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THE PERTURBATION OF THE SINGULAR SPECTRUM

RICHARD BOULDIN

This paper designates a subset of the spectrum of a
bounded self adjoint operator on a complex separable Hubert
space. The set is called the singular spectrum and is dist-
inguished by the fact that it is a support for the singular
part of the spectral measure of the operator. The behavior
of the singular spectrum, when the operator is perturbed by
a bounded self adjoint operator, is studied. The thrust of these
results is to give conditions sufficient for the perturbed operator
to have no singular spectrum.

Any nonnegative Borel measure can be written as the sum of two
measures such that the first is absolutely continuous with respect to
Lebesgue measure and the second is singular with respect to Lebesgue
measure. The spectral measure E( ) of a self adjoint operator T on
a complex separable Hubert space H has a similar decomposition. In
the Lebesgue decomposition for a nonnegative Borel measure there is
no unique set which is the support of the singular measure in that
decomposition. Although this is also true for the singular part of
the spectral measure, in this research we show how to define a sup-
port for the singular part of the spectral measure £?(•) so that a
number of desirable properties result.

We call this support the singular spectrum of the operator T and
we denote it σs(T). Having developed the basic properties of the
singular spectrum, we study the behavior of this set under self adjoint
perturbations. That is we derive information about σs(T + V) in
terms of σs(T) and V. Since the singular spectrum of an operator T
always contains the eigenvalues of Γ, a perturbation theory for the
singular spectrum would be a generalization of the theory for the
perturbation of eigenvalues. A perturbation theory for the singular
spectrum would be complementary to the so called "absolutely con-
tinuous" perturbation theory.

In § 1 we summarize our notation and some of the known results
which we shall use. In § 2 we prove the basic properties which seem
to make our definition of singular spectrum attractive. In § 3 we get
a theory for finite dimensional perturbations which is analogous to
the one dimensional theory given by Donoghue in [4] The fourth
section is devoted to theorems which conclude the absence of the
singular spectrum under various hypotheses.
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1* Preliminaries*

NOTATION. Throughout this paper T will be a bounded self ad-
joint linear operator on a complex separable Hubert space H. The
perturbation will be a bounded self adjoint linear operator on H and
it will be denoted by V; in § 3 we further assume that V is finite
dimensional, i.e., V = Σ5=i < ">^ > C A We shall consistently de-
note the perturbed operator by P, i.e., P = T + V, and the spectral
measures of the unperturbed and perturbed operators are denoted
E(') and F( ), respectively. The resolvent operators for T and P are
written R(z) = (T - xl)~ι and S(z) = (P - zl)~\

For a nonnegative Borel measure m( ) we define the symmetric
derivative at x to be lim m([x — ε, x + ε])/2ε as ε —* 0 and we denote
this derivative by Dsymm(x). The real and imaginary parts of the
complex number z are written Re z and Im z.

BOUNDARY VALUE THEORY. This paper uses in an essential way
the following facts which are corollaries of well known results. We
shall list these facts in itemized form and then comment on the
proofs.

(1) ζE{ )/, #> is a complex measure and Re <E( )/, #>, Im <β{ )/, #>
are signed real measures. Each signed real measure can be written
as the difference of positive measures.

(2 ) For almost all real x we have a finite limit, \\mζR(x + ia)f,gy
as a —> 0 with a > 0.

( 3 ) If Aym <E(x)f, /> - co then Im <R{x + iα)/, /> — oo as α — 0.
(4 ) If m( ) is a nonnegative Borel measure and S is a measurable

set then m(S) = mα(S) + ms(S) with m,(S) = m(S Π 5) where

JS = {x real: Z)symm(a;) = oo}, mα( ) = m( ) — mβ( )

and mα( ), ms( ) are absolutely continuous and singular measures with
respect to Lebesgue measure, respectively.

Proofs. (1) is an obvious consequence of the measure theoretic
properties of the spectral measure E( ) and the Jordan decomposition
for a signed real measure.

(2 ) follows from the representaion

<It(z)f, g> = j(t - z^ΈteζEidt)/, g> + ij(ί - z)-ιJm<β(dt)f, ^>

and items VIII and X of [2] and Theorem 8.6, p. 154, of [11].
(3) is due to Donoghue in [3].
(4) is the De la Vallee Poussin Theorem given in [12], p. 127.



