ON A SIX DIMENSIONAL PROJECTIVE REPRESENTATION OF THE HALLJANKO GROUP

J. H. Lindsey, II

Abstract

It is shown that there is a unique group G with property I : G is a central extension of Z_{2} by the Hall-Janko group of order 604,800 in which a 7 -Sylow subgroup S_{7} is normalized by an element of order four. Also, G has a six-dimensional complex representation X. The proof is rather round-about. First, it is shown that there are at most two six-dimensional linear groups $X(G)$ projectively representing the Hall-Janko group, and all such linear groups are algebraically conjugate. The character table and generators found by M. Hall for $G / Z(G)$ are used. It is shown that a linear group L over $G F(9)$ coming from the one candidate for a six dimensional group projectively representing the Hall-Janko group actually satisfies property I. This is done by showing that L has a permutation representation on 100 three-dimensional subspaces of $(G F(9))^{6}$ and the image is permutation isomorphic to Hall's permutation group. Hall later studied the geometry of these subspaces. In the course of constructing the character table of any group G with property I, G was found to have a sixdimensional representation. Once this representation is known to exist, it is possible to give two easier ways of constructing generators. The faithful characters on G are given in the appendix with only one representative of each pair of algebraically conjugate characters.

This paper fills a gap in [11] concerning a six-dimensional representation X with character χ of a central extension G by the Hall-Janko group. In $\S 3, G$ is the subgroup of $G L(6,9)$ coming from $X(G)$ in $\S 2$ taken modulo 3 . In $\S 4, G$ is any group with property I. In all cases, G turns out to be the same group. By [11], § $9, Z=Z(G)$ has order 2 and $Q(\chi(G))=Q(\sqrt{5})$. We let χ^{\prime} be the algebraic conjugate of χ and let $Z=\langle-1\rangle$. The characters ψ_{i} and ρ_{i} are the characters from character tables for the Hall-Janko group and $U_{3}(3)$ respectively, in [9]. For p a prime, we let S_{p} be a p-Sylow subgroup of G and let $S_{7}=\left\langle\pi_{7}\right\rangle$. By [11], § $9,(7-1) / t_{7}=6=$ $\left[N\left(S_{7}\right): C\left(S_{7}\right)\right]$ and $C\left(S_{7}\right)=S_{7} Z$. We let β, ε, and w be primitive seventh, fifth, and third roots of unity, respectively. Also, i is an element of order four in $G F(9)$ and $\tilde{\alpha}$ means α taken modulo a prime ideal dividing 3.

Conway, [6, p. 86], independently discovered this projective representation from the existence of the Hall-Janko group as a section
in Conway's group.
2. Construction of the matrix group $\chi(G)$. Using the notation of [9], $\chi \chi^{\prime}=\psi_{1}$ and $\chi \chi=\psi_{0}+\psi_{14}+$ either ψ_{16} or ψ_{17}. Let a, b, c, and t correspond to those elements in [9]. We may let $X(a)=$ $\operatorname{diag}\left(\beta, \beta^{2}, \beta^{4}, \beta^{-1}, \beta^{-2}, \beta^{-4}\right), \quad X(c)=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right) \oplus\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$, and $X(t)=$ $\left(\begin{array}{rr}0 & +I_{3} \\ -I_{3} & 0\end{array}\right)$. Since $c^{-1} a c=a^{4}$, this corresponds to multiplying the permutations in [9] from right to left. The permutation representation of G on 100 letters corresponds to $\psi_{0}+\psi_{1}+\psi_{7}$. The permutation representation of H on 36 letters corresponds to $\rho_{0}+\rho_{6}+\rho_{7}+\rho_{9}$, where $H \approx U_{3}(3)$, [9]. We may write $X(b)=\sum A_{e, f, g} X\left(t^{g}\right) X\left(c^{f}\right) X\left(a^{e}\right)$ with Σ over $0 \leqq-e \leqq 6,0 \leqq-f \leqq 2,-1 \leqq g \leqq 0$. We may also insist that $\sum_{0 \leqq e \leqq 6} A_{-e, f, g}=0$ for all f and g. For $0 \leqq F \leqq 6,0 \leqq F \leqq 2$, and $0 \leqq G \leqq 1 ; ~ \operatorname{trace} X\left(a^{E} c^{F} t^{G} b\right)=\operatorname{trace}\left[X\left(a^{E}\right) \sum_{0 \leqq e \leqq 6} A_{-e,-F,-G} X\left(a^{e}\right)\right]=$ $7 A_{-E,-F,-G}-\sum_{0 \leqq e \leqq 6} A_{-e,-F,-G}=7 A_{-E,-F,-G}$.

By [11], $\S 11$, a central extension of Z_{2} by $U_{3}(3)$ is trivial and G contains a subgroup $H \approx U_{3}(3)$ in which we take a, b, and c. If $G=0$, then $a^{F} c^{F} t^{G} b \in H$ and its cycle structure (using the permutation representation giving $\rho_{0}+\rho_{6}+\rho_{7}+\rho_{9}$) will determine $x\left(a^{E} c^{F} t^{G} b\right)=$ trace $\left[X\left(a^{E} c^{F} t^{G} b\right)\right]=7 A_{-E,-F,-G}$. If $G=1$, then the cycle structure (using the permutation representation giving $\psi_{0}+\dot{\psi}_{1}+\psi_{7}$) determines the class of $a^{E} c^{F} t^{G} b$ within permutation of π_{1} and π_{2}, and within a sign. Now if " t " is the element of order 3 in H with $\mid \mathrm{C}_{H}($ (" t ") $\mid=$ 108, then $27 \| C_{G}($ " t ") | and " t " corresponds to T, so $X(T)$ has eigenvalues $w, w, w, \bar{w}, \bar{w}, \bar{w}$. As $C(T) / T \approx A_{6}$ and T is conjugate to T^{-1}, $X \mid C(T)$ has two 3 -dimensional constituents representing A_{6} projectively. Allowing confusion of χ with $\chi^{\prime}, \chi(\pi)=1+\varepsilon^{2}+\varepsilon^{-2}+\varepsilon^{2}+\varepsilon^{-2}+1$ or $1+\varepsilon+\varepsilon^{-1}+1+\varepsilon^{2}+\varepsilon^{-2}$. It must be the former since $\chi(\pi) \chi(\pi)^{\prime}=$ $\psi_{1}(\pi)=-4$ where $\varepsilon^{\prime}=\varepsilon^{2}$. Therefore, $\chi(\pi)=2 \theta_{i}$ and $\chi(\pi T)=-\theta_{i}=$ $(+1 \pm \sqrt{5}) / 2$.

