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TORSION-FREE AND DIVISIBLE MODULES
OVER MATRIX RINGS

DavipD R. STONE

A shert exact sequence 0 » K —» F'— E — 0 of left modules
over a ring A is l-pure if aK = K n aF for all ac A, and
pure if for any right A-module M, the map MK — MQQF
is injective, A module E is torsion free (Hattori) if its pres-
ence on the right forces 1-purity, and flat if it forces purity.
Similarly, we have on the left the notions of divisibility
(Hattori) and absolute purity. Considering the functor £ — E™
taking A-modules to modules over the matrix ring M,.(A), a
sequence is called n-pure if its image under this functer is
1-pure ; n~torsion-free and n-divisible modules are similarly
defined, It is shown that purity, flatness, and absolute purity,
respectively, are equivalent to the requirement that n-purity,
n-torsion-freeness, and n-divisibility should hold for all #.
n-divisibility and absolute purity are preserved under direct
sums, products and certain inductive limits; n-torsion-freeness
and flatness under direct sums and inductive limits, but not
products. A condition is given guaranteeing that products of
at most a given cardinality preserve n-torsion-freeness. It is
shown that if every left ideal of A is generated by at most n
elements, then n-torsion-freeness is equivalent to flatness,
The behavior of these properties under localization is studied,
and it is shown that if A is locally a domain then the two
notions of purity agree if and only if w. gl. dim. (4) = 1.

A will always denote a ring with identity; all modules will be
unitary and left modules unless otherwise stated. If no confusion can
arise F'Q E will mean F Q, E; similarly for Hom (F, E), Tor,(F, E),
and Ext™(F, E).

1. Matrices. For a positive integer =, let M,(4) denote the ring
of n X n matrices over A (we shall sometimes use B = M,(A) for
convenience of notation) and M,(E) the left M,(A)-module of n X n
matrices over E, where scalar multiplication looks like usual matrix
multiplication. Let e¢; € M,(A) be the matrix having 1 in the (3,7)
position and zeros elsewhere.

When considering E" as a left M,(A)-module, it is convenient to
think of the elements as “column vectors”, so we will denote an #n-
tuple of E" as (x, @, +++, «,), the prime denoting transpose. Note
that M,(E) is a direct sum (as M,(A)-modules) of n copies of E™.
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The well-known theorem of Morita states that the category of
left A-modules is category isomorphic to the category of left M,(A)-
modules by the (exact) functcr EF— E*., (The inverse functor is
M— e, M for M a left M,(A)-module. The A-modules ¢;M, 7 =1,---n,
are all isomorphic and M = (e, M)" by the map x — (e, (e, 2), en(es ),
ceoye4(e, 2)). Also for F a left A-module, £ = ¢,E".) The follow-
ing result is thus obvious.

ProrosiTiON 1.1. E is an injective lsft A-module if and only
of E™ is an injective left M,(A)-module (if arnd only if M,(E) is an
injective left M,(A)-module).

ProrosiTiON 1.2. For E a right A-module and F a lgft A-
module, E™ Qp F'" = EQ, F (as groups). In the situation (,E,, ,F;)
this ts an tsomorphism of (M,(D), M,(C))-bimodules.

Proof. Note that E* ®, F" is generated by the elements of the
form (0, ---,0,2;,0, ++-)® (0, +++, y;, 0, +++0)’ for z;€¢ E, y;e F, and
x; appearing as the ¢™ coordinate, y; as the j*. But

0y v vy @iy vovy 0) R (0yeney Yyy » oy O)
= (0, ++vy @iy vy 0) R €55 (5 0y ==+, 0)
=0 ce0s @iy 00+ 0) e Qs 0, -+, 0)
= (8,4, 0,0, +++,0) @ ¥, 0, +++,0),

where 0;; is the Kronecker delta. Thus the elements (#,0, -+, 0) ®
(,0,-++,0), for xc E, yc F, generate K" QK F".

There is a group homomorphism E* Q; F"— EQ,F such that
(xu Loy * oy xn) ® (yn Yoy =y yn)’ - ZZ‘L=1 T; ® Y. It is CIear from the
above that the inverse of this is the map EQ,F— E™ Qs F™ such
that x®y"_’ (937 0, .-, O)® (y! Oy M ] 0)"

The final assertion follows from the form of the isomorphism.

Since Tor is categorically defined, we have

COROLLARY 1.3. Tori(E", F") = Tori(E, F).
COROLLARY 1.4. w.gl.dim A = w.gl. dim M, (A).

2. Purity. We shall call a short exact sequence

(*) 0 K F E 0

of left A-modules 1-pure if aF K = aK for every ac A; that is, if
and only if A/aAQ K— A/laA@ F is an injection for every ac A.
Also (x) is pure (or K is a pure submodule of F') if for every right
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A-module G, the map GQ K— G F is an injection. (This latter
definition is due to P.M. Cohn [5]. In [19], Warfield uses “ RD-
pure” for our “1-pure”.) Every pure exact sequence is clearly 1-pure.
Note that it is sufficient to consider only finitely generated (presented)
modules G in the definition of pure, since any module is a direct limit
of finitely generated (presented) modules and tensor products com-
mute with direct limits.