THE PERTURBATION OF THE SINGULAR SPECTRUM 571

2* Definition and elementary properties of the singular spec-
trum* Following Kato in [7], pp. 516-517, we define the absolutely
continuous subspace, Ha, and the singular subspace, Hs, by

Ha = {/eiί: <#(•)/,/> is absolutely continuous with
respect to Lebesgue measure}

Hs = {f e H: (E( )f, fy is singular with respect to

Lebesgue measure}.

Kato shows that the orthogonal complement of Ha is Hs and if Q is
the orthogonal projection onto Ha while E is the orthogonal projec-
tion onto any subspace which reduces T then QE = EQ.

In [4] Donoghue assumes that T in H has a cyclic vector /, that
is H has no nontrivial T-invariant subspace containing /. In that
special case he defines a notion of singular spectrum. Donoghue re-
lates his notion of singular spectrum to the boundary values of R(z)
but he does not relate it to the singular subspace.

In [10] Rosenblum constructs a Lebesgue decomposition for the
spectral measure E( ); this gives rise in a natural way to a notion
of singular spectrum and a notion of singular subspace. However,
that notion of singular spectrum does not agree with the definition
of Donoghue in the case that T has a cyclic vector in H. Also the
simple relationship to the boundary values of R(z) is lost.

The definition of singular spectrum given below attempts to in-
corporate the best features of both of the approaches of Donoghue
and of Rosenblum. Our definition makes sense pointwise and has a
very simple relation to the boundary values of R(z). Further, it is
shown that the singular spectrum is always a Lebesgue null set, it
is a support for the singular part of the spectral measure, and the
spectral measure of the singular spectrum is the orthogonal projection
onto the singular subspace. By definition the set of vectors, {fb: b e B},
is a generating basis for the operator T in H provided a dense sub-
space of H is formed by the span of all vectors of the form p(T)fb

where p(x) is a complex polynomial. The role of generating bases
in spectral theory is studied in [1], for example, p. 63.

DEFINITION. Let

Sf,a = {x real: \ζR(x + ian)f, #>| —• oo as n —• oo for

some sequence, {an}> of positive numbers

converging to 0} .

Define the singular spectrum of T by σs(T) = (J {Sftg: f, g e G) where
G is some generating basis for T in H.
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It is clear that in the above definition the singular spectrum de-
pends on the generating basis that is chosen. There is a natural
choice for perturbation problems involving a compact self adjoint per-
turbation-namely the normalized eigenvectors of the perturbation.

THEOREM 1. If E£ ) and Ea( ) are defined by

E.(D) = E(D n

and Ea{D) = E(D) - ES{D) then E(-) = Ea( ) + #.(•) and Ea( ), E.(.}
are absolutely continuous and singular operator valued measures,,
respectively.

Proof. Let p(x) and q(x) be complex polynomials and let / and
g be elements of G, the generating basis used in the definition of
σ,(T). If h = p(T)f and k = q(T)g then the measure <E( )h, k> is
absolutely continuous with respect to the measure <7?( •)/,/>. With
this end in mind we let D be a bounded Borel set such that

> = \\E(D)f\\\

Then

\<E(D)h,k>\£\\E(D)h\\\\k\\

= \\k\\[<p(T)*E(D)p(T)f,f>Y'*

=g \\k\\ svφ{\p(t)\:teD}<E(D)f,f> = 0 .

For D an arbitrary Borel set such that 0 = <E(D)f, />, let D =
where {D5} is a sequence of pairwise disjoint bounded BoreΓ

sets. Certainly 0 = ζE(D5)f, /)> for each j and by what has been
proved 0 = ζE(Dd)h, ft> for each j . By the countable additivity of the
complex measure ζE( )h, ky we get that 0 = ζE(D)h, &)>, as desired.

It follows from what has been proved that if h = Σj=iPj(T)fs

with each fdeG and each p3 (t) a complex polynomial then ζE( )h,hy
is absolutely continuous with respect to Σ5=i<^(•)/?>/*>• Because G
is a generating basis for T in H the subspace, S, formed by the span
of all vectors with the form of h is dense in H.

Let feG and let C denote the complement in the reals of the
set σs(T). If D is a representative Borel set then the following de-
fines a Lebesgue decomposition

<E(D)f, /> - <E{D n σ.{T))f, /> + <E{D n C)/, /> .

