RANK PRESERVERS OF SKEW-SYMMETRIC MATRICES

M. J. S. Lim

It is possible to study the structure of rank preservers on n-square skew-symmetric matrices over an algebraically closed field F by considering instead the linear transformations on the second Grassmann Product Space $\wedge^{2} \mathscr{\mathscr { C }}$ (\mathscr{U} an n-dimensional vector space) over F into itself, which preserve the irreducible lengths of the products. In this paper, it is shown that preservers of irreducible length 2 are also preservers of all irreducible lengths of the products. Correspondingly, rank 4 preservers are rank $2 k$ preservers for all positive integer values of k. The structure of the preservers in each case is deduced from the fact that these preservers are in particular irreducible length 1 and rank 2 preservers respectively, whose structures are known.

A nonzero vector in $\wedge^{2} \mathscr{U}$ is said to have irreducible length k if it can be written as a sum of k and not less than k pure (decomposable) nonzero products in $\wedge^{2} \mathscr{U}$. The set of such products is denoted by \mathscr{L}_{k} and $z \in \mathscr{L}_{k}$ if and only if $\mathscr{L}(z)=k$. A linear transformation \mathscr{T} of $\wedge^{2} \mathscr{U}$ into itself is an $\mathscr{L}-k$ preserver if and only if $\mathscr{T}\left(\mathscr{L}_{k}\right) \subseteq \mathscr{L}_{k}$.

A linear transformation \mathscr{S} which takes the set of rank $2 k n$ square skew-symmetric matrices into itself is a $\rho-2 k$ preserver.

In [7], it is shown that \mathscr{L}_{k} is isomorphic to the set of all rank $2 k n$-square skew-symmetric matrices. If this isomorphism is denoted by φ, then $\mathscr{S}=\varphi \mathscr{T} \varphi^{-1}$ is a $\rho-2 k$ preserver if and only if \mathscr{T} is a $\mathscr{L}-k$ preserver.

To obtain the results of this paper, much use is made of $\mathscr{E}-2$ subspaces of $\wedge^{2} \mathscr{U}$. An $\mathscr{L}-k$ subspace of $\wedge^{2} \mathscr{U}$ is a vector subspace whose nonzero members are in \mathscr{L}_{k}. An $\mathscr{L}-2$ subspace H is called a (1, 1)-type subspace if there exist fixed nonzero vectors $x \neq y$ such that each nonzero $f \in H$ can be written

$$
f=x \wedge x_{f}+y \wedge y_{f}
$$

1. Intersection of (1, 1)-type subspaces.

Lemma 1. If V_{1}, V_{2} are distinct $(1,1)$-type subspaces of dimension $\geqq 2$ and $\operatorname{dim} V_{1} \cap V_{2} \geqq 2$, then the 2-dimensional subspaces of \mathscr{C} determined by V_{1}, V_{2} are equal.

Proof. Let f_{1}, f_{2} be independent in $V_{1} \cap V_{2}$. Then $f_{1}=x \wedge x_{1}+y \wedge y_{1}$,
$f_{2}=x \wedge x_{2}+y \wedge y_{2}$ in $V_{1} ;$ and $f_{1}=u \wedge u_{1}+v \wedge v_{1}, f_{2}=u \wedge u_{2}+v$ $\wedge v_{2}$ in V_{2}. Now $\langle x, y\rangle \subset\left\langle u, u_{1}, v, v_{1}\right\rangle \cap\left\langle u, u_{2}, v, v_{2}\right\rangle$ which has dimension 2 or 3 (Theorem 5 of [2], and Lemma 5 of [3]), and hence $\operatorname{dim}\langle x, y\rangle \cap\langle u, v\rangle \leqq 1$. Without loss of generality, let x be in this intersection; in fact, we can take $x=u$; and $\left\langle u_{1}, v, v_{1}\right\rangle=\left\langle x_{1} y, y_{1}\right\rangle$ and $\left\langle u_{2} v, v_{2}\right\rangle=\left\langle x_{2} y, y_{2}\right\rangle$ (Lemma 9 of [2]). \quad Since $x \wedge y \wedge f_{i}=0$, $i=1,2$, then $y \in\left\langle v, v_{1}\right\rangle$ and $y \in\left\langle v, v_{2}\right\rangle$ (proof of Lemma 7 in [3]). If $\left\langle v, v_{2}\right\rangle=\left\langle v, v_{1}\right\rangle$, then some linear combination of f_{1} and f_{2} has irreducible length at most one, which is impossible since f_{1}, f_{2} are independent in $\mathscr{L}-2$ subspaces. Hence $\langle y\rangle=\left\langle v, v_{1}\right\rangle \cap\left\langle v, v_{2}\right\rangle$, and $\langle y\rangle=\langle v\rangle$, which implies $\langle x, y\rangle=\langle u, v\rangle$.
2. The $\mathscr{L}-2$ preservers. The structure of $\mathscr{L}-1$ preservers is known. In fact, in [8], it is shown that if \mathscr{T} is an $\mathscr{C}-1$ preserver, then \mathscr{T} is a compound (i. e., if $x \wedge y \in \mathscr{L}_{1}$, then there exists a nonsingular matrix A such that $\mathscr{S}(x \wedge y)=A x \wedge A y)$, except when $\operatorname{dim} \mathscr{U}=4$, in which case it may possibly be the composite of a compound and a linear transformation induced by a correlation of the 2-dimensional subspaces of \mathscr{U}. Thus if \mathscr{T} is an $\mathscr{L}-1$ preserver, it is also an $\mathscr{L}-\mathrm{k}$ preserver for all k.