For a positive integer m, we say that (x) is m-pure if 0 — K™
— F" - E™— 0 is a 1-pure extension of M,(A)-modules. Note that
this is equivalent to requiring 1-purity of 0— M, (K)— M, (F)—
M, (E)— 0.

PROPOSITION 2.1. If n = m and (x) is n-pure, then (x) is m-pure.

Proof. For ae M, (A), show that aF™(} K™ = a K™ by imbedding
m-tuples in #n-tuples, using the z-purity of (x), and then extracting
the needed m-tuples.

THEOREM 2.2. () ts pure if and only if (x) is n-pure for all n=1.

Proof. First suppose that (x) is pure and let n be a positive in-
teger, G a right M,(A)-module. Then G = M for a right A-module
M. Since (x) is pure, the sequence 0 - MQQ K— M Q F is exact, so
by Proposition 1.2, 0 - M ®, K» — M* K, F* is exact, or equiva-
lently, 0 -G ®; K"— G X, F* is exact. Thus 0 » K*— F*— E*—0
is pure, so l-pure, so (x) is m-pure.

Conversely, we must show that GQ K— G F is an injection
for any finitely presented right A-module G. However, for such a
G there exist free right A-modules F, (on % generators) and F, (on
m generators), with n > m, such that F, > F, — G — 0 is exact. Let
b be the m X n matrix associated with the homomorphism z, and
let M, .(A) be the right M,(4)-module of m x » matrices. Now
F; S F:—G*—0 is exact, Fy = M(A), F? = M, .(4) (as right
M,(A)-modules) and the image of 7 is carried under the isomorphism
to bM,(4), so G* =~ M, . (A)/bM,(A). Let ¢: M, (A)— M,(A) be the
M,(A)-linear injection taking an m X » matrix o« to the n X =
matrix ¢(a) obtained by tacking on n — m rows of zeros. Noting
that the M,(A)-linear map «a: M, (A)/bM,(A) — M,(A)/c (b)M,(A) by
ala + bM,(A)) =¢(a) + ¢(b)M,(A) has an abvious left inverse, we see that
the vertical maps in the following commutative square are injections:

M, .(A)OM.(A) ® K" — M,,.(4)/bM,(4A) K F"
a®ll a®1J{
M.(A)/e (DM, (A) @ K" — M, (A)/c (D) M.(A) Q F" .
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The n-purity of (x) yields the injectivity of the lower map and
thus of the upper map. Hence G*"Q K" — G"® F" is an injection,
so GR K— G F is an injection.

COROLLARY 2.3. (Cohn’s criterion for purity.) K is pure in F if
and only if whenever a;;€ A, y;eF,x,eK (3,5 =1,:+-+,n) and
X = D i Y; for each 1, then there are z;€e K (j =1, +++,n) such
that x; = >3-, a;; 2; for each 1.

Note that in order to prove (x) pure it is sufficient, by Proposi-
tion 2.1 and Theorem 2.2, to prove that (x) is n-pure for neJ,
where J is a cofinal subset of the positive integers.

COROLLARY 2.4. For a positive integer m, K is pure in F if
and only if K™ 1is pure in F™; i.e., (x) s pure if and only if
0—-K"—F"— E™—0 is pure.

Proof. The necessity was shown in the above proof. For the
sufficiency, note that M, (M, (A)) = M,,.(A) (as rings) and (E™)" = E™" as
modules over this ring. Now apply the theorem and the above remark.

That is, purity of an A-submodule is equivalent to purity of the
equivalent M,(A)-submodule. We shall see that the same cannot be
said of 1-purity.

This corollary also says that if 0 — K™ — F™— E™— 0 is pure
for some m =1, it is pure for every m = 1.

For a group G, let M(G) denote the set of infinite matrices over
G which are eventually zero except for a constant down the diagonal.
Then M(A) is a ring and M(F) an M(A)-module.

For N the set of positive integers, let B be the left M(A)-
module of families (x,),.y from E with finite support. Note that if
ac M(A), there is an ne N, a matrix (a;;) € M,(A), and an element
cec A such that

where C is the infinite diagonal matrix C = diag (¢, ¢, ¢, +++).

COROLLARY 2.5. (x) 4s pure if and only if 0— M(K)— M(F)
— M(E) — 0 (respectively 0 - K —- F® — EF" () is a 1-pure
extension of M (A)-modules.

A left A-module P is said to be RD-projective (pure-projective)
if for any l-pure (pure) exact sequence (x) of left A-modules, the
induced map Hom (P, F') — Hom (P, E) is a surjection. Every RD-
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projective module is pure-projective. = Warfield has shown in [19]
(where he defines the notion) that a module is RD-projective if and
only if it is a direct summand of a direct sum of cyclically presented
modules (after Kaplansky [14], we shall call an A-module cyclically
presented if it is of the form A/Aa for some ae A), and that a
module is pure-projective if and only if it is a summand of a direct
sum of finitely presented modules. In particular, any finitely present-
ed module is pure-projective. The following result was suggested by
Warfield.

