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SPECIAL SEMIGROUPS ON THE TWO-CELL

EsmonD DEVUN

A commutative semigroup S has property (a) if (1) S is
topologically a two-cell, (2) S has no zero divisors, and (3) the
boundary of S is the union of two unit intervals with the
usual multiplication, A characterization of semigroups having
property («) will be given, Let (I, -) denote the closed unit
interval with the usual multiplication., Let J/ be a closed
ideal of (I, -) X (I, +) such that M contains (I X {0}) v ({0} x I),
and M n (I x {1}) ={0, D}or M n ({1} x I) ={1, 0)}. For each
a,be(0,1) define a relation R(a, b; M) on (I, -) X (I, -) by (x,
yeR@, b; M) if 1) x=v5 or (2) z,ye (I X {0}) U ({0} X I), or
(3) there exists an s€ (0, ) such that x and y are in the
same component of M N {(a%, b*t): 0 < ¢t < 1}.

LemmA, The relation R(a, b; M) is a closed congruence.

THEOREM, A semigroup S has property («) if and only if
there exists a, b, M such that (I, -) X (I, -)/R(a, b; M) is iseomor-
phic to S.

A central problem in the theory of topological semigroups is to
characterize those semigroups whose underlying space is fixed. In
general this problem is much too difficult; however, in some special
cases considerable progress has been made. For example semigroups
on the unit interval with identities are completely classified in [3],
[4], and [7]. Some special cases on the two-cell have also been in-
vestigated [1], [2], [5], [6] and [7].

In this paper we are concerned with commutative semigroups
having property («). A semigroup S has property («) if (1) S is
topologically a two-cell, (2) S has no zero divisors, and (3) the boundary
of S is the union of two unit intervals with the usual multiplication.
A description of commutative semigroups satisfying property («) will
be given.

We begin by giving a method of constructing commutative semi-
groups having property (o). We will show later that this method
yields all commutative semigroups having property ().

Let (I, -) denote the closed unit interval with the usual multipli-
cation. Let M be a closed ideal of (I, -) x (I, -) such that M con-
tains (I X {0) U ({0} x I) and M N (I x {1}) = {(0, 1)} or M N ({1} x I) =
{4, 0)}. For a,b contained in the open interval (0, 1) define the relation
R(a,b; M) on (I, ) x (I, ) by (x,y)cR(a,b; M) if 1) 2 =1y or (2
x,ye(d x {0 U ({0} x I) or (3) there exists an s contained in the
positive reals such that 2 and y are in the same component of
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Mn{e,b—):0<t < 1.

LEMMA 1. The relation R(a, b; M) is a closed congruence, and
hence (I, +) x (I, -)/R(a, b; M) is a semigroup.

Proof. We will first show R(a,b; M) is closed. Let (#,,8§,) €
R(a, b; M) for n=1,2,8, ---, with (#,, §,) — (#,§). If an infinite
number of the elements of the sequence satisfy (1) or (2), then (7, §) €
R(a, b; M). Hence we can assume all of the elements of the sequence
satisfy (3). This implies there exist sequences w,, c,, d, such that
P = (@®»n, b¥»=van) and §, = (a¥»», b¥»~¥»in) where w, is a positive
real number and e¢,,d,c[0,1]. Since #,—# and §,— §, we have
either (a) w,— = or (b) w,—we(0, =), ¢,—c¢ and d,—d. If (a)
holds we have a“»» — 0 or b*»—“»» — 0, and a*»%» — 0 or b¥»—"»'» — (),
hence #,8e ({0} x I) U x {0}) and (%, §) € R(a, b; M). If (b) holds
we use the fact that (a“»», b“»—v“»»)e M for any e, satisfying
min (e,, d,) < e, < max (¢,, d,). Let it be the case that min (¢, d) <
e < max (¢, d). Then there exists a sequence such that min (c,, d,) <
e, < max (c,, d,) and ¢, — e. Since (a“»», b*» =2y e M and M is closed
we obtain (a¥»°», b¥r=*nn) — (@, b*~*)e M. Hence # and § are in
the same component of (M N {(a“% b*~*":0 < ¢ < 1}), which implies
(7, 8) € R(a, b; M).

To show that R(a, b; M) is a congruence, after a moments reflec-
tion, it becomes clear that we need only show ((z, 1)7, (x, 1)§) satisfies
property (3) whenever (7, §) satisfies property (3) and 0 < x < 1. Let
7= (a”% b*~*°) and § = (a“?, b*~*%) with ¢ < d. Also {(a**, b *):¢c =
e<d}c M. Since 0 < ax <1, there exist a ¢qe(0, ) such that
(ay 1) = (z,1). Using the fact that M is an ideal of (I, -) x (I, -) we
see that

(x’ 1)(awe’ bw—-we) — (aq’ 1)(awe, bw—we) — (aq+zue’ bw—we) — (amf, bm—mf) c M

for m =q¢+ w and f=ew + q/w + q and ¢ < e < d. This completes
the proof.