We shall show that if \mathscr{T} is an $\mathscr{L}-2$ preserver, then it is also an \mathscr{L}-1 preserver. Since we shall make use of $\mathscr{L}-2$ subspaces and these are varied (see [3]), it will be necessary to consider several cases.

2a. $\operatorname{dim} \mathscr{U} \geqq 7$. In [3], it is shown that if $\operatorname{dim} \mathscr{U}=n \geqq 7$, then the maximal $\mathscr{L}-2$ subspaces have dimension $(n-3)$ and are all $(1,1)$-type subspaces.

LEMMA 2. Let \mathscr{T} be an $\mathscr{L}-2$ preserver, $\operatorname{dim} \mathscr{\mathscr { V }} \geqq 7$. Then \mathscr{T} $\left(\mathscr{L}_{1}\right) \subset \mathscr{L}_{1} \cup \mathscr{L}_{2} \cup\{0\}$.

Proof. Let $u \wedge v \in \mathscr{L}_{1}$. Then $u \wedge v$ is expressible as $u \wedge\left(\alpha x_{1}-\right.$ x_{2}) where $\left\{u, x_{1} x_{2}\right\}$ is independent in \mathscr{C} and $0 \neq \alpha \in F, \alpha \neq 1$. Now $\left\{u, x_{1}, x_{2}\right\}$ can be extended to a set $\left\{u, x_{1}, \cdots, x_{6}\right\}$ of seven independent vectors in \mathscr{C}. Then the following 2 subspaces:

$$
\begin{aligned}
& V_{1}=\left\langle u \wedge x_{1}+v \wedge x_{4}, u \wedge x_{5}+v \wedge x_{6}, u \wedge x_{3}+v \wedge x_{4}\right\rangle \\
& V_{2}=\left\langle u \wedge x_{2}+v \wedge \alpha x_{4}, u \wedge x_{5}+v \wedge x_{6}, u \wedge x_{3}+v \wedge x_{4}\right\rangle
\end{aligned}
$$

are both $\mathscr{L}-2$ subspaces and $\operatorname{dim} V_{1} \cap V_{2}=2$. Moreover

$$
\begin{aligned}
\mathscr{T}(u \wedge v) & =\mathscr{T}\left(u \wedge \alpha x_{1}-x_{2}\right) \\
& =\mathscr{T}\left(u \wedge \alpha x_{1}+\alpha v \wedge x_{4}-u \wedge x_{2}-\alpha v \wedge x_{4}\right) \\
& =\mathscr{T}\left(u \wedge \alpha x_{1}+\alpha v \wedge x_{4}\right)-\mathscr{T}\left(u \wedge x_{2}+\alpha v \wedge x_{4}\right)
\end{aligned}
$$

The first vector is in $\mathscr{T}\left(V_{1}\right)$, the second in $\mathscr{T}\left(V_{2}\right)$. Now V_{1}, V_{2} can be extended to (n-3)-dimensional $\mathscr{L}-2$ subspaces (necessarily of (1, 1)type). Hence $\mathscr{T}\left(V_{1}\right), \mathscr{T}\left(V_{2}\right)$ are (1, 1)-type subspaces of dimension ($n-3$) since \mathscr{T} is an $\mathscr{L}-2$ preserver, and their intersection has dimension at least two. Hence the 2-dimensional subspaces (of \mathscr{U}) determined by $\mathscr{T}\left(V_{1}\right)$ and $\mathscr{T}\left(V_{2}\right)$ are equal, implying that $\mathscr{T}(u \wedge v)$ has irreducible length $\leqq 2$.