By [9], $C\left(T_{1}\right) /\left\langle-T_{1}\right\rangle \approx A_{4}$. As $X \mid C\left(T_{1}\right)$ has some two dimensional constituent with kernel contained in $\left\langle T_{1}\right\rangle$, by [1], $C\left(T_{1}\right) /\left\langle T_{1}\right\rangle$ is isomorphic to $S L(2,3)$. Therefore, J_{1} is conjugate to $-J_{1}$ in $C\left(T_{1}\right)$ and $T_{1} J_{1}$ is conjugate to $-T_{1} J_{1}$. Similarly, $C(\pi) /\langle\pi\rangle$ is the nontrivial central extension of Z_{2} by A_{5} and πJ_{1} is conjugate to $-\pi J_{1}$. Therefore, all faithful, irreducible characters of G vanish on $J_{1}, T_{1} J_{1}, \pi J_{1}$, and $\pi^{2} J_{1}$. As J_{1} with eigenvalues $i, i, i,-i,-i,-i$ is represented faithfully in each of the 2-dimensional constituents of $C(\pi) \approx$ $\langle\pi\rangle \times S L(2,5)$, there is an element $\pi_{5} \in C(\pi)$ of order 5 with $\chi\left(\pi_{5}\right)$ or $\chi\left(\pi_{5}\right)^{\prime}=-3 \theta_{1}$ or $-2 \theta_{1}-\theta_{2}$. Clearly, π_{5} is not conjugate to π, and $\pi_{5} \sim \pi_{1}$ or π_{1}^{2}. Since $1=\dot{\psi}_{1}\left(\pi_{1}\right)=\chi\left(\pi_{1}\right) \chi\left(\pi_{1}\right)^{\prime}, \chi\left(\pi_{1}\right) \neq-3 \theta_{i} \quad$ Now $\chi\left(\pi_{1} J\right)^{2}=$ $1+\psi_{14}\left(\pi_{1} J\right)+\psi_{16 \text { or } 17}\left(\pi_{1} J\right)=1+\theta_{i}$ and $\chi\left(\pi_{1} J\right)= \pm \theta_{i}$. Letting $\delta_{i}= \pm 1$
and $\theta_{i}=\theta_{1 \text { or } 2}$, and using the permutations and character tables in [9]: $b \in \operatorname{cl}(K)$ (write $b \sim K$), $7 A_{0,0,0}=0 ; a b \sim K, 7 A_{-1,0,0}=0 ; a^{2} b \sim K$, $7 A_{-2,0,0}=0 ; \quad a^{3} b \sim c, 7 A_{-3,0,0}=0 ; \quad a^{4} b \sim a, 7 A_{-4,0,0}=-1 ; \quad a^{5} b \sim t b^{ \pm 2}$, $7 A_{-5,0,0}=1 ; a^{6} b \sim c, 7 A_{-6,0,0}=0 ; c b \sim K, 7 A_{0,-1,0}=0 ; a c b \sim a, 7 A_{-1,-1,0}=$ $-1 ; a^{2} c b \sim t b^{ \pm 2}, 7 A_{-2,-1,0}=1 ; a^{3} c b \sim u, 7 A_{-3,-1,0}=2 ; a^{4} c b \sim a, 7 A_{-4,-1,0}=$ $-1 ; a^{5} c b \sim c, 7 A_{-5,-1,0}=0 ; a^{6} c b \sim a, 7 A_{-6,-1,0}=-1 ; c^{2} b \sim K, 7 A_{0,-2,0}=$ $0 ; a c^{2} b \sim t b^{4}, 7 A_{-1,-2,-0}=1 ; a^{2} c^{2} b \sim a, 7 A_{-2,-2,0}=-1 ; a^{3} c^{2} b \sim u, 7 A_{-3,-2,0}=$ 2; $a^{4} c^{2} b \sim a, 7 A_{-4,-2,0}=-1 ; a^{5} c^{2} b \sim K, 7 A_{-5,-2,0}=0 ; a^{6} c^{2} b \sim a, 7 A_{-6,-2,0}=$ $-1 ; t b \sim \pm \pi T, \pm \pi^{2} T, \quad 7 A_{0,0,-1}=\delta_{-1} \theta_{-1} ; \quad \pm a t b \sim T_{1} J_{1}, \quad 7 A_{-1,0,-1}=0 ;$ $a^{2} t b \sim \pm T R, \quad 7 A_{-2,0,-1}=\delta_{0} ; a^{3} t b \sim \pm \pi^{i} J_{1}$ (here $i=1$ or 2 will be assumed), $7 A_{-3,0,-1}=0 ; \quad a^{4} t b \sim \pm \pi_{1}^{i} J, 7 A_{-4,0,-1}=\delta_{-2} \theta_{-2} ; \quad a^{5} t b \sim \pm T R$, $7 A_{-5,0,-1}=\delta_{1} ; \quad a^{6} t b \sim \pm a, \quad 7 A_{-6,0,-1}=\delta_{2} ; \quad c t b \sim \pm \pi_{1}^{i} J, \quad 7 A_{0,-1,-1}=\delta_{3} \theta_{0} ;$ $a c t b \sim \pm a, \quad 7 A_{-1,-1,-1}=\delta_{4} ; \quad a^{2} c t b \sim \pm K, \quad 7 A_{-2,-1,-1}=0 ; \quad a^{3} c t b \sim \pi J_{1}$, $7 A_{-3,-1,-1}=0 ; \quad a^{4} c t b \sim \pm a, 7 A_{-4,-1,-1}=\delta_{5} ; a^{5} c t b \sim \pm \pi^{i} T, 7 A_{-5,-1,-1}=$ $\delta_{-3} \theta_{-3} ; a^{6} c t b \sim \pm a, 7 A_{-6,-1,-1}=\delta_{6} ; c^{2} t b \sim \pm \pi^{i} T, 7 A_{0,-2,-1}=\delta_{7} \theta_{3} ; a c^{2} t b \sim$ $\pm R, \quad 7 A_{-1,-2,-1}=2 \delta_{-4} ; \quad a^{2} c^{2} t b \sim \pm \pi^{i} T, \quad 7 A_{-2,-2,-1}=\delta_{9} \theta_{4} ; \quad a^{3} c^{2} t b \sim \pi^{i} J_{1}$, $7 A_{-3,-2,-1}=0 ; \quad a^{4} c^{2} t b \sim \pi^{i} J_{1}, 7 A_{-4,-2,-1}=0 ; \quad a^{5} c^{2} t b \sim \pm \pi_{1}^{i} J, 7 A_{-5,-2,-1}=$ $\delta_{10} \theta_{5} ; a^{6} c^{2} t b \sim \pm \pi_{1}^{i}, 7 A_{-6,-2,-1}=\delta_{-5}\left(1+\theta_{6}\right)$.

Making an arbitrary choice of ε and possibly conjugating by $-I_{3} \oplus I_{3}$ and replacing t by $-t$, we may take $\theta_{-1}=\theta_{1}$ and $\delta_{-1}=-1$. Now $0=\sum_{e} A_{e, 0,-1}$ is rational and $-\theta_{1}+\delta_{-2} \theta_{-2}=0$ or -1 . As there are 3 other terms $-\theta_{1}+\delta_{-2} \theta_{-2}$ is odd, and $\delta_{-2} \theta_{-2}=-\theta_{2}$. Similarly, $\delta_{3} \theta_{0}+\delta_{-3} \theta_{-3}$ is odd, and $\delta_{-3} \theta_{-3}=\delta_{3} \theta_{0}^{\prime}$. In $0=\sum_{e} A_{e,-2,-1}, 2 \delta_{-4}$ and δ_{-5} cannot have the same sign or the 4 other θ_{i} terms could not cancel the ± 3. Therefore, we may let $2 \delta_{-4}=-2 \delta_{8}$ and $\delta_{-5}\left(1+\theta_{6}\right)=\delta_{8}\left(1+\theta_{6}\right)$. There exists a matrix P such that $P^{-1} X(G) P$ is unitary. For all A in $X(N(\alpha)): \quad P^{-1} \bar{A}^{\prime} P=P^{-1} A^{-1} P=\left(P^{-1} A P\right)^{-1}=\overline{\left(P^{-1} A P\right)^{\prime}}=$ $\bar{P}^{\prime} \bar{A}^{\prime}\left(\bar{P}^{\prime}\right)^{-1}$ and $P \bar{P}^{\prime} \bar{A}^{\prime}\left(P \bar{P}^{\prime}\right)^{-1}=\bar{A}^{\prime}$. As $X \mid N(\alpha)$ is irreducible $P \bar{P}^{\prime}=$ αI_{6} for some scalar α. Then for $B \in X(G), B^{-1}=P\left(P^{-1} B P\right)^{-1} P^{-1}=$ $P \overline{\left(P^{-1} B P\right)^{\prime}} P^{-1}=P \bar{P}^{\prime} \bar{B}^{\prime}\left(\bar{P}^{\prime}\right)^{-1} P^{-1}=\alpha I_{6} \bar{B}^{\prime} \alpha^{-1} I_{6}=\bar{B}^{\prime}$. Therefore, $X(G)$ is forced to be unitary when $X(N(a))$ is taken in normal form.

