95.

6. Anne Lester, Some semigroups on the two-cell, Proc. Amer. Math. Soc. 10 (1959), 648-655.

7. P. S. Mostert and A. L. Shields, On the structure of semigroups on a compact manifold with boundary, Ann. of Math. 65 (1957), 117-143.

8. G. T. Whyburn, *Analytic topology*, Providence, Rhode Island; Amer. Math. Soc. Colloquium Publications, Vol. 28, 1942.

Received February 17, 1969. This paper contains part of a doctoral dissertation written under the direction of Professor Haskell Cohen.

WICHITA STATE UNIVERSITY