Theorem 1. Let $\operatorname{dim} \mathscr{U}=n \geqq 7$. Then \mathscr{T} is an $\mathscr{L}-2$ preserver if and only if \mathscr{T} is an $\mathscr{L}-1$ preserver, and \mathscr{T} is a compound. Moreover, $\mathscr{T}\left(\mathscr{L}_{k}\right) \subseteq \mathscr{L}_{k}$ for all k.

Proof. Suppose \mathscr{T} is an \mathscr{L}-2 preserver. If $f \in \mathscr{L}_{1}$ and $\mathscr{T}(f)$ 0 , then there exists $g \in \mathscr{L}_{1}$ such that $\mathscr{L}(f+g)=2$ (use Theorem 7 of [2]). Then $\mathscr{T}(f+g)=\mathscr{T}(g) \in \mathscr{L}_{2}$. Hence it is sufficient to show $\mathscr{T}\left(\mathscr{L}_{1}\right)$ does not intersect \mathscr{L}_{2}.

Suppose $x_{1} \wedge x_{n} \in \mathscr{L}_{1}$ and $\mathscr{T}\left(x_{1} \wedge x_{n}\right) \in \mathscr{L}_{2}$. Consider the subspace V generated by $\left\{z_{1}=x_{1} \wedge x_{n}, z_{i}=x_{1} \wedge x_{i+1}+x_{2} \wedge x_{i+2}\right\}, 2 \leqq i \leqq n-2$, where $\mathscr{U}=\left\langle x_{1}, \cdots, x_{n}\right\rangle$. Any linear combination $z=\sum_{i=1}^{n-2} \alpha_{i} z_{i}$ has irreducible length 2 except when $\alpha_{2}=\cdots=\alpha_{n-2}=0$, in which case $z=\alpha_{1} z_{1}$ and $\mathscr{T}\left(\alpha_{1} z_{1}\right)$ has irreducible length 2. Hence $\mathscr{T}(V)$ is an $\mathscr{L}-2$ subspace of dimension ($n-2$), which contradicts the fact that the maximal $\mathscr{L}-2$ subspaces have dimension ($n-3$). Hence $\mathscr{T}\left(\mathscr{L}_{1}\right) \subseteq \mathscr{L}_{1}$. The converse is easy to see (cf. beginning of § 2).

2b. $\operatorname{dim} \mathscr{U}=4,5$. By Theorem 7 of [2], it is clear that \mathscr{L}_{k}, $k \geqq 3$, is trivial when $\operatorname{dim} \mathscr{U} \leqq 5$. The following lemma is immediate.

Lemma 3. Let $\operatorname{dim} \mathscr{U} \leqq 5, \mathscr{T}$ an $\mathscr{L}-2$ preserver. Then \mathscr{T} $\left(\mathscr{L}_{1}\right) \subset \mathscr{L}_{1} \cup \mathscr{L}_{2} \cup\{0\}$.

Theorem 2. Let $\operatorname{dim} \mathscr{U}=4$. Then \mathscr{T} is an $\mathscr{L}-2$ preserver if and only if \mathscr{T} is an $\mathscr{L}-1$ preserver.

Proof. Suppose \mathscr{T} is an $\mathscr{L}-2$ preserver. Suppose $x_{1} \wedge x_{2} \in \mathscr{L}_{1}$ and $\mathscr{T}\left(x_{1} \wedge x_{2}\right)=0$. Extend $\left\{x_{1}, x_{2}\right\}$ to a basis $\left\{x_{1}, \cdots, x_{4}\right\}$ of \mathscr{H}. Then $x_{1} \wedge x_{2}+x_{3} \wedge x_{4}$ has irreducible length 2 and hence

$$
\mathscr{T}\left(x_{1} \wedge x_{2}+x_{3} \wedge x_{4}\right)=\mathscr{T}\left(x_{3} \wedge x_{4}\right)
$$

has irreducible length 2 . Hence the above and Lemma 3 imply it is sufficient to show only that $\mathscr{T}\left(\mathscr{L}_{1}\right) \wedge \mathscr{L}_{2}$.