In order to prove the assertion about (+), observe that by item (2>
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of the summary of § 1 for /, g e G we know that Sf,g is a Lebesgue
null set. Since σs(T) is the countable union of a collection of Lebesgue
null sets (because H is separable), it is a Lebesgue null set. Thus
the first measure on the right of ( + ) is certainly singular with respect
to Lebesgue measure. By item (3) of the aforementioned summary
we have {x real: DRym <E(x)f, /> = co} c Sftf c σs(T). This and the fact
that σs(T) is a null set show that the first measure on the right of
( + ) is measure theoretically equivalent to the singular part of ζE( )f, />
as given in the Lebesgue decomposition of item (4) of the summary
of §1. This proves that ( + ) is a Lebesgue decomposition. It follows
almost immediately that the following is a Lebesgue decomposition
when {fά:j = 1, •••, r}czG

± <E(D)fjy /,> = Σ <E(D Π σs(T))fά,

<++)

Take h a vector from S, the dense subspace generated by G. In the
second paragraph of this proof we showed that ζE{ )h, Jι) is absolutely
continuous with respect to *Σj=i(E( )fj9 fd,y f° r some choice of {fjij —
1, « ,r} from G. By the transitivity of absolute continuity and by
( + + ) above we see that ζE(f) C)h, hy is absolutely continuous with
respect to Lebesgue measure. It is obvious that <(i?( Π σs(T))h, K}
is singular with respect to Lebesgue measure and therefore the follow-
ing is a Lebesgue decomposition

<E{D)h, h> = <E{D n σ,(T))h, K> + <E(D n C)h, fe>

Let D be any Lebesgue null set. Then for any he S,

C)h, h> = 0

and, since S is dense in H, it follows that E(D Π C) = 0. So E( Π C)
is absolutely continuous with respect to Lebesgue measure as an
operator valued measure. Hence the theorem is proved.

COROLLARY 1. E(σs(T))H = Hs and thus E(C)H = Ha where C is
the complement in the reals of os(T).

Proof. If fe E(σs(T))H then / = E(σs(T))f and

/,/> - <E(-)E(σ.(T))f,f) = <E(-Γ\

Thus feHs.
Assume that / is a vector of Hs which is orthogonal to E(σs(T))H.
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Since / = E(σΛ(T)) + E(C) it must be that E{C)f = f and consequently
we can choose a subset of C, say D, to be a support for ζE{ •)/,/X
However feHs implies that D can be taken to be a Lebesgue null
set and Theorem 1 shows that

E(D) = E.(D) = E{D n σs(T)) = E{0) = 0 .

So / = 0 and the corollary is proved.

The next theorem shows that the point spectrum of T, σpt(T),
which is easily seen to be a subset of σs(T) can be characterized in
terms of the rate of growth of the resolvent operator R(z).

THEOREM 2. xe opt(T) if and only if there exists some feH such
that I a Im (R(x + icήf, /)> I approaches a finite nonzero limit as α -^ 0
with a > 0.

Proof. For xeσpt(T) take / to be a corresponding normalized
eigenvector. Then (R{x + ia)f, /> = i/a and so |αlm<iϋ(x + ia)f, / > | =
1 for all a > 0.

Now assume that x is not an eigenvalue of T and take / to be
any unit vector of H. Note that for <(E(-)f,fy = m( ) the measure
of the set of real numbers is 1 and m((x — ε, x + e)) —> 0 as ε —> 0
with ε > 0. Taking α > 0,

£ = ( - oo, x - α3/4], I2 = (x- a214, x + α3/4), I3 = [x + α3/4, oo) ,

we use the spectral representation for T,

alm<R(x + α)/,/>

= [ [a2l{t - α;)2 + a2]m(dt)
ill

[a2/(t - x)2 + a2]m(dt)

+ [a2l{t - x)2 + a2]midt)

^ 2[α2/α3/2 + a2] + m(/2) .

As α -> 0, [α2/α3/2 + a2] = [α1/2/l + a1'2] -> 0 and m(/2) — 0. This proves
that \almζR(x + m)/, / |—>0 as α-^0 and the theorem follows.