One can observe that the map ¢: (I, -) x (I, <) —(, -) X (I, -)/R
(a, b; M) which sends elements to their equivalence classes is a mono-
tone map, and no equivalence class of R(a, b; M) separates (I, -) x (I, -).
A theorem of Whyburn [8] reveals that (I, -) x (I, -)/R(a, b; M) is a
two-cell. Also since (I, -) x (I, -)/R(a, b; M) is the homomorphic image
of (I, +) x (I, -) which is commutative, it is commutative. Further-
more, the boundary of (Z, -) x (I, -)/R(a, b; M) equals o((I, ) x {1}) U
»({1} x (I, +)), and hence is the union two unit intervals with usual
multiplication. Finally since (I x {0}) U ({0} x I) is a completely prime
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ideal of (I, -) x (I, +), , +) < (I, -)/R(a, b; M) has no zero divisors.
Thus we have proved the following:

THEOREM A. (I, :) x (I, -)/R(a, b; M) is a commutative semigroup
satisfying property (c).

Now we will take a commutative semigroup S satisfying property
(o) and find «, b€ (0, 1) and an ideal M such that (I, -) x (I, -)/R(a, b; M)
is iseomorphic to S.

We begin this section by letting the boundary of S equal UU V
where U and V are unit intervals with the usual multiplication.
Without much difficulty it can be shown that S=U.-Vand UNV =
{z, 1} where z is the zero for S and 7 is the identity for S. Letting
f: I, -)— U and ¢(I, -) — V be iseomorphisms and defining A: (I, ) X
(I, -) — S by h(z,y) = f(z}-g(y), we see that & is a continuous homo-
morphism from (I, -) x (I, -) onto S.

LEMMA 2. If Wz, y) = hix., y,) == 2, then one and only one of
the following holds:

(1) @, =w and y, = ¥y,

(2) (o, — @)y, — v) <O0.

Proof. Let h(x,,1) =u; and h(l.y,) =v; j=1,2. If (1) is not
true, then suppose x, > x,. This is the case if and only if there exist
we U, u # 1t such that wu. = u,. Now y, = v, if and only if there
exist v such that vy, = v,. Since i(z, v,) = h(z,, ¥,) we have wv, =
UV, or u, v, = (u,w,)(ur) which implies u.v, = (u,v,)-u"-v" for n =1, 2,
3, ---. Henece, uv, = (w,v,)-limu*-limv* = z. This is a contradiction.
Note for o = 0, {h{z, y): 0 < y =< 1} is an arc in S.

LEMMA 3. If se S\{z}, then there cvist (x,, y,), (X, ¥,) € h™'(s) such
that for all (z,y)eh=(s) we lhave v, = x = x, and ¥, = y = ¥..

Proof. Set x, = sup {x: h(z, y) = s}. Construct a sequence (¢,. 1",) €
h~'(s) with ¢,., = ¢, such that limg¢, = 2. Noting that »,., < r,, set
y, = limr,. Since s = h(q,, »,) and (q,, 7,) — (2., ¥,) we have h(z,, y,) =
lim 2(q,, r,) =s. This implies x, is the maximum 2 and y, is the mini-
mum ¥y such that h(z, y) = s. A similar argument yields an (z,, ¥,) €
h(s).

LEeMMA 4. If se S\{z}, then <.(h~'(s)) is connected.

Proof. Let x, <z < x, with (x, ¥.), (@, ¥,) € h~'(s). We will show
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there exist a ¥ such that A(x, %) =s. The arec {h(x,y):0 <y <1}
must intersect one of the two ares {i(x, ¥):y, <y =1} and {k(z, ¥):
¥, <y <1}. Suppose it intersects the latter, then there exist y, ¥’
such that h(x, ¥') = h(x,, y). Hence, if one chooses ¥ = y'y” where
yy" = ¥y, then h(z,y) = h(z, ¥'y") = h(@, YR, y") = h(z., YII, ¥") =
h(x,, yy”) = h(,, ¥,) = s. This completes the proof.

REMARK 1. By using Lemma 2 we note that the % obtained in
the proof above is unique.

LEMMA 5. If se S\{z}, then for all (x, y.), (&, ¥.) € h7(s) we have
(V@20 V'yys) € h7Y(s).

Proof. Suppose x, > x,, then &, < V&, <, and there exist a
unique ¥y such that A(Vax, y) =s. Now s* =z, and h(wx., ¥, =
s* = h(x,@,, ¥°). Hence ¥y = 1V 4,%,-

REMARK 2. Note that A'(z) = I x {0} U {0} x L.