Suppose $\mathscr{T}\left(x_{1} \wedge x_{3}\right)$ has irreducible length 2 for $x_{1} \wedge x_{3} \in \mathscr{L}_{1}$. Consider the subspace V generated by the products $z_{1}=x_{1} \wedge x_{3}$;

$$
z_{2}=x_{1} \wedge x_{2}+x_{3} \wedge x_{4} \text { where } \mathscr{U}=\left\langle x_{1}, \cdots, x_{4}\right\rangle
$$

Then any linear combination $z=\alpha z_{1}+\beta z_{2}$ has irreducible length 2 unless $\beta=0$, in which case $\mathscr{T}(z)=\mathscr{G}\left(\alpha z_{1}\right)$ which has irreducible length 2 by assumption. Hence $\mathscr{T}(V)$ is an $\mathscr{L}-2$ subspace of dimension 2. But this contradicts the fact that the $\mathscr{L}-2$ subspaces have dimension one and no more (Theorem 10 of [2]). The result follows. The converse is easy to see.

Theorem 3. Let $\operatorname{dim} \mathscr{U}=5$. Then \mathscr{T} is an $\mathscr{L}-2$ preserver if and only if \mathscr{T} is an $\mathscr{L}-1$ preserver.

Proof. As in the proof of Theorem 2, it is sufficient to show $\mathscr{T}\left(\mathscr{L}_{1}\right) \wedge \mathscr{L}_{2}$. Let $\mathscr{C}=\left\langle u_{1}, \cdots, u_{5}\right\rangle . \quad$ Suppose $u_{1} \wedge u_{5} \in \mathscr{L}_{1}$ and \mathscr{T} $\left(u_{1} \wedge u_{5}\right) \in \mathscr{L}_{2}$. Then consider the subspace V generated by the products

$$
\begin{aligned}
& z_{1}=u_{1} \wedge u_{5} \\
& z_{2}=u_{1} \wedge u_{4}+u_{2} \wedge u_{3} \\
& z_{3}=u_{\perp} \wedge u_{3}+u_{2} \wedge u_{5} \\
& z_{4}=u_{2} \wedge u_{4}+u_{3} \wedge u_{5}
\end{aligned}
$$

Then $z=\sum_{i=1}^{4} \alpha_{i} z_{i}$ has irreducible length 2 except when $\alpha_{2}=0=\alpha_{3}$ $=\alpha_{4}$, in which case $z=\alpha_{1} z_{1}$ and $\mathscr{T}\left(\alpha_{1} z_{1}\right) \in \mathscr{L}_{2}$. Hence $\mathscr{G}(V)$ is an $\mathscr{L}-2$ subspace of dimension 4. But this contradicts the fact that the maximal $\mathscr{L}-2$ subspaces have dimension 3 (see Theorem 1 of [3]).

2c. $\operatorname{dim} \mathscr{U}=6$. The following lemma is clear from Theorem 7 of [2].

Lemma 4. Let $\operatorname{dim} \mathscr{U}_{6}=6, \mathscr{T}$ an $\mathscr{L}-2$ preserver. Then

$$
\mathscr{T}\left(\mathscr{C}_{1}\right) \subset\left\{\bigcup_{i=1}^{3} \mathscr{L}_{1}\right\} \cup\{0\}
$$

It is thus necessary to consider also the $\mathscr{L}-3$ subspaces.
If $z \in \mathscr{L}_{k}$, then we can associate a unique 2 k -dimensional subspace [z] of \mathscr{U} with z (Theorem 5 of [2]).

Lemma 5. Let $z \in \mathscr{L}_{k}$ and $x_{1} \in[z]$. Then there is a representation $z=x_{1} \wedge u_{2}+u_{3} \wedge u_{4}+\cdots+u_{2 k-1} \wedge u_{2 k}$ where $\left\langle u_{2}, \cdots, u_{2 k}\right\rangle=[z]-\left\langle x_{1}\right\rangle$.

Proof. Let x_{1} be extended to a basis $\left\{x_{1}, \cdots, x_{2 k}\right\}$ of $[z]$. Then

$$
\begin{aligned}
z & =\sum \alpha_{i j} x_{i} \wedge x_{j}(1 \leqq i<j \leqq 2 k) \\
& =x_{1} \wedge\left(\sum_{j=2}^{2 k} \alpha_{1 j} x_{j}\right)+\sum \alpha_{i j} x_{i} \wedge x_{j}(2 \leqq i \wedge j \leqq 2 k)
\end{aligned}
$$

By Corollary 8 of [2] and the fact that $\mathscr{L}(z)=k$, the second term
in the expression of z has irreducible length ($k-1$). The result follows.
Theorem 4. Let $\operatorname{dim} \mathscr{C}=6 . H$ an $\mathscr{L}-3$ subspace. Then dim $H=1$.