Although the θ_{i} and δ_{i} can be determined uniquely by $X(b)$ being unitary, it is easier to use ρ_{1} taken mod 3. This breaks up into the sum of the 3 -modular representation U obtained from the definition of $U_{3}(3)$ and its algebraic conjugate. We only have to check this for 3-regular elements. Let U and its algebraic conjugate have modular characters θ and θ^{\prime}, respectively. As $\theta(a)$ is in $G F(9)$, $\theta(a)=\beta^{ \pm 1}+\beta^{ \pm 2}+\beta^{ \pm 4}$ where β has order 7 in $G F\left(3^{6}\right)$, and $\theta^{\prime}(\alpha)=$ $-1-\theta(\alpha)$. Let i be in $G F(9)$ with $i^{2}=-1$. As $\operatorname{diag}(-1, i, i)$ is not conjugate to its inverse, it corresponds to b^{2}. Then diag ($1, i,-i$) corresponds to u. These check since $-1+i+i-1-i-i=-2=$ $\rho_{1}\left(b^{2}\right)$ and $1+i-i+1-i+i=2=\rho_{1}(u)$. As $U\left(b^{2}\right)=\operatorname{diag}(-1, i, i)$, $U(b)$ may be taken with eigenvalues $\pm(-i), 1-i, \pm(1-i)$. It
must be -, otherwise, b and b^{2} have identical centralizers. Then $\theta(b)+\theta^{\prime}(b)=0=\rho_{1}(b)$.

In our normal form, $X \mid\langle a, c\rangle$ taken $\bmod 3$ splits into distinct, irreducible, 3 -dimensional subspaces. Therefore, $x_{1}=x_{2}=x_{3}=0$ and $x_{4}=x_{5}=x_{6}=0$ are the unique irreducible, proper subspaces for $X \mid\langle a, c\rangle$ taken $\bmod 3$, and one of these subspaces is invariant for $X \mid H=\langle a, b, c\rangle$ taken $\bmod 3$. In taking $\bmod 3$, the top right or bottom left 3 by 3 block of $X(b)$ vanishes.

Let $i^{2}=-1$ in $G F(9)$, and ' be the automorphism $i \rightarrow-i$ of $G F(9)$. As $\left(\beta+\beta^{2}+\beta^{4}\right)+\left(\beta+\beta^{2}+\beta^{4}\right)^{\prime}=-1$ and $\left(\beta+\beta^{2}+\beta^{4}\right)\left(\beta+\beta^{2}+\beta^{4}\right)^{\prime}=$ $2, \beta+\beta^{2}+\beta^{4} \rightarrow 1 \pm i$ in taking $\bmod 3$. As $\theta_{1}+\theta_{2}=1$ and $\theta_{1} \theta_{2}=-1$, $\theta_{1} \rightarrow-1 \pm i$. Therefore, $\bmod 3$ either $-\theta_{1} \equiv \beta+\beta^{2}+\beta^{4}$ and $-\theta_{2} \equiv$ $\beta^{3}+\beta^{5}+\beta^{6}$ or $-\theta_{2} \equiv \beta+\beta^{2}+\beta^{4}$ and $-\theta_{1} \equiv \beta^{3}+\beta^{5}+\beta^{6}$. The upper right 3 by 3 block of $X(b)$ is obtained from the lower left block by replacing β by β^{-1} and changing signs of all terms. Therefore, if one choice of $-\theta_{1}$ or $-\theta_{2} \equiv \beta+\beta^{2}+\beta^{4}$ makes the lower right vanish, then the other choice makes the upper right vanish and we may assume that the upper right vanishes. In the following, work mod 3 . Then the $(1,4)$ entry of $X(b): \theta_{1}-\delta_{0} \beta^{2}+\theta_{2} \beta^{4}-\delta_{1} \beta^{5}-\delta_{2} \beta^{6} \equiv$ 0 . Suppose $-\theta_{1} \equiv \beta^{3}+\beta^{5}+\beta^{6}$. Then $-\theta_{2} \equiv \beta+\beta^{2}+\beta^{4}$ and

$$
-\beta^{3}+\beta^{5}+\beta^{6}-\beta-\delta_{0} \beta^{2}-\delta_{1} \beta^{5}-\delta_{2} \beta^{6} \equiv 0
$$

impossible, as the coefficients of β and 1 are -1 and 0 . Therefore, $-\theta_{1} \equiv \beta+\beta^{2}+\beta^{4}$ and $-\beta-\beta^{4}+\beta^{2}-1-\beta^{3}-\delta_{0} \beta^{2}-\delta_{1} \beta^{5}-\delta_{2} \beta^{6} \equiv 0$. The coefficient of all β^{i} is -1 , so $\delta_{0}=-1, \delta_{1}=1$, and $\delta_{2}=1$. By the $(1,6)$ entry: $-\delta_{3} \theta_{0}-\delta_{5} \beta^{2}-\delta_{6} \beta^{3}-\delta_{4} \beta^{4}-\delta_{3} \theta_{0}^{\prime} \beta^{6} \equiv 0$. If $-\theta_{0}=$ $-\theta_{1} \equiv \beta+\beta^{2}+\beta^{4}$, then $\delta_{3}\left(\beta+\beta^{5}-\beta^{2}-\beta^{4}\right)-\delta_{5} \beta^{2}-\delta_{6} \beta^{3}-\delta_{4} \beta^{4} \equiv 0$, and the coefficients of 1 and β are 0 and δ_{3}, impossible. Therefore, $-\theta_{0}=-\theta_{2} \equiv \beta^{3}+\beta^{5}+\beta^{6}$ and $\delta_{3}\left(1+\beta+\beta^{5}+\beta^{6}-\beta^{3}\right)-\delta_{5} \beta^{2}-\delta_{6} \beta^{3}-\delta_{4} \beta^{4} \equiv 0$. The coefficient of all β^{i} is δ_{3} and $\delta_{5}=-\delta_{3}, \delta_{6}=\delta_{3}$, and $\delta_{4}=-\delta_{3}$.