LEemMMmA 6. If seS\{z}, then there exist (x,, y.), (2, ¥.) € K7'(s) such
that h='(s) = {(viw;™, yiy:): 0 =< ¢ < 1},

Proof. Let (x, v,), (., ¥.) be the ordered pairs obtained in Lemma
3. By inducting on the previous lemma we see {(zixi™, yiy; 9):0=d <
1, d a dyadic rational} — 2~'(s). Taking the closure of this set we get
{(@lzs?, yiyi=%: 0 < ¢ < 1} < A~*(s). Since A~'(s) cannot property include
this set, they are equal.

Let J={s:seS and h~'(s) is not a point}. Note that J is an
ideal of S, and hence A~(J) and A~'(J)* are ideals of (I, ) x (I, +).

LeMMA 7. If se J\{z}, then there exist a,b < (0,1) such that h=(s) C
{(a’, 8"7%): 0 < ¢t < 1}.

Proof. Let (x,v,), (x;, ¥.) be the ordered pairs obtained in Lemma
3. We know 2, > 2, >0 and y, > ¥, > 0. Both 2, and v, cannot be
equal to 1 for if both were we would have &(1,w,) = h(x,, 1) contra-
dicting the fact that UN V = {#,4}. We shall assume v, == 1, hence
there exist 8 such that 0 < 8 <1 and y'~f = 4, also 0 <2, <1 and
hence there exist v such that 0 <v <1 and 2] = x,. Setting a =
(w28 and b = (y;7y,)V" ", it can be shown by simple algebraic
manipulation that a,be (0,1) and 27'(s) < {(a%, *%):0 < ¢t < 1},

Note that there exist ¢, and ¢, such that A='(s) = {(e¢’, 0" ):0 <
L=t=t =1}
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We will now show that the a,be(0,1) obtained in the previous
theorem is somewhat unique.

LEMMA 8. If s, s’ € J\{z}, and suppose h='(s) = {(a, b'*): t, <t < b},
then there exists we (0, o) such that h='(s’) = {(a*f, b ~9): t] <t < ¢}.

Proof. Let h(x,y)=s and h(v, ¥,) =s. From the previous
lemma we know there exist ¢, de (0,1) such that A~'(s") = {(c¢}, d%):
ti<t=t}. For (z,y)ch'(s)-(x, y,) we have h(x,y) = ss’, also for
@', ¥') € (v, y)h7'(s) we have h(z’, ¥') = ss’. But h7'(s)- (% ¥2) = {(a*,
b*=*): 0, < 6 < d,} and (@, y)h™'(s") = {(¢”7, &) p, < p < n,}. However,
there exist p, ¢ € (0, 1) such that A7'(ss’) = {(p*, ¢"%): N = N = Ny}, This
implies a* = p = ¢, b* = q = ¢" or ¢ = a**, d = b*".

NOTATION. Let Comp (¢, b=*) be the component of h='(J) N {(a*,
b-%:0 < t < 1} containing (a®, b'~*).

LeMA 9. If seJ\(g), and if (", 0):t, %t and t, St St} C
h(s), then h=(s) = Comp (a", b'~").

Proof. Let (a”, b'~*) e Comp (a1, b'~1) and suppose w <t and
ha”, ") = ¢ #=s. Now {h(a', b ) :w =t =<1t} is a curve in J con-
taining s and s’. Also for each ¢ ¢ [w, t,] there exist B, 7, such that
B, < 7, and h7*(a% b7 = {(a’, b"%: B, =t < v,}. Moreover, for s, s,€
and s, # s, we have h7'(s,) N A7'(s,) = @. Hence {h~'(s): se {h(a’, b"):
w =t =t}} is an uncountable collection of disjoint closed intervals
contained in the interval {(af, "):0 < ¢t < 1}. This is impossible.

LEMMA 10. If se€d, then sS =sU = sV.

Proof. If s =z, then zS = 2U =2V = {z}. Let s =z and h(x, y) =
s = h(x', ') with > ' and %’ > y. Choose x”, ¥” such that xz” = &’
and ¥y’ =y. Let (Z,1)e{(t 1):2”" <t=<1}. We will show there
exists (1,7 €{@d, s):y” =< s <1} such that s-n(Z,1) = s-h(, y). Now
s-h(Z, 1) = h(x, y)-h(%,1) = h(zZ,y) and 2« =x%T = a’. Hence there
exists a unique ¥ such that y <% <4 and h(xZ, %) = s. Choose ¥
such that ¥ =y. We see y" <y <1, and

s-h(l, ¥) = h(xx, §)-h(Q, §) = hxZ, §§) = (=T, y)
= h(x, ¥)-h(Z, 1) = s-h(x, 1) .
The same method yields for each (1, %) e{(l,s):y”" <s=<1} an (% 1) e