3* A theory for finite-dimensional perturbations* In this
section we are concerned with the behavior of the singular spectrum
when T is perturbed by a self adjoint operator V which has finite
dimensional range. The inquiry is motivated by two theorems. The
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first is the Weinstein-Aronszajn Theorem which gives a formula for
the change in the multiplicity of an isolated eigenvalue according to
the local behavior of the Weinstein-Aronszajn determinant, which is
a meromorphic function in a neighborhood of the eigenvalue. The
second theorem is due to Aronszajn and Donoghue and it states that
the singular spectrum of P = T + < , Kych is contained in the set

{x real: (R(x + ia)h, K} —> 1/ — c as a —> 0}

provided h is a cyclic vector for T in H. A corollary of this result
is that the singular spectrum of T is disjoint from the singular
spectrum of P. In order to relate the two theorems we reformulate
the second theorem in terms of the W—A determinant. In the one
is given by w(z) = det [I + VR(z)]/VH = 1 + c<R(z)h, h}. Thus the
dimensional case the W—A determinant singular spectrum of P is
contained in the set of real numbers where w(z) takes the boundary
value 0. It follows from the W—A theorem that new isolated eigen-
values are contained in the set where the W—A determinant takes
the boundary value 0. This suggests the following theorem with

THEOREM 3. If xeσs(P) and x&σs(T) then there exists a sequ-
ence of positive numbers converging to 0, say {an}, such that w(x +
ian) —> 0 as an —> 0.

Proof. We use an elementary inversion formula derived in [9],
pp. 161-162,

\l + Σ< , α>y"Γ = / - Σ d(i,iK , a ^

where d(i, j) is the quotient with numerator equal to the signed minor
associated with the (i, j)th element of the matrix (δi3- + <7>{, α^) and
the denominator of the quotient is the determinant of the above matrix.
Thus

S(z) = (P- a/)-1 = ([/ + VR(z)][T - zl\)-i

= R(z)\l ~ Σ d(i, 3, *)<-, C R&hύ

= R(z) ~ Σ d(i,j, zK , R{z)h^c3R{z)h

where d{i, i, z) is formed as in the above inversion formula from the
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matrix with the following (i, j)th element

δiS + <hi9 CjR^h.y = δiό + <R(z)hif cάh>>

= δ4 i + <R(z)hi9 Vhj>

= [I+ VR(z)]/VH.

Thus the determinant involved in the definition of d(i, j , z) is the
W—A determinant. It follows from the above formula that ζβ(z)hk,hl>
is equal to

( + ) <R{z)hk1 hty - Σ d(i, j , z)<hk, cόR(z)h^R{z)K h> .

Let Hu Hr be the smallest subspaces of H containing VH and re-
ducing the operators T, P, respectively. Since VH c Hι we know Hγ is
invariant under V and since V is self adjoint Ht reduces V. Since
Hx reduces both T and V it must reduce P and thus H' a Ht. By-
symmetry, i.e., T = P + (-V), we get H' = Hλ. Let H" be the
orthogonal complement of H' in H. Then σs(P) = σs(P/H') U σ,(P/H").
Because the orthogonal complement of the kernel of V is the closure
of VH which is contained in Hr we have T/H" = P/H" and

σ.(T/H") = σs{PIH") .

So if x e σs(P/H") then x e σs(T/H") which is contained in σ,(T). This
contradicts the hypothesis and so we may assume xeσs(P/H').

From the fact proved above, Ht = H', it follows that {hά:j =
1, •••, r} is a generating basis for both T and P in H'. Since £6
σs(P/H') it must be that for some pair hk, hi there is a sequence of
positive numbers converging to 0, say {an}, such that

as αΛ —• 0. If for some i, j there is a sequence of positive numbers
converging to 0, say {δw}, such that \ζβ(x + ίbn)hi9 hdy\ —> oo as 6%—*0
then XGO ̂ Γ ) which is contrary to the hypothesis. Thus we may
assume that \(R(x + ian)hif h^\ is bounded uniformly in n. In view
of the formula ( + ) it must be that w(x + idn) —> 0 as dn—>0 for {cίj
some subsequence of {an}; otherwise every term of the equation would
be bounded uniformly in an. This proves the theorem.

LEMMA 1. It is clear that VH is invariant under [I + VR{z)\
and under [I — VS(z)]. On VH the following relations hold:

[1+ VR(z)][I- VS(z)] = / = [ / - VS(z)][I+ VR{z)\ .

Proof. Note that I + VR(z) - (P - zI)R(z) and
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I - VS(z) = [P-zI- V]S(z) = (Γ - zI)S(z) .

COROLLARY 1 (to Theorem 3). If xeσ8(T) and xgσs(P) then for
some sequence of positive numbers converging to 0, say {an}, we have
Iw(x + ian)I -> CXD as an—>0.