Proof. If $u_{1} \in \mathscr{U}$ and f is any nonzero member of H, then $u_{1} \in$ [f]. Hence f can be represented $f=u_{1} \wedge u+y$, where $u \in \mathscr{U}$ and $y \in \mathscr{L}_{2}, \quad[y] \subset \mathscr{U}-\left\langle u_{1}\right\rangle ;$ (Lemma 5). This latter subspace has dimension 5. Thus, if f_{1}, f_{2} are any 2 nonzero members of H, then $f_{1}=u_{1} \wedge u_{2}+u_{3} \wedge u_{4}+u_{5} \wedge u_{6}$, where $\mathscr{U}=\left\langle u_{1}, \cdots, u_{6}\right\rangle$, and f_{2} can be expressed as $f_{2}=u_{1} \wedge y_{1}+u_{3} \wedge y_{2}+u_{5} \wedge y_{3}$ where $y_{i}=\sum_{j=2}^{6} a_{i j} u_{j}$, using the fact that $\left\langle f_{1}, f_{2}\right\rangle$ is an $\mathscr{L}-3$ subspace, Corollary 8 of [2] and Corollary 1 of [3].

Consider $f=\gamma f_{1}+f_{2}, \quad \gamma \in F$. Now $f=u_{1} \wedge\left[\left(\gamma+a_{12}\right) u_{2}+a_{13} u_{3}+\right.$ $\left.a_{14} u_{4}+a_{15} u_{5}+\alpha_{18} u_{6}\right]+u_{3} \wedge\left[\alpha_{22} u_{2}+\left(\gamma+\alpha_{24}\right) u_{4}+a_{25} u_{5}+\alpha_{26} u_{6}\right]+u_{5} \wedge\left[a_{32} u_{2}+\right.$ $\left.a_{33} u_{3}+a_{34} u_{4}+\left(\gamma+a_{36}\right) u_{6}\right]=w_{1} \wedge w_{2}+w_{3} \wedge w_{4}+w_{5} \wedge w_{6}$, putting $w_{1}=$ $u_{1}, w_{2}=\left[\left(\gamma+a_{12}\right) u_{2}+a_{13} u_{3}+a_{14} u_{4}+a_{15} u_{5}+a_{16} u_{6}\right]$, and so on. Then $\mathscr{L}(f)=3$ if and only if the vectors w_{1}, \cdots, w_{6} are independent (Theorem 7 of [2]); i. e., if and only if the determinant of the matrix $\left(\alpha_{i j}\right)$, where $a_{i j}$ is the coefficient of u_{i} in $w_{j} ; i, j=1, \cdots, 6$; is nonzero. However this determinant is a monic polynomial in γ of degree 3 ; viz., $\left.\left(\gamma+a_{12}\right)\left(\left(\gamma+a_{24}\right)\left(\gamma+a_{36}\right)-a_{34} a_{26}\right)-a_{22}\left(a_{14}\left(\gamma+a_{36}\right)-a_{34} a_{16}\right)\right)+a_{32}$ $\left(a_{14} a_{26}-\alpha_{16}\left(\gamma+a_{24}\right)\right.$), whose constant term must be nonzero since the vectors $u_{1}, u_{2} u_{3}, y_{1}, y_{2}, y_{3}$ are independent. Hence there is a nonzero value of γ in F for which the determinant is zero (since F is algebraically closed). For this value of $\gamma, \mathscr{L}(f)<3$. Hence there is at most one basis member in H.

Theorem 5. Let $\operatorname{dim} \mathscr{U}=6$. Then \mathscr{T} is an $\mathscr{L}-2$ preserver if and only if \mathscr{T} is an $\mathscr{L}-1$ preserver.

Proof. It is sufficient to prove that $\mathscr{T}\left(\mathscr{L}_{1}\right)$ does not intersect $\mathscr{L}_{2} \cup \mathscr{L}_{3}$ (cf. proof of Theorem 2 and use Lemma 4).

