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SPECIAL SEMIGROUPS ON THE TWO-CELL

ESMOND DEVUN

A commutative semigroup £ has property (α) if (1) S is
topologically a two-cell, (2) S has no zero divisors, and (3) the
boundary of S is the union of two unit intervals with the
usual multiplication. A characterization of semigroups having
property (a) will be given. Let (7, •) denote the closed unit
interval with the usual multiplication. Let I be a closed
ideal of (I, •) X (7, •) such that M contains (7 X {0}) u ({0} X 7),
and M n (7 x {1}) = {(0,1)} or M n ({1} x 7) = {(1, 0)}. For each
a, be (0,1) define a relation R(a, b; M) on (7, •) x (7, •) by (x,
y) 6 R(a, b; M) if (1) x = y or (2) x,ye(Ix {0}) u ({0} X 7), or
(3) there exists an s e (0, oo) such that x and y are in the
same component of M n {(αsί, bs~st): 0 ^ t ^ 1}.

LEMMA. The relation R(a, b; M) is a closed congruence.

THEOREM. A semigroup S has property (a) if and only if
there exists a, b, M such that (7, •) x (7, )IR(a, 6; M) is iseomor-
phic to S.

A central problem in the theory of topological semigroups is to
characterize those semigroups whose underlying space is fixed. In
general this problem is much too difficult; however, in some special
cases considerable progress has been made. For example semigroups
on the unit interval with identities are completely classified in [3],
[4], and [7]. Some special cases on the two-cell have also been in-
vestigated [1], [2], [5], [6] and [7].

In this paper we are concerned with commutative semigroups
having property (a). A semigroup S has property (a) if (1) S is
topologically a two-cell, (2) S has no zero divisors, and (3) the boundary
of S is the union of two unit intervals with the usual multiplication.
A description of commutative semigroups satisfying property (a) will
be given.

We begin by giving a method of constructing commutative semi-
groups having property (a). We will show later that this method
yields all commutative semigroups having property (a).

Let (7, •) denote the closed unit interval with the usual multipli-
cation. Let M be a closed ideal of (7, •) x (7, •) such that M con-
tains (7 x {0}) U ({0} x 7) and M Π (/ x {1}) = {(0,1)} or M Π ({1} x I) =
{(1, 0)}. For α, b contained in the open interval (0,1) define the relation
R(a, b; M) on (7, .) x (7, .) by (a?, y) e R(a, b; M) if (1) x = y or (2)
x, y e(I x {0}) U ({0} x 7) or (3) there exists an s contained in the
positive reals such that x and y are in the same component of
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Mn{(ast,bs~st):0 ^ t ^ 1}.

LEMMA 1. The relation R(a, b; M) is a closed congruence, and
hence (/, •) x (I, )/R(a, b; M) is a semigroup.

Proof. We will first show R(a, b; M) is closed. Let (fn, sn) e
R(a,b;M) for n = 1, 2, 3, •••, with (fΛ, sn) —> (f, s). If an infinite
number of the elements of the sequence satisfy (1) or (2), then (f, s) e
R(a, b; M). Hence we can assume all of the elements of the sequence
satisfy (3). This implies there exist sequences wny cn, dn such that
fn = (aw*Cn, bWn~Wn°n) and sn = (aWndn, bWn~Wndn) where wn is a positive

real number and cn,dne [0,1]. Since rn—>r and sn—>s> we have
either (a) wn—>^ or (b) wn—>we(0, °o), c%—*c and dn-^d. If (a)
holds we have αw»c* —> 0 or bWn~WnCn —• 0, and α w Λ —> 0 or bWr~Wndn —> 0,
hence f, SG({0} X /) U (/ x {0}) and (f, s) e R(a, b; M). If (b) holds
we use the fact that (aWn6n, bWn~Wn6n) e M for any en satisfying
min (cΛ, dn) ^ en ^ max (cn, (4). Let it be the case that min (c, d) ^
β ^ max (c, d). Then there exists a sequence such that min (cn, dn) ^
en ^ max (cn, dn) and ew —> e. Since (αWwew, 6W^-W^e^) e M and M is closed
we obtain (aWn6n, 6W»-W»β») -* (αwe, 6^-we) e M. Hence f and s are in
the same component of (M Π {(αwί, 6W-Wί): 0 ^ ί ^ 1}), which implies
(f, s)ei2(α, δ ikf).