Proof. Apply Theorem 3 viewing P as the unperturbed operator
and - 7 as the perturbation so that the W— A determinant in this
case is V(z) = det [/ - VS(z)]/ - VH. Since

1 - det I/VH = det {[I - VS(z)]/VH[I + VR(z)]/VH}

= det [I - VS(z)]/VH det [I + VR(z)]/VH
= v(z)w(z)

and since Theorem 3 guarantees a sequence of positive numbers con-
verging to 0, say {αj, such that v(x + ian) —*0 as an—»0, it must
be that | w(x + ian) | —• oo as an —> 0. This proves the corollary.

We want to emphasize the contrast between the multi-dimensional
case and the one dimensional case of the Aronszajn-Donoghue theorem.
In the multi-dimensional case the singular spectrum of the perturbed
operator need not be disjoint from the singular spectrum of the
unperturbed operator and this unfortunate fact is true for any rea-
sonable definition of the singular spectrum. Indeed we provide an
example where the dimension of the perturbation is two and the per-
turbed operator is unitarily equivalent to the unperturbed operator.

COUNTER-EXAMPLE. Let u( ) be an arbitrary probability measure
on the reals. Let Hf and H" both be equal to the space of "functions"
square integrable with respect to the above measure. Define two
multiplication operators on the two spaces according to (M'f)(t) = tf(t)
and (M"f)(t) = tf(t) where / is in the domain of such an operator if
and only if tfit) is in the space. Let H be the external direct sum
of the two spaces, i.e., H— H' © H" and set

K - (0, 1), h2 = (1, 0), V = - < . , fe.X + < , h2>h2 .

If T = [M' + < , /O*i] θ M" then P = Mf © \M" + < , h^h2] which
is clearly unitarily equivalent to T by the operator (f, g) —+(g,f).
Thus the structure of the spectrum of P is exactly the same as that
of T.

4* A basic method for the perturbation of the singular
spectrum* The basic method used in this section is to couple a certain
simple factorization of the operator / + VR(z) with inversion arguments
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related to the second Neumann series (see [7], pp. 66-67). In order
to simplify the statements of the results we henceforth make the
following basic assumption:

H has no proper subspace which
contains VH and reduces T.

In a sense this is no assumption at all since it is always possible to
reduce to this situation by an argument due to Kato in [6] given
in detail in the second paragraph of the proof of Theorem 3. It is
also convenient to have an appropriate notion of neighborhood. If B
is a subset of the reals then we say that N is an upper half plane
neighborhood (abbreviated u.h.p. nghd) of B provided that for each
xeB there is a nontangential path ending at x which is contained in
the intersection of N with the upper half of the complex plane. The
purpose of these neighborhoods is that they permit free application
of the boundary value theory which requires nontangential limits.
Unless it is specifically stated to the contrary in the following V is
a self adjoint bounded perturbation which is not necessarily finite
dimensional. Recall that Lemma 1 demonstrated that VH is invariant
under the W—A matrix W(z) = I + VR(z) and its inverse W{z)~ι =
I-VS(z).

LEMMA 2. Let Qr be any orthogonal projection which commutes
with T and set Q = I — Q'. Then VH is invariant under U(z) =
I + VR(z)Q and under I — VQ'S{z). For any nonreal z we have
W-\z) = U-\z)[I- VQ'S(z)\.

Proof. An argument of Howland in [5] works in this generality
to show that U(z) is one-to-one. Assume 0 = U(z)f = / + VR(z)Qf.
Then

0 = Qf + QVR(z)QV =Qf+ QVQR(z)Qf

= ( Γ + QVQ - zI)R(z)Qf.

Because T and T + QVQ are self adjoint for any nonreal z,

(T+ QVQ - zI)R(z)

is one-to-one on QH. Thus Qf — 0 and by the first equation we see
that / = 0. Hence U(z) is one-to-one.

Thus it suffices to show that U{z)W~\z) = I - VQ'S(z)., The
following simplication is based on the so-called second resolvent equa-
tion, i.e., R(z)VS(z) = R(z) - S(z),

U{z)W-\z) = [I+ VR(z)Q][I- VS(z)]

= I + VR(z)Q - VS(z) - VQ[R(z) - S(z)]
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= I - VS(z) + V(I - Q')S(z)

= I - VQ'S(z) .