Letting $X(b)=\left(b_{i j}\right)$, then $\sum b_{i, 3} \bar{b}_{i, 4}=0$. We may perform this calculation in $Q(\sqrt{5})[\beta]$ and collect terms where β has a certain exponent mod 7. The result is (constant) $\left(1+\cdots+\beta^{6}\right)$. The constant can be determined to be 0 by letting $\beta=1$ since $\sum_{e} A_{e, f, g}=0$ and the $b_{i, j}$ become 0. The coefficient of 1 in $49 \sum b_{i, 3} \bar{b}_{i, 4}$ is $-3 \delta_{0}-\theta_{2}+2 \delta_{1}-$ $2 \delta_{2}+2 \delta_{5}+\delta_{3} \theta_{0}^{\prime}-2 \delta_{8}-\delta_{9} \theta_{4}-\delta_{8}\left(1+\theta_{6}\right)=3-\theta_{2}+2-2-2 \delta_{3}+\delta_{3} \theta_{1}-$ $3 \delta_{8}-\delta_{8} \theta_{6}-\delta_{9} \theta_{4}=0$. If $\delta_{3}=1$, then $1-\theta_{2}+\theta_{1}-3 \delta_{8}-\delta_{8} \theta_{6}-\delta_{9} \theta_{4}=0$. The terms other than $-3 \delta_{8}$ must add to ± 3 which is impossible. Therefore, $\delta_{3}=-1$, and $4-3 \delta_{8}-\delta_{8} \theta_{6}-\delta_{9} \theta_{4}=0$. Now $\delta_{8}=1$. Then $1-\delta_{8} \theta_{6}-\delta_{9} \theta_{4}=0, \delta_{9}=1$, and $\theta_{6}^{\prime}=\theta_{4}$. From the coefficient of β in $\sum b_{i, 3} \bar{b}_{i, 4}=0: 0=\theta_{1}+\delta_{0}-\delta_{1}+2 \delta_{2}-2 \delta_{4}+\delta_{3} \theta_{0}^{\prime}-2 \delta_{7} \theta_{3}-2 \delta_{8}+2 \delta_{8}\left(1+\theta_{6}\right)=$ $-2-2 \delta_{7} \theta_{3}+2 \theta_{6}$. Then $\delta_{7}=-1$ and $\theta_{3}=\theta_{6}^{\prime}$. From $0=-\sum_{e} A_{e,-2,-1}=$ $\delta_{7} \theta_{3}-2 \delta_{8}+\delta_{9} \theta_{4}+\delta_{10} \theta_{5}+\delta_{8}\left(1+\theta_{6}\right)=-\theta_{6}^{\prime}-2+\theta_{6}^{\prime}+\delta_{10} \theta_{5}+1+\theta_{6}$, so
$\delta_{10}=1$ and $\theta_{5}=\theta_{6}^{\prime}$. The $b_{1,5}$ entry is $\theta_{6}^{\prime}+2 \beta^{2}-\theta_{6}^{\prime} \beta^{3}-\theta_{6}^{\prime} \beta^{4}-\left(1+\theta_{6}\right) \beta^{5} \equiv 0$. If $\theta_{6}=\theta_{1} \equiv-\beta-\beta^{2}-\beta^{4}$, then the coefficient of 1 is -1 and the coefficient of β is 1 , a contradiction. Therefore, $\theta_{6}=\theta_{2}$ and $X(b)$ is uniquely determined. G, a central extension of Z_{2} by the Hall-Janko group with a representation of degree 6 is unique in the strong representation group sense: If G_{1} and G_{2} are 2 such groups and ϕ is an isomorphism: $G_{1} / Z\left(G_{1}\right) \rightarrow G_{2} / Z\left(G_{2}\right)$, then ϕ lifts to an isomorphism Φ of $G_{1} \rightarrow G_{2}$. In particular, the outer automorphism of $G / Z(G)$ lifts to G.
3. The existence of G satisfying property I. We shall now show that there exists a central extension of Z_{2} by the Hall-Janko group with an element of order 4 in $N\left(S_{7}\right)$. First replace $X(G)$ by $(A \oplus \bar{A}) X(G)(A \oplus \bar{A})^{-1}$ where $A=\left(\begin{array}{ccc}\beta & \beta^{2} & \beta^{4} \\ \beta^{2} & \beta^{4} & \beta \\ \beta^{4} & \beta & \beta^{2}\end{array}\right)$. (Then the representation is written over $Q(\sqrt{-7}, \sqrt{5})$. In fact it may be written over any field $\supseteq Q(\sqrt{5})$ over which $X\left(N\left(\pi_{7}\right)\right)$ can be written. It cannot be written over the reals since the 1-dimensional representation is not a constituent of the symmetric tensors of $X \otimes X$.) Now take $X(G)$ mod 3. (We shall now use G for the image of $\langle X(t), X(b)\rangle$ taken $\bmod 3$ and no longer make assumptions about G, such as G / Z is the Hall-Janko group or the representation of degree 6.) We set $\tilde{\theta}_{1}=$ $-1+i$ and $\overline{-\beta-\beta^{2}-\beta^{4}}=-1+i$. Then identifying elements with their matrices, $t=\widetilde{X(t)}=\left(\begin{array}{cc}0 & E \\ F & 0\end{array}\right)$ in 3 by 3 blocks with $E=$ $\left(\begin{array}{ccc}-1+i & 1-i & -i \\ -i & -1+i & 1-i \\ 1-i & -i & -1+i\end{array}\right)$ and $F=\left(\begin{array}{rrr}1+i & -1-i & -i \\ -i & 1+i & -1-i \\ -1-i & -i & 1+i\end{array}\right)$. Also $b=\left(\begin{array}{ll}N & O \\ Q & \bar{N}\end{array}\right)$ with $N=\left(\begin{array}{ccc}0 & -i & -1-i \\ -1 & -1+i & 1 \\ -1-i & -1-i & 1\end{array}\right)$ and $Q=\left(\begin{array}{llc}i & i & 0 \\ 1+i & i & i \\ 0 & 1-i & -1-i\end{array}\right)$, where bar is the nonidentity automorphism of $G F(9)$. Replacing G by $\left(\begin{array}{ll}A & 0 \\ 0 & \bar{A}\end{array}\right) G\left(\begin{array}{ll}A^{-1} & 0 \\ 0 & \bar{A}^{-1}\end{array}\right)$ with $A=\left(\begin{array}{rrr}-i & 1 & -1+i \\ 1 & 1 & 1+i \\ 1 & 1 & 1\end{array}\right), N \rightarrow \operatorname{diag}(i,-1+i, 1-i)$, $Q \rightarrow\left(\begin{array}{lll}0 & -1 & 1+i \\ i & i & i \\ 1+i & -i & i\end{array}\right), E$ becomes $\left(\begin{array}{ccc}1 & 0 & 1+i \\ -1+i & i & -1 \\ 0 & 0 & -i\end{array}\right)$, and F becomes $\left(\begin{array}{ccc}-1 & 0 & -1+i \\ 1+i & i & 1 \\ 0 & 0 & -i\end{array}\right)$. We may change coordinates again and replace this last G by $C G C^{-1}$ with $C=\left(\begin{array}{rrr}1 & 0 & 1-i \\ -1-i & -i & -1 \\ 0 & 0 & i\end{array}\right) \oplus I_{3}$. Then E becomes I_{3}, F becomes $-I_{3}, N$ becomes $\left(\begin{array}{ccc}i & 0 & i \\ -1-i & -1+i & -1 \\ 0 & 0 & 1-i\end{array}\right), \bar{N}$
becomes $\operatorname{diag}(-i,-1-i, 1+i)$, and Q becomes $\left(\begin{array}{ccc}1-i & -i & -1-i \\ -1 & -1 & 0 \\ -1-i & 1 & 1\end{array}\right)$. We consider permutations in [9] as acting with letters on the right and matrices as acting with vectors on the right. From [9], we may define the letters in the following way: $00=00,01=t 00,02=b t 00$, $03=b^{6} t b^{6} t 00,04=b t b^{7} t b^{4} t 00,05=b t b^{7} t b^{2} t 00,06=t b t b^{5} t 00,07=t b^{7} t b^{4} t 00$, $08=b t b^{2} t 00,09=b^{2} t 00,10=t b^{7} t b^{2} t 00,11=b^{5} t b^{6} t 00,12=b^{6} t b^{2} t 00,13=$ $t b^{6} t 00,14=b t b^{3} t b^{7} t 00,15=b^{5} t b^{2} t 00,16=b^{3} t 00,17=b^{7} t 00,18=b^{2} t b^{2} t 00$, $19=b t b t b^{5} t 00,20=b^{5} t 00,21=t b^{3} t b^{7} t 00,22=b^{4} t b^{2} t 00,23=b^{4} t 00,24=$ $b^{3} t b^{6} t 00,25=b^{4} t b^{6} t 00,26=t b^{5} t b^{4} t 00,27=b t b^{5} a b^{4} t 00,28=b^{3} t b^{2} t 00,29=$ $b t b^{6} t 00,30=b^{6} t 00,31=b^{2} t b^{6} t 00,32=t b^{5} t b^{6} t 00,33=b^{7} t b^{2} t 00,34=t b^{2} t 00$, $35=b^{7} t b^{6} t 00,36=b t b^{5} t b^{6} t 00,37=t b t b^{3} t 00,38=b^{6} t b^{5} t 00,39=t b^{3} t b^{5} t 00$, $40=b^{3} t b^{7} t b^{7} t 00,41=b t b^{4} t b^{6} t 00,42=b^{6} t b^{4} t 00,43=b^{5} t b^{7} t 00,44=t b^{2} t b^{5} t 00$, $45=b t b^{2} t b^{5} t b^{5} t 00,46=b^{2} t b^{5} t b^{5} t 00,47=t b t b^{7} t 00,48=b^{7} t b^{7} t 00,49=b^{4} t b^{5} t 00$, $50=t b t b^{4} t 00,51=t b^{4} t b^{6} t 00,52=t b^{3} t b^{6} t 00,53=t b^{4} t 00,54=t b t b^{6} t 00$, $55=t b^{3} t b^{2} t 00,56=t b t b^{5} t b^{4} t 00,57=b^{5} t b^{4} t 00,58=t b^{6} t b^{7} t 00,59=t b^{5} t b^{5} t 00$, $60=b t b t 00,61=b t b^{7} t b^{7} t 00,62=t b t b t b^{7} t 00,63=t b^{3} t b^{4} t 00,64=b^{5} t b^{3} t 00$, $65=t b^{4} t b^{2} t 00,66=b^{3} t b^{7} t 00,67=t b^{5} t 00, \quad 68=b t b^{3} t b^{6} t 00, \quad 69=b^{2} t b^{3} t 00$, $70=t b^{7} t 00,71=t b^{3} t 00,72=b t b^{6} t b^{7} t 00,73=b^{4} t b^{3} t 00,74=t b t 00,75=$ $t b t b^{2} t 00,76=b^{7} t b^{4} t 00,77=b t b^{5} t 00,78=b^{2} t b^{7} t b^{7} t 00,79=b^{4} t b^{4} t 00,80=$ $b^{3} t b^{4} t 00,81=b t b t b^{7} t 00,82=b t b^{5} t b^{5} t 00,83=b^{2} t b^{7} t 00,84=b^{5} t b^{5} t 00,85=$ $b^{6} t b^{7} t 00, \quad 86=b^{2} t b^{4} t 00, \quad 87=t b t b^{4} t b^{6} t 00, \quad 88=b^{3} t b^{5} t b^{5} t 00, \quad 89=b^{3} t b^{5} t 00$, $90=b^{3} t b^{3} t 00,91=b t b^{3} t 00,92=b^{7} t b^{5} t 00,93=b t b^{4} t 00,94=b^{4} t b^{7} t 00,95=$ $t b^{7} t b^{7} t 00,96=b t b^{7} t 00,97=t b^{2} t b^{5} t b^{5} t 00,98=b t b t b t b^{7} t 00,99=b^{2} t b^{5} t 00$.