{(¢, 1): 2" <t =1} such that s-h(1, ¥) = s-h(%, 1). Let s’eS. Then there
exist m, n positive integers and «x,, ¥, such that " <z, <1, ¥’ <y, <1and
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such that A(x}, yi") = s’. Hence s-8' = s-h(x7, yI') = s-h(x,, 1)"h(1, y,)™.
But there exist Z, 4 such that 2" <2 =<1 and ¥ <§ <1 and

s h(xy, 1)"-h(Z, 1)™ = s-h(x,, 1)"-h(1, y,)™ = s-h(l, §)"-h@, y,)" .
That is s: U =s-S =s-V.

LEMMA 11. 220 ({1} x I) = {@, 0)) or BN (I x {1}) = {(0, 1)).

Proof. Suppose this is false. Then there exist (z, 1), (1, ¥) € h~*(J)
and 0 <2 <1 and 0 <y <1l. From the previous theorem, letting
h(x, 1) represent the element s, we obtain ' = 0 such that i(z, (1, ¥) =
h(z, 1)-h(z', 1) = h(za’,1). Also letting h(1, y) represent the element
s, we get ¥ = 0 such that Az, DR, y) = @, ¥)hQA, v) = L1, yy').
So h(za’, 1) = h(l, yy'). But this contradicts the assumption that
UnV = {z 1.

LEMMA 12. If (1, d) e h(J)*, then (1, ¢)eh(J) for 0 = ¢ =< d.

Proof. Let (1,d)eh™(J)*. One sees immediately that {(z, v):
0<2<1,0y<dch?*(J). Let a,be(0,1) be as in Lemma 7.
For 0 < ¢ < d we have (1, ¢) = (1, b*), and hence there exists ¢, such
that {(a'”, b*7'): 0 < t <t} < A7'(J). From Lemma 9 there exists an
se S such that A(a®?, b*~*") = s for te (0,¢). Using the continuity of
h we get lim,_, h(a®?, b*~**) = h(1, b*) = s. That is (1, ¢)e h™'(J). For
¢ =0,hd,c¢) = h(@,0) =2 which is always in J.

The same method of proof also shows that if (d,1)eh~'(J)*, then
(c. e h™(J) for 0 < ¢ < d.

COROLLARY 13. If (x, 1), 1, y)eh™*(J)*, then 2 =0 or y = 0.

Let S be a commutative semigroup satisfying property (a). If
J = {z}, then there exist a, be (0,1) which satisfies the conditions of
Lemma 7. If J = {z}, let @ =1/2,b =1/2. From Theorem A we see
that (I, -) x (I, +)/R(a, b, h~(J)*) is a commutative semigroup satisfy-
ing property («). Moreover, the following theorem holds.

THEOREM B. The semigroups S and (I, -) x (I, -)/R(a, b, h7'(J)*)
are iseomorphic.

Proof. Consider the diagram
(I, ) % (L, ) == 8

7| i
(I, +) % (I, )/R(a, b, k(")



SPECIAL SEMIGROUPS ON THE TWO-CELL 645

when & and ¢ are the maps described earlier. We will show the
relation ke~ is an iseomerphism. To prove this we need only show
that for (z, y) e (Z, -) X (I, +), o7 'p(x, ¥) = h~*h(z, y). Let (x, ) e, +) %
I, ). If =0 or y=0 then oo, y) = ({0} x I) U x {0}) =
h=*h(x, y). Also if o7'p(x, y) = {(z, ¥)}, then A~ h(x, y) = {(x, ¥)}. Sup-
pose @ 'p(x,y) is not a point and ¢ 'p(x, y) = the component of
Gt N (e, )0 = t < 1}) containing (x, ¥) = {(a¥f, b"~"): ¢, =
t<t,t = t}. Hence {(c, d): c < a*,d < b %, for some telt,t]}C
h(J). Let w, = w*"" n=1,28, ---, then a*»' < a** and b*»** <
bt for t, <t < t,. This implies {(a®»t, b*»»"): ¢, <t < &} < h=(J).
Using Lemma 9 we see

h(a’””tl, bw'n—“'ntl) — h(a/wnt’ bwn—-wnt) — h(awntz’ bwn—-wntz‘)

for ¢, =t=<t. Also lima(a*», b¥»=*t) = h(a™!, b*~*%) = h(x, y) for
t,=t=t. And we have h~'h(z, y) = ¢ 'p(x, ¥). The induced homo-
morphism theorem implies ko™ is an iseomorphism.

I wish to thank Professor Haskell Cohen for his understanding
help. Also I would like to thank Dr. J. T. Borrego for his helpful
comments.
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