PRrROPOSITION 2.6. For a ring A, the following conditions are
equivalent.

(a) Every l-pure extension (x) of left A-modules is pure.

(b) Ewvery finitely presented left A-module is a summand of a
direct sum of cyclically presented modules.

(¢) Ewvery finitely presented loft A-module is RD-projective.

(d) Ewvery pure-projective left A-module is RD-projective.

(a’) Every l-pure extemsion (x) of right A-modules is pure.

(b") Every finitely presented right A-module is a summand of a
direct sum of cyclically presented modules.

(¢') Every finitely presented right A-module is RD-projective.

(d") Every pure-projective right A-module is RD-projective.

Proof. By the remarks above, (b) <= (c), (d) = (¢), (b') = (c¢’) and
(d) = (¢’). Clearly (a) = (d) and (@") = (d').

To prove that (b’) = (a), we must show that if () is a 1l-pure
extension of left A-modules and H a finitely presented right A-module,
then 0 - HR K— HQ F' is exact. Butby ('), HOL =G =@, A/a;A,
for a;c A, I some index set. Then 0— A/a,AQ K— Ala,AQQF is
exact for each 7¢I by hypothesis, so 0 — P (4/a;A QR K) — D (4/a; A
RE),or 0-GRK—-GRF, is exact. That is, 0 (HPL)RXR K
— (HP L) R F is exact, so the desired conclusion follows. Similarly,
(b) = (@").

For example, Warfield has shown in [19] that if A is a valua-
tion ring then condition (b) is satisfied. This leads us to localization.

If S is a multiplicatively closed subset of the center of A (with
0¢S,1e8), let St A denote the ring of fractions of A having ele-
ments of S as denominators and S—FE the S—*A4-module of fractions
of E. (In particular, if S is the complement of a maximal ideal _#
of A we employ the usual notation: S—*4 =A , and S'E =FE ,.)
Since the center of A is also the center of M,(A4), we can form the
ring of fractions S—*M,(4). It is easy to check that the map (a;;)/s —
(ai;/s) from S—* M, (A) to M,(S—A) is a ring isomorphism. Then S—'E"
~ (ST'E)" as modules over this ring.
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LEMMA 2.7. If S is a multiplicative subset of the center of A
and (x) is an n-pure extension of left A-modules, then 0 — S K —
S—'F — S—'E— 0 is an n-pure extension of left S—*A-modules.

Proof. This follows immediately from the definition for » =1;
then use the above remarks.

PrROPOSITION 2.8. Let A be a commutative ring. Then (x) is
1-pure (pure) if and only if 0—-K ,—F _,—FE _,—0 is a l-pure
(pure) extension of A_,~modules for every maximal ideal _#Z of A.

Proof. Let _# be a maximal ideal. If (x) is 1-pure, then 0 —
K,—FKE,—F_,—0is l-pure by the lemma, with S=4—_#. And
if (x) is pure, then it is wm-pure for every » =1, so again by the
lemma, 0—- K ,—F ,— E ,— 0 is n-pure for every n = 1 and thus
pure by Theorem 2.2.

The proofs of sufficiency follow easily, since G Q K— G F'is an
injection if and only if (G® K)_, — (G ® F)_, is an injection for every
# and since S~ commutes with tensor products.

Hence if 4 is commutative, every l-pure extension of A-modules
is pure if and only if for every maximal ideal _#, every l-pure ex-
tension of A_,-modules is pure. (For the demonstration of this, recall
that if C isan A_,-module then C can also be considered an A-module
and C_, = C as A_,-modules.) Thus when investigating the equiva-
lence of 1-pure and pure, one may assume that A4 is local.

COROLLARY 2.9. If A 1is commutative and w.gl. dim. (4) <1,
then any l-pure extension of A-modulss is pure.

Proof. Endo has shown in [7] that w. gl. dim.(4) =<1 if and
only if each A_, is a valuation ring.

Warfield has shown in [19] that the converse is true if A4 is a
commutative integral domain.

3. Torsion-free and flat modules. For ac 4, let .(a) denote
the right annihilator ideal of @ in A. After Hattori [11] we say that
a left A-module E is torsion-free if whenever ac A4, xe E and ax =0,
then ze (o) E. That is, E is torsion-free if whenever az = 0 we can
write @ = 37, b; ¥; with each y, ¢ F, b,e A, and ab; = 0. This defini-
tion agrees with the usual one if 4 is an integral domain, for in this
case ,(a) = 0. Hattori obtained the following characterization [11].

ProposiTION 3.1. E is torsion-free 1f and only if Tor, (A/aA, E)
= 0 for every ac A.
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Thus the direct sum of a family of A-modules is torsion-free if
and only if each is torsion-free. Any free module, and even any flat
module, is torsion-free. Note that E is a torsion-free A-module if
and only if E" is a torsion-free A-module. We use the preceding
proposition to extend another Hattori result.