LEMMA 3. Let S be a subset of the reals and let N be an upper
half plane neighborhood of S. If \\ VQ'S(z)/VH\\ and {{U-^zyVHW
are bounded for nonreal zeN then the intersection of S with the
singular spectrum of P is empty.

Proof. We note that for nonreal z

| | I - VS(z)/VH\\ = \\W-\z)/VH\\ ^ \\U-\z)IVH\\ \\I - VQ'S(z)/VH\\ .

Thus for g, h e VH and nonreal ze N we get that \ζS(z)g, hy\ is bounded.
Hence for each xe S we know that x £ os(P) and the lemma is proved.

COROLLARY. The above lemma remains true if the boundedness
of U~ι{z)IVH is replaced by

(2') || VR(z)Q/VH\\ ^ m < 1 f o r n o n r e a l z e N .

Proof. By (2') the following Neumann series converges in the
uniform topology

U-1(z)/VH= {[/+ VR(z)Q]/VH}~1

- Σ [VR{z)QIVHY{-iy .

By the triangle inequality and the sum formula for a geometric pro-
gression we see that the norm of U~ι(z) is bounded for nonreal ze N.
Thus the hypothesis of the lemma is satisfied.

THEOREM 4. Let S be a subset of the reals, let S' be its com-

plement, and let N be an u .h.p. nghd of S. If for nonreal zeN

we have (1) \\S(z)/E(S)H\\ ^M and for nonreal zeN we have (2)

\\R(z)/E(S')H\\ ^ m/\\ V\\ with m < 1 then the intersection of S with

the singular spectrum of P is empty.

Proof. (1) above implies t h a t \\E{S)S{z)\\ = \\S(z)E(S)\\ is bounded

for nonreal zeN. Thus 11 VE(S)S(z) 11 is bounded for nonreal zeN

and the first condition of Lemma 3 is satisfied.

Using hypothesis (2) above we observe

11 VR{z)E(S')l VHW^W VR{z)E{Sf) \ \

tZ\\V\\\\R(z)E(S')\\

= \\V\\\\R{z)IE{Sf)H\\

^ m < 1 .
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Thus (2') of the corollary to Lemma 3 is satisfied.

COROLLARY 1. Let x be a real number, let {x}r be the complement
in the reals of {x}; let B be a nontangential path through x. If the
norm of S(z)/E{x}H is bounded for nonreal zeB and if the norm of
R(z)/E({x}')H is bounded by m/|| F | | for m < 1 and nonreal zeB then
x is not an eigenvalue of P.

COROLLARY 2. If x is an eigenvalue of P then the distance from
x to the spectrum of T, denoted dist (x, o(T)), is not greater than

\W\\.

Proof. Since our conclusion is trivial if xeσ(T), we may assume
xίσ(T) and so dist (x, σ{T)) Φ 0. Since E{{x))H = {0} the first hypo-
thesis of Corollary 1 is certainly satisfied. Because the conclusion of
that corollary is false, it must be that the second hypothesis is not
satisfied, i.e., for every m < 1 and an infinite set of zeB converging
to x we have

||Λ(s)|| = \\R(z)/E({xY)H\\>m/\\V\\.

Thus l/dist(x,σ(T))^\\R(x)\\^m/\\V\\ and the desired conclusion
follows.

Just as Theorem 4 was derived from Lemma 3 we shall also derive
Theorem 5 from Lemma 3.

THEOREM 5. Let B denote the open interval (a — \\V\\, b +
B' denotes the complement of B in the reals. Let N be an u.h.p.
nghd of (α, b). If the norm of S(z)/E(B)H is bounded for all nonreal
z e N then (α, b) has empty intersection with the singular spectrum
of P.

Proof. The norm of S(z)/E(B)H is the same as the norms of
S(z)E(B) and E(B)S(z) for nonreal zeB. Then for Qr = E(B) the
first hypothesis of Lemma 3 follows.

The space E(Br)H reduces T and for xe (α, b) the operator (T —
xI)jE(B')H has an inverse operator with norm bounded by the re-
ciprocal of d = dist 0 , σ(T/E(Bf)H)) which is strictly less than the
reciprocal of | | F | | . It follows that for nonreal z sufficiently close to
x the norm of R(z)/E(B')H is less than or equal to (l/2d) + (1/2| |F| |).
Consequently

\\VR(z)E(B')\\£\\V\\\\R(z)E(B')\\

= \\V\\\\B(z)/E(R)H\\

<L\\V\\(l/2d) + (l/2\\V\\)<l.
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Thus the second hypothesis of Lemma 3 is satisfied and the desired
conclusion follows.