To show that i2(α, 6; M) is a congruence, after a moments reflec-
tion, it becomes clear that we need only show ((x, l)f, (x, l)s) satisfies
property (3) whenever (f, s) satisfies property (3) and 0 < x < 1. Let
f = (awc

y bw~wc) and s = (αwrf, 6W-Wd) with c ^ rf. Also {(aw% bw~we): c ^
β ^ d} c If. Since 0 < x < 1, there exist a # e (0, oo) such that
(a9, 1) = (a?, 1). Using the fact that Λf is an ideal of (I, •) x (I, •) we
see that

(a?, l)(αwβ, 6W-Wβ) = (aq, l)(awe, bw~we) = (α7 + w β, 6^-^β) = (α

m /, 6m~w/) e M

ίor m — q + w and / = e w + g/w + q and c ^ e ^ ώ. This completes
the proof.

One can observe that the map <p: (I, •) x (/, )-+(I, •) x (I,
(α, 6; Λf) which sends elements to their equivalence classes is a mono-
tone map, and no equivalence class of R(a, b; M) separates (/, •) x (I, •)•
A theorem of Whyburn [8] reveals that (/, •) x (/, -)/R(a, b; M) is a
two-cell. Also since (I, •) x (I, )/R(a, b; M) is the homomorphic image
of (I, •) x (/, •) which is commutative, it is commutative. Further-
more, the boundary of (J, •) x (/, )/R(a, b; M) equals φ((I, •) x {1}) U
φ({l} x (/, •)), and hence is the union two unit intervals with usual
multiplication. Finally since (/ x {0}) U ({0} x I) is a completely prime
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ideal of (/, •) x (J, •), (/, •) x (I, )/R(a, b; M) has no zero divisors.
Thus we have proved the following:

THEOREM A. (/, •) x (J, )jR(a, 6; M) is a commutative semigroup
satisfying property (a).

Now we will take a commutative semigroup S satisfying property
(a) and find a, be (0,1) and an ideal Msuch that (/, .) x (/, -)/R(a, b;M)
is iseomorphic to S.

We begin this section by letting the boundary of S equal U U V
where U and V are unit intervals with the usual multiplication.
Without much difficulty it can be shown that S — U V and U Π V =
{z, i) where z is the zero for S and ί is the identity for S. Letting
/: (I, •) —> U and g(I, •) —> V be iseomorphisms and defining h: (/, •) x
(/, •) —>£ by / φ , 2/) = f(x) g(y), we see that /ι is a continuous homo-
morphism from (I, •) x (I, •) onto S.

LEMMA 2. 1/ / i ^ , ̂ /j = h(x2, y2) Φ z, then one and only one of
the following holds:

( 1 ) x, = x2 and yι = y,

( 2 ) (xt - x2)(Vi ~ 2/2) < 0.

Proof. Let h(x3, 1) = uά and h(l, yyj = vy, i = 1, 2. If (1) is not
true, then suppose x, > x2. This is the case if and only if there exist
ue U, u Φ i such that uu, = u2. Now y, ^ y2 if and only if there
exist v such that vvι ~ v2. Since h(x^ y,J ~ h(xz, y2) we have uLvί =
u2v2 or u1v1 = (u^Jiuv) which implies uιv1 — {VL^V^ U11 *vn for n = 1, 2,
3, •••. Hence, u ^ , = (u^^Λimu11 Λimv1 = z. This is a contradiction.
Note for x Φ 0, {A(.τ, 1/): 0 ^ 1/ g 1} is an arc in S.

LEMMA 3. // seS\{z}, then there exist (xu yλ), (x2, y2)eh~ι(s) such
that for all (x, y) e h~{(s) we have xλ ^ x ^ x2 and y2^ y ^ yx.