ProprosITION 3.2. For a left A-module E, the following are
equivalent.

(a) E s torsiton-free.

(b) There exists a 1-pure extension (x) of left A-modules with F
torsion-free.

(¢c) Every exact sequence (x) is 1-pure.

Proof. (c) = (b) since there always exists an exact sequence (x)
with F free. Consider the above proposition and the exact sequence

Tor, (A/aA, F) — Tor, (A/aA, E) — AlaAQ K— AlaAQ F for the
implications (a) = (¢) and (b) = (a).

ExampLE. If n and m are positive integers, then £ = Z/mZ can
be made into a module over Z/mnZ. Then E is torsion-free if and
only if m and n are relatively prime.

We shall call E n-torsion-free if E™ is a torsion-free M,(A)-
module. Note that a free module is n-torsion-free for all » = 1 and
that the direct sum of a family of A-modules is n-torsion-free if and
only if each is m-torsion-free. We obtain an easily-proven result
analogous to the one above.

ProrosiTiON 3.3. For a left A-module E, the following are
equivalent.

(a) FE s n-torston-free.

(b) There exists an nm-pure extension (x) with F n-torsion-free.

(¢) Ewvery exact sequence 0 — K'— F’'— E"— 0 of left M,(A)-
modules 1s 1-pure.

(d) Every exact sequence () is n-pure.

Recalling that if » = m then an n-pure extension is m-pure, we
have

COROLLARY 3.4. If m=m, an mn-torsion-free module is m-
torsion-free.

Another similar well-known result follows from the definitions of
flat and pure.
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PROPOSITION 3.5. For a left A-module E, the following are
equivalent.

(a) FE is flat.

(b) There exists a pure extension (x) with F flat.

(¢) Ewery exact sequence (x) is pure.

COROLLARY 3.6. FE is a flat A-module if and only if E™ is a
Aat M,(A)-module.

Proof. Choose (x) exact with F' free and recall that (x) is pure
if and only if 0 - K" — F*»— E"— 0 is pure.

COROLLARY 3.7. If F 1is flat and K a submodule, then F/K s
Aat if and only if K is pure in F.

Combining the’ above proposition, Theorem 2.2, and Proposition
3.3, we have

THEOREM 3.8. A module is flat if and only if it is m-torsion-
free for all n = 1.

Restating the definition in terms of elements, we see that E is
n-torsion-free if and only if the following condition is satisfied :

If 2;e £ and a;;€¢6A(i=1,+--,n;5=1,---,m) are such that
S a;%; =0 for each 4, then there are y, € E, b;,e¢ A (j =1---, n;
# =1, «++, m) such that z; = >7.,b,,y, for each 5 and >7_, a;;0;,=0
for each ¢ and u.

Actually we need not require a square scalar matrix; that is, we
could let 2 =1, «+-, rand 5 =1, -..,s for any »,s < n.

Using this and Theorem 3.8, Chase’s criterion for flatness [4,
Proposition 1.2 (c)] is easily derived.

The following proposition is a direct generalization of the fact
that over a principal ideal ring every torsion-free module is flat.

PRrROPOSITION 3.9. If every finitely gemerated right ideal of A 1s
generated by at most n elements, then any mn-torsion-free left A-
module is flat.

Proof. Let E be an n-torsion-free left A-module. To show E
flat, it suffices to show &% Q F— AQ@ E = FE is an injection for .o
any finitely generated right ideal. By hypothesis, &% = a,4 + a,4
+ eee + 0,4, s0 if ze ¥ QFE we can write z = >\, a0, QR x;, for
x;€ E. But if 37 ,ax; =0 there are elements y;e¢ E, a;;€¢ A(i=1,
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«e+n;j =1, ---m) such that o, = >\7., b;;y, for each 7 and 3%, a;b;; =0
for each j. Thus

;%@% = gl‘ “i@(jglbuyf) :jgl (;_lai b)) Qu; =0,
so the map is an injection.

COROLLARY 3.10. If every finitely generated right idesal of A s
generated by at most n elements, then any torsion-free lsft M,(A)-
module is flat.

Proof. If M is a torsion-free left M,(A)-module, then M = E*
for a left A-module E which is by definition n-torsion-free.

By the proposition, E is a flat A-module, so by Corollary 3.6,
E"= M is a flat M,(A)-module.

Considering the “other side” of the tensor product, we have the
following similarly proven result.

ProrosiTioN 3.11. If a left A-module is generated by no more
than n elements and is n-torsion-free, then it is flat.

In particular, any cyclic torsion- free module or any torsion-free
principal ideal is flat.

C. U. Jensen [13] has proved the following proposition for the
case where A has no zero divisors, but his proof can be easily adapted
to our more general situation.

ProrosiTION 3.12. A torsion-free left A-module K is flat if and
only if for all (finitely generated) right ideals U and V we have
(UNV)E=UENVE.

We would like to have a similar criterion telling when a torsion-
free module is n-torsion-free, but we have only been able to show
that if E is 2n-torsion-free then (UN V)E = UE VE for Uand V
right ideals which are generated by at most » elements.