We let 00 be the space $x_{1}=x_{2}=x_{3}=0$. We have just defined the spaces i for $00 \leqq i \leqq 99$. Checking that G permutes these spaces in the same way that [9] permutes letters involves the following typical calculation: $t\left(b^{6} t b^{6} t\right) 00=t 03=73=b^{4} t b^{3} t 00$ to equivalent to (using $b^{8}=1$) $b^{5} t b^{4} t b^{6} t b^{6}(t 00)=t 00$. Fixing $t 00$ is equivalent to having all 0 's in the bottom left 3 by 3 block of the matrix over $G F(9)$. It is sufficient to check, as George Shapiro has done by computer, that the following matrices have all 0 's in the bottom left 3 by 3 . block: $b^{5} t b^{4} t b^{6} t b^{6}, \quad b^{4} t b^{3} t b^{2} t b^{7} t b^{4}, \quad b t b^{2} t b^{7} t b t b^{7} t b^{4}, \quad b t b^{5} t b^{2} t b^{7} t b^{2}, \quad b t b t b^{6} t b t b^{7} t b^{2}$, $b^{2} t b^{6} t b^{6} t b^{2}, \quad b^{6} t b t b^{2} t b^{3} t b^{7}, \quad b^{2} t b^{3} t b^{7} t b t b^{3} t b^{7}, \quad b^{2} t b t b^{5} t b^{2}, \quad b^{5} t b^{6} t b^{2} t b^{2}, \quad b^{2} t b^{3} t b^{2} t b t b^{5}$, $b^{2} t b^{5} t b^{7} t b t b t b^{5}, b^{4} t b t b^{2} t b^{5} t b^{4}, b^{3} t b^{7} t b^{2} t b^{5} t b^{6}, b^{5} t b^{7} t b t b t b^{3}, b^{5} t b^{5} t b^{6} t b^{5}, b^{3} t b^{3} t b t b^{3} t b^{5}$, $b^{6} t b^{5} t b^{4} t b^{7} t b^{7}, b^{3} t b^{6} t b^{2} t b^{4} t b^{6}, b^{4} t b^{6} t b^{6} t b^{4}, b^{3} t b t b^{5} t b^{7}, b^{4} t b^{5} t b t b^{2} t b^{5}, b t b^{7} t b^{7} t b^{7} t b t b^{2} t b^{5} t b^{5}$, $b^{3} t b^{3} t b^{6} t b^{2} t b^{2} t b^{5} t b^{5}, \quad b t b^{4} t b^{4} t b^{5}, \quad b^{2} t b^{4} t b t b t b^{4}, \quad b^{2} t b^{5} t b t b t b^{6}, \quad b t b^{7} t b t b^{3} t b^{2}$, $b^{2} t b^{4} t b^{7} t b t b t b^{5} t b^{4}, \quad b^{5} t b^{2} t b, \quad b^{3} t b^{3} t b^{7} t b t b^{7} t b^{7}, \quad b t b^{2} t b t b^{3} t b^{4}, \quad b^{7} t b^{6} t b^{3}, \quad b^{4} t b^{7} t b t b^{4} t b^{2}$, $b^{3} t b^{5} t b^{2} t b^{3} t b^{6}, \quad b^{6} t b^{4} t b^{2} t b^{6} t b^{7}, \quad b t b t b t b t b^{2}, \quad b^{5} t b^{3} t b^{4} t b^{4}, \quad b^{6} t b^{7} t b^{2} t b t b^{7}, \quad b^{7} t b^{7} t b^{2} t b^{7}$, $b^{4} t b^{3} t b^{7} t b t b t b^{4} t b^{6}, b^{2} t b^{7} t b^{4} t b^{5} t b^{5}, b t b t b^{5} t b^{3} t b^{5} t b^{5}, b t b^{7} t b^{7} t b^{2} t b t b t b^{7}$.