Proof. Set xί — sup {x: h(x, y) = s}. Construct a sequence (qn, rn) e
h-^s) with qn^1 ^ qn such that lim qn = xx. Noting that rn^ ^ rn, set
yx = lim rΛ. Since s = ft(gΛ, ? n) and (qn, rv) —* (^, T/J we have fe^, /̂J =
lim h(qnf rn) = s. This implies ίi\ is the maximum # and ̂ L is the mini-
mum y such that h(x, y) = s. A similar argument yields an (#2, 1/0) e

LEMMA 4. // seS\{z}, then π^h-Hs)) is connected.

Proof. Let xΣ < x < ,τ2 with (ίiΊ, y,), (x2, y2) e h~ι(s). We will show
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there exist a y such that h(x, y) — s. The arc {h(x, y): 0 ^ y ^ 1}
must intersect one of the two arcs {h(xlf y): yι ^ y ^ 1} and {/φ2, ?/):
τ/2 <̂  7/ ̂  1}. Suppose it intersects the latter, then there exist y, yr

such that h(x, yr) = / φ 2 , y). Hence, if one chooses y = y'y" where
yy" = yi9 then / φ , £) = h(x, y'y") = Λ(», y')h(l, y") = h(x2, y)h(l, y") =
h(x2, yy") = /φ2,2/2) = s. This completes the proof.

REMARK 1. By using Lemma 2 we note that the y obtained in
the proof above is unique.

LEMMA 5. If se S\{z}, then for all (xly yj, (x2, y2) e h"1^) we have

2) e h-'is).

Proof. Suppose x2 > x19 then xι < Vxxx2 < x2, and there exist a
unique y such that h{\/xλx2, y) — s. Now s2 Φ z, and hix^, yίy2) ~
s2 = hfaxz, y2). Hence y = Vy{y2.

REMARK 2. Note that h~ι{z) = I x {0} u {0} x I.

LEMMA 6. // se£\{2}, then there exist (x19 yt), (x2, y2) eh~\s) such
that hr\8) = {(xίxl-t, yiyϊ-*): O^t^l}.

Proof. Let (xιy y^, (x2, y2) be the ordered pairs obtained in Lemma
3. By inducting on the previous lemma we see {(xixl~d, yfyl~d): 0 ^ d ^
1, d a dyadic rational} c h~\s). Taking the closure of this set we get
{(xlxι

2-\ ytyl"*): 0 <S t <£ 1} S h"1^). Since Λ-1(s) cannot property include
this set, they are equal.

Let J = {s:seS and /^'(s) is not a point}. Note that J is an
ideal of S, and hence / ^ ( J ) and h~\J)* are ideals of (I, •) x (I, •).

LEMMA 7. If se J\{z}, then there exist a, be (0,1) swcfo that h~\s) a

{(α*, δ1-*): 0 ^ ί ^ 1}.

Proof. Let (a ,̂ 7/̂ , (x2, y2) be the ordered pairs obtained in Lemma
3. We know x1 > x2 > 0 and τ/2 > ^ > 0. Both a?! and y2 cannot be
equal to 1 for if both were we would have h(l, y^ = h(x2,1) contra-
dicting the fact that U Π V — {z,i}. We shall assume y2Φl, hence
there exist β such that 0 < β < 1 and yιrβ = y2, also 0 < ^ ^ 1 and
hence there exist 7 such that 0 ^ 7 < 1 and x\ — xL. Setting a =
(XiXl"1)1^ and 6 = {yTry^ini~r\ it can be shown by simple algebraic
manipulation that a, be (0,1) and h~\s) c {(α*, δ1"'): 0 ^ ί ^ 1}.

Note that there exist t± and t2 such that Z^"1^) = {(αf, 61~ί): 0 ^

*i ^ t ^ <2 ̂  1 } .
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We will now show that the α, b e (0,1) obtained in the previous
theorem is somewhat unique.

LEMMA 8. If s, s' e J\{z}, and suppose h~^s) = {(a\ bι~ι): tL ^ t ^ t2},

then there exists w e (0, oo) such that h~ι(s') = {(awt, bw~wt): t [ ^ t ^ f2}.