ExAMPLE. Let 4 be a commutative integral domain with p and
g two inequivalent primes such that .o = A4, + A, # A. Then v
is torsion-free but not 2-torsion-free. For letting

a=(_0q f)’)eMz(A) and x———(z)e&ﬂ, then az = 0.

The right annihilator of @ in M, (A) consists of all matrices of the

form <gz gﬁ) =<58> <88> for b,cec A. It is easy to see that
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xer(a)

For example, if K is a commutative field and A = K[X, Y]—the
polynomials in two indeterminates with coefficients from K—then X
and Y are inequivalent primes, so the ideal of polynomials with no
constant term is torsion-free but not 2-torsion-free.

ExamMpPLE. Let K be a commutative field, K [[X]] the ring of
formal power series with coefficients in K, and let A be the subring
of K [[X]] consisting of all power series without terms of degree 1
(¢f. [3], Chapter VIII, Exercise 10). Then A is a local domain having
maximal ideal the set of power series of order at least two. This
maximal ideal is generated by X?and X3, so if it were 2-torsion-free it
would be flat, hence free (since A is local). Since it is not free, this gives
another example of a torsion-free module which is not 2-torsion-free.

Note that these examples show that we cannot replace “pure”
by “1-pure” in Corollary 2.4.

Unfortunately, we do not yet have an example of a module which
is 2-torsion-free but not 3-torsion-free, so it is conceivable that 2-
torsion-free may be equivalent to flat.

If f: A— C is a homomorphism of rings and E a left C-module,
then C and E can be made into left A-modules. If C is an n-torsion
free A-module and E an n-torsion-free C-module, then FE is an n-
torsion-free A-module. As is shown by the following example,
however, the converse is not true, even for the specialized case where
n =1,C = M,(4), and f: A— M,(A) is the canonical imbedding.

ExAmPLE. Let Z be the ring of integers, let » and ¢ be two
inequivalent primes of Z and let .o~ be the principal left ideal of

M,(Z) generated by a = (0p g) Let E = MyZ)/.>. Then E is

torsion-free (hence flat) as a Z-module but not as an M,(Z)-module.

Localization. If S is a multiplicative subset of the center of A
and E a torsion-free left A-module, then S—FE is a torsion-free left
S—*A-module. Thus, since M,(—) and E" commute with S, if E
is m-torsion-free (flat) so is S—*E. We want to show the “converse”.
First we need some notation and preliminaries.

Let A be commutative, let B = M,(4), C =S4, and D =
S—M,(A). Recall [2] that if E and F are A-modules then S—(E &, F)
= S'EQ,S~'F.

LEMMA 38.13. If &7 1s an tideal of A, then
S—(Tort (A7, E)) = Tor{ (S—*A/S™* &7, ST'E) .
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Proof. We have the exact sequence 0 — &% — 4 — A/ — 0
S0 we obtain exact sequences

0— Torf(S—*A4/S', S7E) — S~ Q; S—*E — S—'E
and

0 — S (Tor{(4/.%7, E)) — S ®, E) —> S—'E.

LeEmMMA 8.14. If F is a right M,(A)-module, E a left M,(A)-
module, then S™(F Rz E)= S'F R, S E as S—*A-modulss. (Note
that on the left we are considering SC A, and on the right, SC

Proof. The S—*A-linear map S—'F ®, S™'E — S~ (F Q5 E) taking
z/s @ y/t — x Q y/st has as inverse the map z &® y/s — 1/s (x/1 & y/1).

LemMmA 3.15. If &7 is a right ideal of M,(A) and E a left
M,(A)-module, then
S—(Tor? (M, (A)/.7, E)) = Tor? (S—*M,(A)/S~* 7, ST'E).

Proof. Similar to the proof of Lemma 3.13, but use Lemma 3.14.

THEOREM 3.16. Let A be a commutative ring and E an A-module.
Then E is n-torsion-free if and only if K, is an n-torsion-free
A_,~module for every maximal ideal _# of A.

Proof. Only the sufficiency requires proof. First let n=1. Let
ac A, let _# be a maximal ideal of 4 and S = A-_#. Then

S-* (Tori (A/aA, E)) = Tor{~(A_,/aA_,, E ,) by Lemma 3.13; if
E , is assumed torsion-free this last group equals zero. Letting _#
range through the set of maximal ideals A, Tor# (A/ad, E) =0, so
FE is torsion-free. For n >1 the proof is the same but uses Lemma
3.15.

COROLLARY 3.17. E s flat if and only if E , is flat for every
.

Hence every torsion-free A-module is flat if and only if for every
maximal ideal _#, every torsion-free A ,-module is flat.