This permutation representation of these matrices gives a nontrivial (t interchanges $x_{1}=x_{2}=x_{3}=0$ and $x_{4}=x_{5}=x_{6}=0$) homomorphism of the matrix group $\langle t, b\rangle$ onto the permutation group
$\langle t, b\rangle$. The latter is transitive, b has order 8 and fixes 00 , and $t b$ has order 15. Therefore, (3)(8)(100) divides the order of the permutation group $\langle t, b\rangle$, which, by the classification in [9] of the large subgroups of the Hall-Janko group, must be the Hall-Janko group. Suppose that M is in the kernel K of this permutation representation. As M fixes 00 and $01, M=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$ in 3 by 3 blocks. We shall use the coordinates in which N, the top left block of b, is diagonal. Now $b^{-1} M b \in K$ has diagonal block form and $b^{-1} M b=\left(\begin{array}{ll}N^{-1} & 0 \\ 0 & \bar{N}^{-1}\end{array}\right) M\left(\begin{array}{ll}N & 0 \\ 0 & \bar{N}\end{array}\right)$. Then $\left(\begin{array}{ll}I & 0 \\ W & I\end{array}\right)$ commutes with M where $W=Q N^{-1}=\left(\begin{array}{lll}0 & -1-i & i \\ 1 & -1+i & 1-i \\ 1-i & 1-i & 1-i\end{array}\right)$. We may use b^{2} instead of b and then W is replaced by $V=\left(\begin{array}{lll}0 & -i & -1 \\ i & 1 & i \\ 1 & i & -1\end{array}\right)$. For $U=W, V$, or Y where $Y=W+i V=\left(\begin{array}{lll}0 & -i & 0 \\ 0 & -1-i & -i \\ 1 & -i & 1+i\end{array}\right)$ we have $U A=B U$. Also, as Y is nonsingular, A and B are similar and $V Y^{-1}$ commutes with B. Now, $V Y^{-1}=\left(\begin{array}{ccc}-1+i & -i & 0 \\ -1-i & i & i \\ -1 & 1+i & 1\end{array}\right)$ has characteristic polynomial $-x^{3}-i x^{2}+i x-1$ which has distinct roots: $-i, 1-i$, and $-1+i$. Therefore, the top 3 by 3 constituent of K, and, similarly, the bottom, has a matrix with distinct eigenvalues in $G F(9)$ in its commuting algebra and can be diagonalized over $G F(9)$.

Let L be the subgroup of G fixing the spaces 00 and 01 . Then by [9], L is in diagonal 3 by 3 block form and $L / K \approx P S L(2,7)$. Either the top left of bottom right 3 by 3 constituent of L has $P S L(2,7)$ as a constituent, say the former. Let U be the top left component of L and V the top left component of K. Then U permutes the homogeneous spaces of V. As U is not solvable, these homogeneous spaces are not 1-dimensional. Suppose that V has homogeneous spaces of dimensions 1 and 2. As V was diagonalizable over $G F(9), U$ may have its elements taken in the form: $\left(\begin{array}{lll}a & 0 & 0 \\ 0 & b & c \\ 0 & d & e\end{array}\right)$. This is impossible as then $\left.7\|P S L(2,7)\|\left|\left\langle\left(\begin{array}{ll}b & c \\ d & e\end{array}\right)\right\rangle\right| \right\rvert\,(80)(72)$, a contradiction. Therefore, there is only one homogeneous space and V is scalar. As the bottom component of V is similar to the top, K is scalar. By unimodularity, K has order 2.
4. Existence of the six-dimensional representation of G. We now prove the following theorem:

Theorem. There is a unique central extension G of Z_{2} by the Hall-Janko group with $N\left(S_{7}\right)$ having an element of order 4. Further-
more, G has a representation of degree 6. Uniqueness is in the strong sense that if G_{1} and G_{2} are two such groups and $\dot{\phi}$ is an isomorphism: $G_{1} / Z\left(G_{1}\right) \rightarrow G_{2} / Z\left(G_{2}\right)$, then $\dot{\phi}$ lifts to an isomorphism $\Phi: G_{1} \rightarrow G_{2}$

We shall use the following lemma:
Lemma. Let the p-block B have P as a defect group where P is nonabelian of order p^{3}. Let $Z(P) \subseteq Z(G)$ and $\zeta \in B$ be a character of G faithful on $Z(P)$. The $p^{2} \||G| / \zeta(1)$.

Proof of the lemma. By [7], (87.18) there exists a p-regular class C_{n} with element c such that P is a Sylow- p-subgroup of $C(c)$, and $|G| \zeta(c) /|C(c)| \zeta(1)$ equals some p-local unit. Now P has p^{2} linear characters with $Z(P)$ in the kernel and ($p-1$) characters of degree p distinguished by their action on $Z(P)$. As $Z(P) \subseteq Z(G)$, the representation U corresponding to ζ is scalar on $Z(P)$ and $U \mid P=$ $I_{m} \otimes V$ where V has degree p. By [7], (51.2), $U \mid C(P)=W \otimes I_{p}$, where W is some representation of $C(P)$. Then as $c \in C(P), p \mid \zeta(c)$. Let $p^{a} \||G|$. Now p divides $\zeta(1)$ to the same power as it divides $p^{a} \zeta(c) / p^{3}$, and it divides at least to the p^{a-2} power. It cannot divide to a higher power or ζ would be in a p-block of defect 1 .

Now, let G be the G in the theorem. As in [9], ψ_{3} and ψ_{5} are in a block $B_{1}(2)$ with defect group equal to a defect group of the class of π. Then the defect group is Q, the quaternions. Let χ_{i}, $i=1, \cdots, n$, with degrees $x_{i} \equiv \delta_{i}(\bmod 7), \delta_{i}= \pm 1$, be characters in $B_{1}(2) \cap B_{1}(7)$, where $B_{1}(7)$ is the nonprincipal 7-block for G. By ($\pi_{7},-1$) block orthogonality: $\sum x_{i} \delta_{i}=288-160$. By $\left(\pi_{7},-\pi_{7}\right)$ block orthogonality: $\sum \delta_{i}^{2}=1+1$. Then $B_{1}(7)$ has exactly 2 characters, χ_{1} and χ_{2} in $B_{1}(2) \cap B_{1}(7)$ and $\sum x_{i} \delta_{i}=128$. By the lemma $64 \| x_{i}$. For some $x_{i},\left(x_{i}, 3\right)=1$ and $x_{i}=2^{6} 5^{a}$. As $x_{i} \equiv \pm 1(\bmod 7), x_{i}=2^{6}$ and $x_{i}=64=$ the other x_{j}. Let $\nu=\chi_{1}$ and $\mu=\chi_{2}$. Field automorphisms take ψ_{3} to $\psi_{3}, B_{1}(2)$ to $B_{1}(2), B_{1}(7)$ to $B_{1}(7)$, and $B_{1}(2) \cap B_{1}(7)$ to $B_{1}(2) \cap B_{1}(7)$. Therefore, ν and μ are either a complete set of algebraic conjugates, or are rational.

The characters ν and ψ_{3} lie in $B_{1}(2)$ and give the same modular linear character.

Therefore, $|G| \nu(T) /(2160)(64) \equiv|G|(16) /(2160)(160) \equiv 0(\bmod 2), 8 \mid \nu(T)$ and $\nu(T) \equiv-8(\bmod 24)$. By $\left(T,-\pi_{7}\right)$ block orthogonality in $B_{1}(2)$: $\mu(T)+\nu(T)=\psi_{5}(T)-\psi_{3}(T)=-16$. As $32^{2}+16^{2}>1080, \psi(T)=-8$. Similarly, $\nu\left(T_{1}\right) \equiv \mu\left(T_{1}\right) \equiv-2(\bmod 6), \nu\left(T_{1}\right)+\mu\left(T_{1}\right)=\psi_{5}\left(T_{1}\right)-\psi_{3}\left(T_{1}\right)=-4$. and $\nu\left(T_{1}\right)=-2$. Similarly, $\mu(\pi T)+\nu(\pi T)=\psi_{5}(\pi T)-\psi_{3}(\pi T)=-1$. Now $\nu(\pi T) \equiv \nu(T) \equiv 2(\bmod \sqrt{5})$. If $\nu(\pi T)$ is rational, then for μ or ν, say $\nu,|\nu(\pi T)| \geqq 3$ and $|\nu(\pi T)|^{2}+\left|\nu\left(\pi^{2} T\right)\right|^{2} \geqq 18>15$, a con-
tradiction. Therefore, ν and μ are algebraic conjugates contained in $Q(\varepsilon+\bar{\varepsilon})$.