Proof. Let h(xlt y^ = s and h(x2, y2) = s'. From the previous

lemma we know there exist c,de (0,1) such that hrι(s') — {(c\ d1"*):
t[ ^ t ^ t2}. For (x, y) e h~1(s)-(x2j y2) we have h(x, y) = ss', also for
(&', 2/') G (a?!, ydh~ι(sr) we have / φ ' , τ/0 = ss'. But h~ι(s) (α2, τ/2) = {(αM%
6%-%δ): ^ ^ δ ^ δ2} and fe, ydhrι(sr) = {(cv\ dv~vr]): η^η-g* %}. However,
there exist p,qe (0,1) such that h-^ss') = {(p; , g1"^): λx ^ λ ^ λ2}. This
implies αw = p = cv, bu = q = cv or c = α%/v, d = 6M/ί'.

NOTATION. Let Comp (αw, &1-™) be the component of h~ι(J) n {(α*,
6χ-0: 0 ^ ί ^ 1} containing (aw

y bι~w).

LEMMA 9. If s e J\{z}j and if {(a\ b1'*): tγ Φ t2 and t^t^t^cz
h-\s), then h-\s) = Comp (αS δ1-^)-

Proof. Let (aw, bι~w) e Comp (α*1, δ1""*1) and suppose w < tL and
Λ(αw, δ1-^) = s' ^ s. Now {Λ(αf, δ1""4)- w ^ ί ^ ί j is a curve in J con-
taining s and s'. Also for each qe[w, £j there exist /9g, τ 9 such that
βq < τ g and fe-^αS bι~q) = {(α*, δ1"*): βq^t^ T J . Moreover, for sx, s2 e
and Si =£ s2 we have h"\s^ Π Λ^fe) = 0 . Hence {/^(s): s e {h(a\ b1**):
w ^ t ^ tλ}} is an uncountable collection of disjoint closed intervals
contained in the interval {(a*, δ1"*)- 0 <Ξ t ^ 1}. This is impossible.

LEMMA 10. If seJ, then sS = sU = sV.

Proof. If s = z, then zS = zU — zV = {#}. Let s Φ Z and Λ(a?, y) =
s — /2,(aj', 2/0 with # > x' and y' > /̂. Choose x", y" such that α x" = xf

and 2/V = y. Let (x, 1) G {(t, 1): α?" ^ ί ^ 1}. We will show there
exists (1, ?/) G {(1, s): y" ίί s tί 1} such that s h(x, 1) = s Λ(l, y). Now
s Λ,(x, 1) = h(x, y)-h(x, 1) = /i(ίcx, y) and a; ^ a sc ^ »'• Hence there
exists a unique ^ such that y <^y <^yf and /φx, ^) = s. Choose y
such that yy = ?/. We see /̂" ^ ^ ^ 1, and

s h(l, y) = λ(a?^, y)-h(l, y) = Λ(a?̂ , ^ ) = /φx, 2/)

= Λ(aj, y)-h(x, 1) = s•/&(£, 1) .

The same method yields for each (1, y) e {(1, s): yn ^ s ^ 1} an (#, 1) e
{(t, 1): x" ^ ί ^ 1} such that s-h(l,y) = s-h(x, 1). Let s' e S. Then there
exist m, wpositive integers and xQ,yQsuch that x" ^ ^ 0 ^ 1, y" ^yo^l and
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such that / φ ; \ 7/o

w) = s'. Hence s s' = s h(xϊ, y%) = s-h(x0, ΐ)nh(l, yo)
m.

But there exist x, y such that x" g x fg 1 and y" 1ί y til and

s.fc(a0, l)n.Λ(», l ) m = s / φ 0 , 1 ) ^ ( 1 , 2/o)m = s-h(l, y)n h(l, yo)
m .

T h a t is s-U = s S = s-V.

LEMMA 11. hr\J)Π ({1} x I) = {(1, 0)} or h~ι{J)π(/x {1}) = {(0,1)}.