If A is commutative and w.gl.dim. A <1, we have shown that
the notions of 1-pure and pure coincide, so by Proposition 3.2 and Pro-
position 3.5, the notions of torsion-free and flat also coincide. The
converse is not true, for if A = Z/4Z then every torsion-free A-module
is flat, but w.gl.dim A = . (Perhaps torsion-free agrees with flat
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if and only if finitistic w.gl.dim. 4 < 1.) For an integral domain A,
1-pure coincides with pure if and only if torsion-free coincides with
flat if and only if w.gl.dim. A <1 (i.e., 4 is Prufer). We have the
following slightly stronger result. Recall first that a ring is said to
be l2ft PP (PF) if every principal left ideal is projective (flat).

ProrosiTiON 8.18. If A is a commutative PF ring, then w.gl.
dim A <1 if and only if every torsion-free A-module is flat.

Proof. We need only show the sufficiency. Fieldhouse has shown
[10] that A is PF if and only if A , is an integral domain for each
maximal ideal _#. So if torsion-free agrees with flat over 4, the same
is true over A_,, which must thus be a Prufer ring. Since a local
Prufer domain is a valuation ring, we have w.gl.dim. A < 1.

Rephrasing this result: w.gl.dim. 4 <1 if and only if A is PF
and torsion-free agrees with flat.

Inductive limits. Let I be a directed set and let (4;, @;) be an
inductive system of rings. For each 7¢I, let E; be a left A;-module
such that (&;, f;;) is an inductive system of modules and such that
if 1 <j,m€ B, a;€ A;, then fj;(a; x;) = @;;(a;) f5:(x;). Then E=1lim_, E;
can be made into a left module over A = lim, A; (see [1]). Let f;: E;
— FE and @,: A;,— A denote the canonical maps. Note that if n =1
then lim_ M, (4;) = M,(lim_, 4;) as rings and lim_ E? = (lim_ F))" as
modules over this ring.

THEOREM 3.19. If each E, is an n-torsion-free A;-module, then
E is an n-torsion-free A-module.

Proof. By the above remark, it suffices to prove the theorem for
n=1. Let acA and let keI be such that @,(a;) = a for some
a,cA,. Let J={iel|i=k}. Then J is cofinal in I so inductive
limits over J are the same as over I. There is a family (a;);.; such
that 9,(a;) = a; if 1<j and @;(a;) = a for every ¢eJ. Then it is
easy to show that o lim, A; =lim_a; 4; as A-modules and hence
(since tensor products commute with inductive limits)

Tor{ (A/aA, E) = lim_, Torf (4;/a;A;, E;). Since each A; is as-
sumed to be torsion-free over A4;, Tor{ (4/aA, E) =1lim.0 =0, so F
is torsion-free.

An interesting example of this is obtained by fixing A and E
and taking the inductive limit over the positive integers: M, (A) =
lim., M,(A) and M, (E) = lim_, E*, where the maps M, (A) — M,(A) and
E*— E™, defined if and only if m is a multiple of », say m = np,
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are the inbeddings B — M,(B) by b — diag (b, b, --+, b) and G — G* by
x— (x, &, -+, x)’. Note that since M, commutes with M, and inductive
limits, it also commutes with M. That is,

M, (M, (A)) = M,(A) and (E°)" = E°.

Proposition 3.20. For a left A-module E, the following are
equivalent.

(@) E is flat.

(b) E* is a torsion-free M,(A)-module.

() E° is a flat M, (A)-module.

Proof. (a)=(b). If E is flat then E is n-torsion-free for each
n =1 or E™ is torsion-free over M,(A). Thus(b) follows from the
preceding theorem.

(b) = (¢). Since (E*)"= E*, if E° is torsion-free it is n-torsion-free
for any n = 1, hence flat.

(b) = (a). We show E flat by showing that linear relations in F
arise from linear relations in A [4, Proposition 2.3 (b)]. Suppose a; € A4,
veE@=1,---,n) and >, a;2; =0. Let x = (%, Xy +++,2,) € E"
and let a e M,(A) be the matrix having a, a, +-+, a, across the first
row and zeros elsewhere. Then ax =0 in E*. Map a to M,(4) and
x to E°, use the fact that E“ is torsion-free and obtain elements
from E and A which yield the desired linear relations.

Recall the definitions of M(A4), M(E) and E*. It can be simi-
larly shown that E is flat (over A) if and only if M (E) (respectively
E™) is torsion-free (over M(A)).

Direct products. Although arbitrary direct sums of torsion-free
modules are torsion-free, this is not true of direct products, as is
shown by the following example.

ExamMpPLE. Let K be a commutative field and V a vector space
over K with a countably infinite base. Let A be the ring K x V
with addition componentwise and multiplication defined by (a,x) -
(b, ¥) = (ab, ay + bx) for a,be K and z,yc V. Note that as an ideal
of A, V cannot be finitely generated, and that if x € V the annihilator
of 2 in A is V. Then it is easy to show that the direct product of
a countably infinite number of copies of A is not a torsion-free A-
module.

Hattori has shown [11] that for a ring A, arbitrary products of
torsion-free left A-modules are torsion-free if and only if ,(a) is a
finitely generated right ideal for every ae A. Our next proposition
is a refinement of this result. First however, we make a definition.
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Let ¢ be an infinite cardinal number. A right ideal .o~ of A4 is said
to have property (F,{) if for any right ideal V C .o~ which is
generated by a set of cardinality at most { there is a finitely gener-
ated right ideal C such that V CCC .»7. Note that .o~ has pro-
perty (F, () for every infinite cardinal { if and only if .7 is finitely

generated.

