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EIGENVALUES IN THE BOUNDARY OF
THE NUMERICAL RANGE

ALLAN M. SINCLAIR

We study eigenvalues λ of a continuous linear operator T
on a complex Banach space X that lie in the boundary of the
numerical range of T. We show that the kernel of T — λl
is orthogonal, in the sense of G. Birkhoff, to the range of
T-λl.

M. R. Fortet [5, Th. Ill, p. 32] proves that if T is a continuous
linear operator of norm one on a strictly convex Banach space, then
the kernel of T — I is orthogonal to the range of T — I. Proposition
1 is a generalisation of this result, since the numerical radius is less
than or equal to the norm [2, Th. 4.1]. Proposition 1 is also related
to the theorem of N. Nirschl and H. Schneider that an eigenvalue
in the boundary of the numerical range has ascent one [8, Th. 4,
p. 362] and [2, Th. 10.10].

If T is a continuous linear operator on a Banach space X (over
the complex field), the numerical range V(T, &) of T is the set

{F(T): Fe &?*, \\F\\ = F(I) = 1}

where & is the Banach algebra of all continuous linear operators
on X, &* is the dual Banach space of ^ , and I is the identity
operator on X [2, Chapter 3] and [1, §3]. The spatial numerial
range [2, Definition 9.1] V(T) of T is the set

{f(Tx):feX*,xeX, \\f\\ = \\x\\ = f(x) = 1} .

The numerical range of T is equal to the closed convex hull of the
spatial numerical range, that is, V(T, &) = co V(T) [2, Th. 3.9]
and [1, Th. 6]. The spectrum, and hence the set of eigenvalues of
T, is contained in the numerical range of T [2, Th. 2.6], A linear
subspace Y of X is said to be orthogonal to a linear subspace Z of
X if \\y\\ ^ \\y + z\\ for all y in Y and all z in Z [6] and [4, p. 93].

There is no loss of generality in assuming that 0 is the eigenv-
alue in the boundary of the numerical range, as we assume hence-
forth, because we may achieve this by adding a scalar multiple of
the identity to T.

PROPOSITION 1. Let T be a continuous linear operator on a
complex Banach space X. If 0 is in the boundary of the numerical
range of T, that is, Oeδco V(T), then the kernel of T is orthogonal
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to the range of T. In particular T~ι{0} © {TX)" is closed in X.

Proof. Since 0 is in the boundary of V(T, 3?), a closed convex
subset of the complex plane, we may assume that max {Reλ:λe
V(T, B)} = 0, by multiplying T by a suitable complex number of
modulus 1. Assuming this, we have | | expαΓ| | ^ 1 for all nonnega-
tive real numbers a by [2, Th. 3.4]. If T is one-to-one, the kernel
of T is null and the result follows because 0 is orthogonal to all
vectors. We now assume that T is not one-to-one. Let y be an
element of unit norm in X annihilated by Γ, and let

D(y) = {feX*:\\f\\ = f(y) = 1} -

Then D{y) is a nonempty σ(X*, X)-compact convex subset of X*, by
the Hahn-Banach Theorem and Alaoglu's Theorem, and expαΓ* is a
σ(X*, X)—continuous affine mapping on D{y) for each nonnegative
real a, since ||expα:Γ|| <̂  1 and Ty = 0. Further {exp^T*: a is real,
a ^ 0} is a commutative semigroup on D(y). The Markov-Kakutani
fixed point theorem [4, Th. V. 10.6, p. 456] implies that there is an
/ i n D(y) such that expaT*f= f for all nonnegative real a. The
use of a fixed point theorem was suggested to me by the application
of a generalization of Brouwer's fixed point theorem due to Kakutani
in the proof of Theorem 1 of [3]. Taking the right hand derivative
of exp^T* at a = 0, and applying the equation e x p α Γ * / = / , we
obtain Γ*/= 0. Therefore \\y + z\\ ̂  \f(y + z)\ = f(y) = \\y\\ for all
z in TX, and so the kernel of T is orthognonal to the range of T.
That !Γ~1{O}0(JΓ-3Γ)"~ is closed in X, follows in a routine way from
the result that T^jo} is orthogonal to TX, and hence to {TX)-.
This completes the proof.