Suppose $\mathscr{U}=\left\langle u_{1}, \cdots, u_{6}\right\rangle$ and $\mathscr{T}\left(u_{1} \wedge u_{6}\right) \in L_{2} . \quad$ Consider $V=$ $\left\langle z_{1}, \cdots, z_{4}\right\rangle$ where

$$
\begin{aligned}
& z_{1}=u_{1} \wedge u_{6} ; z_{2}=u_{1} \wedge u_{3}+u_{2} \wedge u_{4} ; z_{3}=u_{1} \wedge u_{4}+u_{2} \wedge u_{5} \\
& z_{4}=u_{1} \wedge u_{5}+u_{2} \wedge u_{6}
\end{aligned}
$$

Then $\mathscr{T}\left(\mathscr{V}^{\prime}\right)$ is an $\mathscr{L}-2$ subspace of dimension 4, contradicting the fact that the maximal $\mathscr{L}-2$ subspaces have dimension 3 (Theorem 11 of [3]).

Suppose $\mathscr{T}\left(u_{1} \wedge u_{5}\right) \in \mathscr{L}_{3}$. Let $\mathscr{V}=\left\langle z_{1}, z_{2}\right\rangle$ where $z_{1}=u_{1} \wedge u_{5}$; $z_{2}=u_{1} \wedge u_{4}+u_{2} \wedge u_{3}+u_{6} \wedge u_{5}$. Then $\mathscr{T}(\mathscr{V})$ is an $\mathscr{L}-3$ subspace of dimension 2 , contradicting Theorem 4.
3. The main results. We can now assert:

Theorem 6. \mathscr{T} is an $\mathscr{L}-2$ preserver if and only if \mathscr{T} is an $\mathscr{L}-1$ preserver. If \mathscr{T} is an $\mathscr{L}-2$ preserver, then \mathscr{T} is an $\mathscr{L}-k$ preserver, $k=1,2, \cdots,[n / 2], \operatorname{dim} \mathscr{C}=n$, and \mathscr{T} is a compound except when $n=4$, in which case \mathscr{T} may possibly be a composite of a compound and a linear transformation induced by a correlation of the 2-dimensional subspaces of \mathscr{U}.

Using the results in [7], we can also assert the following.
Theorem 7. \mathscr{S} is a $\rho-4$ preserver if and only if \mathscr{S} is a $\rho-2$ preserver. If \mathscr{S} is a $\rho-4$ preserver, then \mathscr{S} is a $\rho-2 k$ preserver, $k=1,2, \cdots,[n / 2]$. Moreover, if A is any n-square skew-symmetric matrix, then $\mathscr{S}(A)=\alpha P A P^{\prime}$ or $\mathscr{S}(A)=\beta P A^{\prime} P^{\prime}$ for α, β nonzero in F and some nonsingular n-square matrix P except when $n=4$, in which case \mathscr{S} may possibly be of the form

$$
\mathscr{S}(A)=\alpha P\left\|\begin{array}{cccc}
0 & a_{34} & a_{24} & a_{23} \\
-a_{34} & 0 & a_{14} & a_{13} \\
-a_{24} & -a_{14} & 0 & a_{12} \\
-a_{23} & -a_{13} & -a_{12} & 0
\end{array}\right\| \quad P^{\prime}
$$

where $A=\left(a_{i j}\right), a_{i j}=-a_{j i}$.
Remark. These results are not necessarily true when the underlying field F is nonalgebraically closed (cf. § 2b. and end of [2]).

Acknowledgement. Many thanks are due to Professor R. Westwick for his invaluable help in obtaining these results.

References

1. N. Bourbaki, Elements de Mathematique, 1948.
2. M. J. S. Lim, Rank k Grassmann products, Pacific J. Math. (2) 29 (1969).
3. L-L Lubspaces of Grassman product spaces (submitted to Pacific J. Math.)
4. M. Marcus and B. N. Moyls, Transformations on tensor product spaces, Pacific J. Math. (4) 9 (1959).

$$
5
$$ 5.

6. M. Marcus and R. Purves, Linear transformations on algebras of matrices: The invariance of the elementary symmetric functions, Canad. J. Math. 11 (1959), 383-396. 7. M. Marcus and R. Westwick, Linear maps on skew-symmetric matrices, the invariance of elementary symmetric functions, Pacific J. Math. 10 (1960), 917.
7. R. Westwick, Linear transformations on Grassmann spaces, Pacific J. Math. (3) 14 (1964).

Received May 16, 1969.
McGill University
Montreal