A trivial nodification of the above proof gives the following corollary.

COROLLARY 1. Let m > 1 and let B be a nontangential path
through x. If the norm of S(z)/E((x — m\\ V\\, x + m\\V\\))H is bounded
for all nonreal z e B then x is not an eigenvalue for P.

5* Examples and remarks* Our first objective in this section
is to show how our main theorem on the behavior of the singular
spectrum under finite dimensional perturbations can be applied to solve
many concrete problems. The following theorem is an easy consequence
of Theorem 3 and the classical W—A formula; recall that w(z) denotes
the W—A determinant.

THEOREM 6. Let T and V be self adjoint operators on H with
V finite dimensional. If there is a generating basis for T on H,
say G, and relative to this generating basis for each real number x
there exist positive numbers d(x) and e(x) such that \ w(x + ia) | ^ e(x)
for d(x) > a > 0 then σs(P) is contained in σs{T).

Let H be the space of square integrable "functions" with respect
to Lebesque measure on the closed interval [1, 2]. Let T be the operator
that multiplies by the independent variable, i.e., (Tf)(t) = tf(t). Let V
be < , #!>#! — < , g2yg2 where gx(t) = 1 and g2(t) = t — 3/2 and note that
gι is orthogonal to g2. It is trivial that the set G = {gu g2) is a generat-
ing basis for T on H and we find that {1, 2} = os(T) when it is defined
using G. In order to apply the above result we need to derive some
information about the boundary values of the W—A determinant.

These boundary values can be calculated by using some classical
results summarized in [2]. We calculate the W—A matrix, W(z)f

with respect to the basis {gλ1 g2} and we enumerate the four entries
by moving left to right across the first row and then the second.
These entires are 1 + <R(z)gt, &>, —ζR(z)gu ^2>, <R(z)g2, &>, and 1 —
ζR(z)g2, g2y. These inner products have the following representations
as integrals from 1 to 2,

z)dt

, &> = \(t - 3/2)/(ί - z)dt

- j(ί - 3/2)V(ί - z)dt.
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The second and third integrals can be calculated in terms of the first
and for any xe (1, 2) the limit of ζβ(x + ia)glf g^} as α—*0 is

p. v.\l/(t — x)dt + iπ

where the first integral is a principal value integral. This integral
is easily calculated and it is found to be In [(2 — x)/(x — 1)]. Thus
the boundary values of the W—A determinant exist and they can
be easily calculated. The imaginary part of the limit of w(x + ia)
as a—>0y xe (1, 2), is

(x - 3/2)2τr + (x- 3/2)τr + π .

We find there is no xe(l, 2) such that the above expression equals 0.
Because the essential spectrum is invariant under finite dimensional
perturbations we know that the only spectrum of P that could be
contained in the complement of [1, 2] are isolated eigenvalues of finite
multiplicity. We can apply the classical W—A formula to show that
no such eigenvalues appear. The W—A determinant for real x ί [1, 2]
is found to be w(x) = (1/2 - x)2ln [(2 - x)/(l - x)] + (1/2 - x). The
function w(x)/(l/2 — x) is strictly negative and decreasing in the in-
terval (—oo,l); it is strictly positive and decreasing in the interval
(2, oo).

The only remaining possibility for the perturbed spectral measure,
F('), to fail to be absolutely continuous is if P has either 1 or 2 as
an eigenvalue. This possibility can be easily eliminated by direct
calculation and consequently we have shown that F(') is absolutely
continuous.

Although we are unable to make the above calculations in pro-
found generality, it seems clear that the calculations can be completed
in a large number of problems. Theorems 4 and 5 can be applied in
several situations. By using the inversion formula for finite dimensional
perturbations of the identity operator, which we introduced in the
proof of Theorem 3, we can obtain a representation for the resolvent
S(z) which suffices in many situations. The resolvent for the perturbed
operator can be obtained in some problems related to ordinary dif-
ferential equations.

This leads us to remark that almost every result in this paper
carries over to the case that T is self adjoint and densely defined,
although it is not bounded. This generalization only requires an
occasional remark about the domains of composite operators.

The author wishes to acknowledge his indebtedness to Dr. Marvin
Rosenblum who suggested the singular spectrum as a research topic.
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