Since J_{1} has an inverse image in G of order 4, by an earlier argument, characters faithful on G are 0 on $J_{1}, T_{1} J_{1}, \pi J_{1}$, and $\pi^{2} J_{1}$, or any other class C conjugate to $-C$. By [8], ν in $B_{1}(2)$ vanishes on elements whose 2 -singular part is not conjugate to an element in the defect group of $B_{1}(2)$, that is not conjugate to $1,-1$, or J_{1}. Therefore, ν vanishes on $J, R, K, T J, T R, \pi_{1} J$, and $\pi_{1}^{2} J$.

As in [11], $\S 9$, the automorphism of $Q\left(\chi_{i}: \chi_{i}\right.$ a character of $\left.G\right)$ which comes from lifting the automorphism of the 7 -modular field: $x \rightarrow x^{7}$, gives an automorphism of the tree of $B_{1}(7)$ interchanging μ and ν, and, therefore, flipping the stem. Therefore, $B_{1}(7)$ has 3 pairs of algebraically conjugate characters of degrees $64, a$, and b; and a rational character in the middle of the stem of degree z. Also, $B_{1}(7)$ has another character other than μ or ν with a degree not divisible by 3 . This degree must be $8,400,64$, or 50 , for 5 \# any degree as shown later.

Suppose G has a character ζ of degree 8, Then $\zeta \mid H \approx U_{3}(3)=$ $\rho_{1}+2 \rho_{0}, \rho_{5}+\rho_{0}, \rho_{6}+\rho_{0}$, or $\rho_{7}+\rho_{0}$. By reciprocity and $\rho_{0}^{G}=\psi_{0}+\psi_{1}+\psi_{7}$, $\left(\psi_{i \mid H}, \rho_{0}\right)=1$ if $i=0,1$, or 7 , and 0 otherwise. In the case $\zeta \mid H=$ $\rho_{1}+2 \rho_{0}$ or $\rho_{5}+\rho_{0},\left(\zeta^{2} \mid H, \rho_{0}\right) \geqq 2$. The possibly reducible characters α and β of the skew-symmetric and symmetric tensors, respectively, corresponding to ζ^{2} have $\left(\alpha \mid H, \rho_{0}\right) \leqq 1,\left(\beta \mid \mathrm{H}, \rho_{0}\right) \leqq 1$, and we must have equalities. This is a contradiction as $B_{0}(7)$ of G has no character of degree $\equiv-1(\bmod 7)$ and <28. In the case $\zeta \mid H=\rho_{s}+\rho_{0}$ or $\rho_{7}+\rho_{0}, \zeta$ is not real and $\left(\zeta^{2}, \psi_{0}\right)=0$. As $\left(\zeta^{2} \mid H, \rho_{0}\right)=1, \beta$ (defined as before $)=\psi_{1}$. Then $4=\psi_{1}(J)=\beta(J)=\left((3+1)^{2}+8\right) / 2=12$, a contradiction.

Suppose G has a rational character ζ of degree 400 . Then ζ is 0 on 5 -regular elements and $0=(\nu, \zeta)=8 / 189+1 / 7-\zeta(T) / 135-\zeta\left(T_{1}\right) / 18=$ $5 / 27-\zeta(T) / 135-\zeta\left(T_{1}\right) / 18$. Now, $2 \mid \zeta\left(T_{1}\right)$ and $\zeta\left(T_{1}\right) \equiv 1(\bmod 3)$, so $\zeta\left(T_{1}\right)=4$ or -2 . If $\zeta\left(T_{1}\right)=-2$, then $\zeta(T)=40>\sqrt{1080}$ and impossible. Therefore, $\zeta\left(T_{1}\right)=4, \zeta(T)=-5$. The contribution to $1=(\zeta, \zeta)$ from e, a, T, and T_{1} is $50 / 189+1 / 7+5 / 216+4 / 9=7 / 8$ and $1 / 8$ remains. Now, $\zeta(T J) \equiv \zeta(T) \equiv \zeta(T R) \equiv-5(\bmod 2$.) Then, $|\zeta(T J)|=|\zeta(T R)|=1$ and 0 is left in (ζ, ζ). Then $0=\zeta(J) \equiv \zeta(T J) \equiv$ $\pm 1(\bmod 3)$, a contradiction.

If the degree 400 occurs, it is in a pair and we already have degrees $64,64,400,400$ all $\equiv 1(\bmod 7)$. There can only be one more 64,50 , or 400 , otherwise, the last degree is greater than $64+64+400+400$. As $3 \nmid 64+64+400+400, z=50$. Then the final pair consists of odd degrees, impossible, as then the unimodular subgroup of the linear group in the final pair complements Z_{2}.

If $z=64$, then let η be the rational character of this degree. Then $0=\eta(J) \equiv \eta\left(\pi_{1} J\right)(\bmod 5)$ and $\eta\left(\pi_{1} J\right)=0$. Furthermore, $\eta\left(\pi_{1}\right) \equiv \eta\left(\pi_{1} J\right)=0$ $(\bmod 2), \eta\left(\pi_{1}\right) \equiv 4(\bmod 10)$, and $\eta\left(\pi_{1}\right)=4$, otherwise, $\eta\left(\pi_{1}\right)+\eta\left(\pi_{1}^{2}\right) \geqq$ $6^{2}+6^{2}>50$. Also, $\eta\left(T_{1}\right) \equiv \eta\left(T_{1} J_{1}\right) \equiv 0(\bmod 2), \eta\left(T_{1}\right) \equiv 64(\bmod 3)$, and $\left|\eta\left(T_{1}\right)\right| \geqq 2$. Now, $\eta(\pi T)=0$, as otherwise,

$$
\begin{aligned}
1= & (\eta, \eta) \geqq|\eta(a)|^{2} / 7+\left|\eta\left(T_{1}\right)\right|^{2} / 36+\left|\eta\left(\pi_{1}\right)\right|^{2} / 50+\left|\eta\left(\pi_{1}^{2}\right)\right|^{2} / 50 \\
& +|\eta(\pi T)|^{2} / 15+\left|\eta\left(\pi^{2} T\right)\right|^{2} / 15 \\
\geqq & 1 / 7+1 / 9+8 / 25+8 / 25+1 / 15+1 / 15>1
\end{aligned}
$$

Then $\eta(T) \equiv \eta(\pi T)=0(\bmod 5), 4 \mid \eta(T), \eta(T) \equiv 1(\bmod 3), \eta(T) \equiv-20$ $(\bmod 60)$, and $\eta(T)=-20$. Then

$$
1=(\eta, \eta) \geqq 1 / 7+1 / 9+400 / 1080+8 / 25+8 / 25>1
$$

a contradiction.
If both $a, b=64$, then $z=(6)(64)$ corresponds to a character in a 2-block of G of defect 1 . By $(1,-1)$ block orthogonality, this block has a character with Z in the kernel a contradiction. If $a=64, b \neq 64$, then $B_{1}(7)$ has $1(\bmod 3)$ characters with degree 50 , and $z=50$. This is impossible as b would then be odd.