Proof. Suppose this is false. Then there exist (x, 1), (1, y) e hr\J)
and 0 < x < 1 and 0 < y < 1. From the previous theorem, letting
h(x, 1) represent the element s, we obtain x* Φ 0 such that / φ , l)fe(l, 1/) —
A(.τ, l) / φ ' , 1) = fc(tτ.τ', 1). Also letting h(l, y) represent the element
s, we get yr Φ 0 such that h(x, l)h(l, y) = A(l, τ/')^(l, ^) = Λ(l, VV')-
So h(xx', 1) = λ(l, 7/̂ ) B u ^ this contradicts the assumption that

LEMMA 12. If (1, d) e h~ι(J)*, then (1, c) e h~ι(J) for 0 ^ c ^ d.

Proof. Let (1, d) e hr\J)*. One sees immediately that {(#, #):
0 ^ & < 1, 0 ^ 7/ < d} c h~ι{J). Let α, δ e (0,1) be as in Lemma 7.
For 0 < c < d we have (1, c) = (1, δw), and hence there exists t, such
that {(αίw, δw~ίw;): 0 < t < tx] c h~ι{J). From Lemma 9 there exists an
s e S such that h(awt, bw~wt) = s for te (0, ̂ ) . Using the continuity of
Λ we get \imt^h(awt, bw~wt) = h(l, bw) = s. That is (1, c) e fe-^J). For
c = 0, /i(l, c) = Λ(l, 0) = z which is always in J .

The same method of proof also shows that if (d, 1) eh~:(J)*, then
(cΛ)e h~\J) for 0 ̂  c < d.

COROLLARY 13. // (#, 1), (1, ̂ /) eh~ι(jy\ then x = 0 or y = 0.

Let S be a commutative semigroup satisfying property (α). If
J = ^ {2;}, then there exist α, δ e (0, 1) which satisfies the conditions of
Lemma 7. If J = {z}, let α = 1/2, δ = 1/2. From Theorem A we see
that (/, •) x (I, *)/R(a, δ, hr\J)*) is a commutative semigroup satisfy-
ing property (a). Moreover, the following theorem holds.

THEOREM B. The semigroups S and (/, •) x (/, )/R(a, δ, h~](J)*)
are ίseomorphic.

Proof. Consider the diagram

(/, .) x (/, •) — s

(7, •) x (I, .)/R(afb9h^(Jr)
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when h and φ are the maps described earlier. We will show t h e

relation hφ~ι is an iseomerphism. To prove this we need only show

t h a t for (x, y)e(I, •) x (/, •)» Φ^φi®, V) = Λ""1/^, #). Let (a?, #) e (/, •) x

(/, •)• If α = 0 or 7/ = 0 then cp~V(x, #) = ({0} x / ) U ( I x {0}) =

hrιh(x, y). Also if <p~^{x, y) = {(x, y)}, then hrιh(x, y) = {(x, y)}. Sup-

pose φ~ιφ(x, y) is not a point and φrιφ(x, y) = the component of

( / ^ ( J ) * Π {(αίw, ft—'"): 0 ^ t ^ 1}) containing (a?, y) = {(awt, bw~wt): tL ^

t ^ ί2, ίx Φ t2}. Hence {(c, d): c < awt, d < bw~wt, for some ί e [t19 ί j} c

^ ( J ) . Let ^ n = w1+(1/%), w = 1, 2, 3, , then αw»* < α w ί and δw - ί t p <

6 w - ί w for t t ^ t ^ t2. This implies {(αw»*, 6W»-W»t): *i ^ * ^ *2} c / ^ ( J ) .

Using Lemma 9 we see

for t,^t^ ί2. Also lim λ(αw*f, 6W»-W»') = /z,(αwί, δw-w ί) = h(x, y) for

ίi ^ ί S t2. And we have h~lh(x, y) = φ-'ίφ(xf y). The induced homo-

morphism theorem implies Z^-1 is an iseomorphism.

I wish to thank Professor Haskell Cohen for his understanding

help. Also I would like to thank Dr. J. T. Borrego for his helpful

comments.
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