PROPOSITION 3.21. Let { be an wnfinite cardinal and I a set of
cardinality {; for each 1€l lst A; equal A considered as a left
module over itself. Then the following are equivalent.

(@) Tlie: A; is a torsion-free left A-module.

(o) Tl E; is a torsion-free loft A-module for any family
(E,);.; of torsion-free left A-modules.

(¢) .(a) has property (F, () for every ac A.

Proof. It is obvious that (b) implies (a), and the proof that (a)
implies (¢) is straightforward. To show that (c) implies (b), let
(E);c; be a family of torsion-free left A-modules and suppose e A4,
()ie; € I1E; are such that a (x);.; = 0. Then for each 1, aw; = 0, so
there is an integer m; and elements

bacr(@), Y€ B (w=1,--+,m;) such that @, = 30, b,; v, .
Let V be the right ideal of A generated by the set
{bm‘?’eI! u =1, "°,m¢} .

which has cardinality at most {. Since V C.(a), which is assumed
£o have property (F, ), V must be contained in a finitely generated

ideal C = b,A + -+ + b, A, with CC.(a). Hence there exist ¢,;;c 4
Su(‘,h that bm = 2;‘”:161'07&3" SO (xi)iel = ;'nzlbj (Z;nél Cuijyui)iej- Since each

b;c,(a), II E; is torsion-free.
A similar result holds for n-torsion-free modules: {-size products

of m-torsion-free A-modules are mn-torsion-free if and only if ,(a)

satisfies property (F, () for every a in M,(A).
It can also be shown, using a diagonalization argument similar

to Hattori’s [11, Proposition 8], that arbitrary products of n-torsion-
free left A-modules are n-torsion-free if and only if ,(a) is a finitely
generated right ideal of M,(A) for every a in M,(A).

EXAMPLE. We conclude this section with an example of a ring
in which every .(a) has property (F, ®) but not all ,(a) are finitely
generated, where ® is the cardinality of Z. Hence over this ring
countable products of torsion-free modules are torsion-free.

Let I be an uncountably infinite set and for each ie I let K, be
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a (commutative field. Let V be the ideal of [I;.,K; consisting of
families with at most denumerable support. Let A be the ring Z x V,
with multiplication

{n, b) + (m, ¢) = (nm, nc + mb + be) for n,me Z,b,ceV,

and
let E=A/V.

Now consider the ring C = 4 x E with multiplication
(agye+ V) - (b,d+ V)= (ab,ad +¢cb + V) for a,b,¢c,dc A .

C is a commutative ring with identity which satisfies the above claim.
Since we have two rings involved, we use the notation ,,(a) (respect-
ively ,;(a)) to denote the annihilator ideal of ¢ in A (respectively in
C). Note that if a e A then ,,(a) is a principal ideal. It then follows
that if ae A-V or be V then ,,(a,b + V) is principal, and that if
acV and be A-V then ,;(a,b0+ V)= ,(a,1 + V)=V, x E where
V.=, V. The ideal V, x E is not finitely generated but it
does satisfy property (F, w).

4. Divisible and absolutely pure modules. For ae A4, let l(a)
denote the left annihilator ideal of a in A. In the same paper already
referred to [11], Hattori has defined a left A-module K to be divisible
if whenever ac A,xec E and l(a)x =0, then xcaK. That is, K is
divisible if and only if ¢K = {re K|l (a) CAnn,(x)}. Hattori has
also noted that K is divisible if and only if Ext'(4/Aa, K) =0 for
every ac A. Thus every injective module is divisible and direct sums
and products of divisible modules are divisible. Dual to the results of
the previous section, we have the following definitions and propositions.

PRrOPOSITION 4.1. For a left A-module K, the following are
equivalent.

(a) K 1is divisible.

(b) Ewvery exact extension (x) is l-pure.

(c) There exists a l-pure extension (x) with F divisible.

Let I(K) denote the injective envelope of K.

COROLLARY 4. 2. K 1is divistble of and only if
0—- K—I(K)— E—0 s 1-pure.

We shall say that K is n-divisible if K™ is a divisible M, (A)-
module. Since K injective implies K injective, hence divisible, an
injective module is n-divisible for every » = 1. Since



250 DAVID R. STONE

@ie] K;n = (@iel Kt)'n. and HfleI K;’L = (Hiel Ko)n

as M,(A)-modules, P K; (respectively J]K;) is n-divisible if and only
if each K; is n-divisible. Hence K is n-divisible if and only if M, (K)
is a divisible M,(A)-module.

ProposITION 4.3. For a left A-module K, the following are
equivalent.

(@) K 1is n-divisible.

(b) There exists an n-pure extension (x) with F n-divisible.

(¢) Every exact sequence 0 —~ K" — F'— E'— 0 of left M,(A4)-
modules 1s 1-pure.