REMARKS 2. In general the space Γ"ι{0} φ {TX)~ of Proposition
1 is not equal to X. For example let X be ^[0,1], the space of
continuous complex valued functions on [0,1] with the supremum
norm, let g be a continuous real valued function on [0,1] that is
zero at 0 and positive on (0,1], and let T be the operation of mul-
tiplication by g in X. Then T is a hermitian operator on X [2,
Chapter 2], since \\expitg\\ = 1 for all real t, so that the numerical
range of T is contained in the real line [2, Lemma 5.2]. Further
T-HO} θ {TX)~ = {TX)" is the set of functions in X that vanish at
0.

Proposition 1 gives another proof of the result that an eigenvalue
in the boundary of co V{T) has ascent one [8] and [2, Th. 10.10].
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PROPOSITION 3. Let T be a nonzero continuous linear operator
on a complex Banach space X, and let 0 be in the spectrum of T
and in the boundary of the numerical range of T, that is,

0eσ(T)f]dc6 V(T) .

If TX is closed in X, then 0 is an eigenvalue of T, X = T-'iO} 0 TX,
and 0 is an isolated point of the spectrum of T.

Proof By Proposition 1, T~ι{ϋ] 0 TX is closed in X so that if
it is not equal to X there is a nonzero continuous linear functional
/ on X that is zero on T-̂ O} 0 TX. Let Y° denote the annihilator
in X* of a subset Y of X. Then (TX)° = T*-1^} where T* is the
adjoint of T [9, Th. 4.6-C, p. 226]. Since TX is closed in X which
is complete, T*X* - (T*X*)~ = T^O}0 [9, Problem 7, p. 227]. By
construction / is thus in (T*X*)~ and in T*~ι{0}. Now T* is a con-
tinuous linear operator on X* with 0 in the boundary of the numerical
range of T*. That 0 is in the boundary of the numerical range of
T* follows from the equality V(T*, &(X*)) = V(T, &), which is an
immediate consequence of Theorem 9.4(i) and Corollary 9.6(ii) of [2]
On the space X* the operator T* satisfies the assumptions of Pro-
position 1 so that the intersection of (T*X*)~ and Γ*-1^} is {0} by
Proposition 1. This gives a contradiction as we have previously shown
that /, which is not zero, is in this intersection. Hence X = T~x{0} 0
TX. Since the spectrum of T is contained in the numerical range
of T \2, Th. 2.6], 0 is in the boundary of the spectrum of T. There-
fore TX is not equal to X by [7, Lemma 2.2], and so the kernel of
T is nonnull and 0 is an eigenvalue of T.

Regarded as an operator on the Banach space TX, T is invertible
and so (XI — T) restricted to TX is invertibile for all λ in a neighbor-
hood of 0 in the complex plane. On the space T-^O}, the operator
T has spectrum {0}. Since X = Γ-1^} 0 TX, XI - T is invertibile
on X for all λ in a neighbourhood of 0 but not at 0. This shows
that 0 is an isolated point in the spectrum of T and completes the
proof.

REMARKS 4. If T satisfies the hypotheses of Proposition 1, and
if (T*X*)~ = Γ-^O}0, then part of the proof of Proposition 3 shows
that X = (TX)- 0 T-^O}.

From the assumptions of Proposition 3 it does not follow that
the range of T is orthogonal to the kernel of T. Let Y and Z be
closed linear subspaces of a complex Banach space X such that X =

, Y is orthogonal to Z, and Z is not orthogonal to Y (spaces
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with these properties exists; see [6]). Let E be the projection from
X onto Y annihilating Z. Then the norm of E is one, so that the
eigenvalue 1 of E is in the boundary of the numerical range of E.
Further (1 - E)X = Z is not orthogonal to (I - E)~ι{Q} = Y.

REMARK 5. If we add the hypothesis that the Banach space X
is reflexive, then (T*X*)~ = T~ι{0}° for all continuous linear operators
T on X [9, 14.6, p. 226] so that if 0 is in the boundary of the
numerical range of T, we have X= (TX)~ 0 Tι~ι{ϋ) by Remark 4.
As a corollary to this we have the following result.

Let X be a reflexive complex Banach space, and let T be a
continuous linear operator on X such that 0 is in the boundary of
the numerical range of T. Then 0 is an eigenvalue of T if, and only
if, TX is not dense in X, that is, if and only if 0 is an eigenvalue
of T*.

This follows immediately from the equation X = (TX)-φ T-^O}
which holds for T since X is reflexive.

I am grateful to J. Duncan for a typescript of F. F. BonsalΓs
and his lecture notes on the numerical range [2], and to M. J. Crabb
for a preprint of [3].
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