Therefore, a, b, and z are all distinct from 8, 64, and 400. The number of degrees equal to 50 is $2(\bmod 3)$. Therefore, we may take $a=50$, and $b \equiv z \equiv 0(\bmod 3)$. As $3 \| 228=2(50+64), b$ or z is divisible exactly by 3 . Such a degree must be $6 ; 48 ; 384$ has 2 -defect 1 , impossible; or 300 . The possibilities are $228-12=216,228-96=132$, $600-228=372,114-3=111,114-24=90$ divisible exactly by 5 , and $150-114=36$. The last case is impossible by $3-7$ block separation as 36 is the only degree in $B_{1}(7)$ corresponding to a 3-block of defect 1. The degree equation must be $50+50+64+64=6+6+216$ and G has a representation of degree 6 . Some G has been given by 6 by 6 matrices over $G F(9)$ and uniqueness of G follows from the uniqueness of $X(b)$. The character table of G is completed in the appendix. As $t_{7}=1$ for G, if $G_{1} D G$ and G_{1} has a unimodular representation of degree 6, then by [10], $7 \||G|$. As in the proof of $[3], 3 F, C_{G_{1}}\left(S_{7}\right)=Z\left(G_{1}\right) S_{7}$. As $\left[N_{G_{1}}\left(S_{7}\right): C_{G_{1}}\left(S_{7}\right)\right]=\left[N_{G}\left(S_{7}\right): C_{G}\left(S_{7}\right)\right]=6$, $G_{1}=G Z\left(G_{1}\right)$.

As $\left|C\left(\pi_{1}\right) /\left\langle\pi_{1}\right\rangle\right|=20<5^{2}, C\left(\pi_{1}\right) /\left\langle\pi_{1}\right\rangle$ has no 5 -block of defect 0 , and by [7], 88.8, is not a defect group. Since J_{1} has order 4 in $C(\pi)$, $C(\pi) \mid\langle\pi\rangle \approx S L(2,5)$ and has no character of 5 -defect 0 faithful on $\langle-1\rangle$. Therefore, G has only 15 -block of defect 1 and representations in this block have Z in the kernel. Then 5 does not exactly divide any degree of a faithful irreducible character of G.
5. An alternative construction. There is a simple way to con-
struct matrix generators of G, but it would be hard to show directly that these generators generate a finite group. Let $Q \subset G$ be a common 2-Sylow subgroup of $C(\pi)$ and $C\left(T_{1}\right)$ isomorphic to the quaternions, by choosing T_{1} appropriately. If U is the unique irreducible nonlinear representation of Q, then $X \mid Q \simeq I_{3} \otimes U$. By [7], (51.7), $X(N(Q))=R \otimes S$ for some linear groups R and S. From $C\left(T_{1}\right) /\left\langle T_{1}\right\rangle \simeq S L(2,3)$, we see that $3 \mid[N(Q): C(Q)]$ and $3 \mid[S: Z(S)]$. By [7], (51.2), π and T_{1} lie in $R \otimes I_{2}$ so $2^{2} \|[S: Z(S)]$ and $S \simeq S L(2,3)$. As no conjugate of T_{1} commutes with π, R does not have a normal 5-Sylow subgroup. By [1]'s classification of two and three-dimensional groups, $R / Z(R) \simeq A_{5}$. If R has a two dimensional constituent, then an element diag $(1,-1,-1) \otimes I_{2}$ is centralized by $S L(2,5) \times S L(2,3)$, a contradiction. This determines R since the 3 -dimensional representations of A_{5} are related by automorphism from S_{5}. An element u of order three in $I_{3} \otimes S$ is centralized by π in $R \otimes I_{2}$, so u has eigenvalues $w, w, w, \bar{w}, \bar{w}, \bar{w}$. This determines S.

We may take $v=\operatorname{diag}(\varepsilon, \bar{\varepsilon}, 1) \in R$ and $\pi=v \otimes I_{2} \in X(G)$. Then $X\left((C(\pi))^{\prime}\right)$ is block diagonal in 2 by 2 blocks and each diagonal block represents $S L(2,5)$. The diagonal blocks differ by conjugation by matrices and possible algebraic conjugation: $\varepsilon \rightarrow \varepsilon^{2}$. As the matrix conjugation fixes S elementwise, the conjugating matrices are scalar. We shall add to $R \otimes S$ an element $y=A \oplus B \oplus C$ in 2 by 2 blocks with $\langle S, A\rangle \simeq S L(2,5)$. As before, S uniquely determines the matrix group $\langle S, A\rangle$ and we may take A with eigenvalues $\varepsilon, \bar{\varepsilon}$. Then πy has an eigenvalue one and is conjugate to π or π^{2}. As πy has another eigenvalue $1, B$ has eigenvalues $\varepsilon, \bar{\varepsilon}$. Then C has eigenvalues ε^{2} and ε^{-2}. These eigenvalues determine the representations of $S L(2,5)$ by the second and third diagonal blocks and determine B and C. Then $\langle y, R \otimes S\rangle$ is a subgroup of order at least $5[(2)(720)]$ of G and, by [9]'s classification of large subgroups of $G / Z(G)$, is G.

Alternatively, we could have replaced v by $C(u)$ of order $2(1080)$. This is facilitated by replacing $R \otimes S$ by $S \otimes R$ and taking $S(u)$ to be diagonal. Then $C(u)$ is block diagonal in 3 by 3 blocks. The two diagonal blocks elementwise are related by interchanging w and \bar{w}, and are identical elementwise on $N(Q) \cap C(u) \simeq Z_{6} \times A_{5}$. In either of these constructions generators of $X(G)$ may be gotten from the generators of the two and three-dimensional groups in [1].

Appendix

$G / Z \simeq$ Hall-Janko group $|Z|=2$, the notation follows [9], $\theta_{1}=(1+\sqrt{5}) / 2, \theta_{2}=(1-\sqrt{5}) / 2$

e	a	J	R	K	$T J$	$T R$	$\pi{ }^{1}+$	T	T_{1}	π	$\underline{\pi}_{1}$	πT
$\underline{6}$	-1	-2	2	0	1	-1	θ_{2}	-3	0	$2 \theta_{2}$	$-1-0_{1}$	$-\theta_{1}$
$\underline{50}$	1	10	2	$2 i$	1	-1	0	5	2	0	0	0
216	-1	24	0	0	0	0	-1	0	0	6	1	0
$\underline{64}$	1	0	0	0	0	0	0	-8	-2	$2+40_{2}$	$-2 \theta_{1}$	$-\theta_{2}$
14	0	6	2	0	0	2	1	-4	2	4	-1	1
84	0	4	4	0	1	1	-1	-15	0	-6	-1	0
126	0	-10	2	0	-1	-1	0	-9	0	$4-6 \theta_{1}$	$2 \theta_{1}$	1
252	0	-20	4	0	1	1	0	9	0	2	2	-1
$\underline{56}$	0	-8	0	0	-2	0	$-\theta_{2}$	2	2	$2 \theta_{2}$	$-1-\theta_{1}$	$-\theta_{1}$
448	0	0	0	0	0	0	0	16	-2	-2	-2	1
350	0	-10	-6	0	2	0	0	-10	2	0	0	0
336	0	16	0	0	-2	0	1	-6	0	-4	1	-1

Bibliography

1. H. F. Blichfeldt, Finite Collineation Groups, University of Chicago Press, Chicago, 1917.
2. R. Brauer, Investigations on group characters, Ann. of Math. 42 (1941), 936-958.
3. -, On groups whose order contains a prime to the first power, I, II, Amer. J. Math. 64 (1942), 401-440.
4. (1967), 73-96.
5. R. Brauer and H. F. Tuan, On simple groups of finite order, I, Bull. Amer. Math. Soc. 51 (1945), 756-766.
6. J. Conway, Bull. London Math. Soc. 1 (1969), 79-88.
7. C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience Publishers, New York, 1962.
8. J. A. Green, Blocks of modular representations, Math. Zeit. 79 (1962) 100-115.
9. M. Hall and D. Wales, The simple group of order 604,800 , J. of Algebra. 9 (1968), 417-450.
10. J. H. Lindsey, II, A generalization of Feit's theorem, (to appear in Trans. Amer. Math. Soc.)
11. -, Finite linear groups of degree six, (to appear)

Received February 4, 1970.
Northern Illinois University