(d) Ewvery exact sequence (x) is n-pure.

COROLLARY 4.4. If n = m, an n-divisible module s m-divisible.
Proof. Use Proposition 2.1.

COROLLARY 4.5. K 1is n-divisible if and only if
0—-K—I(K)— E—0 ts n-pure.

COROLLARY 4.6. A submodule K of an n-divisible module F' is
n-divisible if and only uf () ts n-pure.

After B. H. Maddox [17 and 18] we call K absolutely pure if it
is a pure submodule of every module in which it can be imbedded.
That is, K is absolutely pure if and only if every extension (x) is
pure. Maddox has shown that any injective module is absolutely
pure and that any pure submodule of an injective module is absolu-
tely pure. Thus, since K is pure in I(K) if and only if K is pure
in I(K)" (which is injective), we see that K is an absolutely pure
A-module if and only if K" is an absolutely pure M,(A4)-module.
Note that an absolutely pure module is divisible.

THEOREM 4.7. A lzft A-module K 1is absolutely pure if and only
if it is n-divisible for every n = 1.

Proof. If K is absolutely pure, then for every n =1, K" is
absolutely pure, hence divisible.

Conversely, if K is m-divisible for every # =1, then 0 —» K —
I(K)— E—0 is n-pure for every n = 1, hence pure (by Theorem 2. 2)
so K is pure in I(K), or K is absolutely pure.

COROLLARY 4. 8. For an A-module K, the following are equiva-
lent.
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(@) K 1is absolutely pure.
(b) There exists a pure extension (x) with F absolutely pure.
(¢) Ewvery extension (x) is pure.

COROLLARY 4.9. If (K))ie; s a family of absolutely pure A-
modules, then [];.; K; is absolutely pure.

Proof. Recall that [[K; is n-divisible if and only if each K is
n~divisible.

COROLLARY 4.10. K s an absolutely pure A-module if and only
if M(K) is a divisible M(A)-module.

We have a partial answer to the question of inductive limits.

ProrosiTiON 4.11. If (K, f;) is an inductive system of modules
over the inductive system of rimngs (4;, D;;), if each f;; is an injection
and if each K, is a divisible A;module, then lim_.K; is divisible
over lim_ A,.

Proof. This follows directly from the definitions.

COROLLARY 4.12. In the same situation, if each K; is n-divisi-
ble, then lim_ K, is n-divisible.

Proof. K" and M,(—) commute with inductive limits.

COROLLARY 4.13. If each K, is absolutely pure, then lim_,K; is
absolutely pure.

Maddox obtained this last result in the case where all 4, = A.
The next proof follows one by Maddox, which followed one by E.
Matlis.

PrROPOSITION 4.14. For a ring A, the following are equivalent.

(a) Ewery quotient module of a divisible left A-module is divisi-
ble.

(b) The sum of two divisible submodules of a left A-module is
divisible.

Proof. If K and H are divisible left A-modules, then so is K@ H,
so K + H is divisible if (a) is assumed. Conversely, assume (b) and
let H be a submodule of a divisible module M. Let L and N be two
copies of M and let P =L @ N let 4 be the diagonal of P and let
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D=4NHG H). With &: P— P/D the cannonical surjection it is
easy to see that P/D = @ (L) + ®(N); since @|L and @|N are injec-
tions, M = @ (L) = @ (N) so by hypothesis P/D is divisible. But

PID=(L&0) + D)/DDH4/D,

so 4/D = M/H is divisible.

(Note that the only property of divisibility used in this proof is
that K @ H is divisible if and only if K and H are divisible. Hence
we can prove the proposition for any property satisfying this con-
dition.)

Hattori has shown in [11] that all quotients of divisible left A-
modules are divisible if and only if A is left PP. So if M,(A) is left
PP then quotients of n-divisible left A-modules are n-divisible. Hence
if M,(A) is left PP for every n = 1 then every quotient module of an
absolutely pure left A-module is absolutely pure. For example, if A is
left semi-hereditary then each M, (A4) is left semi-hereditary and thus
left PP. (Surprisingly, the converse is true; that is, if M, (A4) is left PP
for every n =1 then A is left semi-hereditary. This can be seen by
using [16, Corollary 2.3].) Hence if A is left semi-hereditary, quotients
and finite sums of absolutely pure left A-modules are absolutely pure,
and by one of Maddox’ theorems, every left A-module has a unique
maximal absolutely pure submodule. We do not know whether any
of these imply that A is left semi-hereditary.

A classical theorem says that if A is an integral domain then a
torsion-free module is injective if and only if it is divisible. We con-
clude with an example due to Maddox which shows that this result
does not hold in our more general setting.

ExaMpPLE. For ¢e N, the set of positive integers, let A;=Z/4Z;
then let A = [[;.x 4; and E = P;.y A;. E is an A-module which is
flat and absolutely pure, hence torsion-free and divisible, but E is
not injective.

The author wishes to thank the referee for his comprehensive
report and many valuable suggestions.
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