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ON A CERTAIN GENERALIZATION OF < SPACES

JEANNE LADUKE

An ίfp space is a product of finite-dimensional cp spaces
with a weighted /v norm on the product. The first theorem
of this paper yields an isometric embedding of Sfp into an
appropriate cp space. From this theorem, known results about
cp are used to deduce, among other things, the Clarkson in-
equalities for ifp, 1 < p < co, and hence, the uniform con-
vexity of ί?p for 1 < p < co.

The second theorem characterizes the conjugate space of
iίp for 0 < p < 1. This result is then used to describe some
spaces of multipliers. Let Sf and & be 8^ spaces, 1 ^
p ^ oo, or g"0. The spaces ~^#(J^\ &) of multipliers from
S*f to έ%? have previously been identified with certain sub-
spaces of £?(/) and determined precisely in some cases. The
third theorem is a complete description of these multiplier
spaces: the cases 0 < p < 1 are included and the spaces

are determined precisely for all pairs

1* Definitions* First, we repeat the definition of cp (called Cp

by Dunford and Schwartz [1], Sp by Gohberg and Krein [2], and cp

by McCarthy [6]). See also [3, D. 37] for the case where H is finite-
dimensional.

DEFINITION 1.1. Let H be a Hubert space and let X be a compact
operator on H. Then XX* is positive and compact and hence has a
unique positive square root which is also compact. We denote this
square root by \X\. Now let μn be the, at most countably many,
nonzero eigenvalues of \X\ enumerated with their multiplicity and
arranged in a decreasing sequence as μ1 ^ μ2 ^ ^ 0. For 0 <
p < oo, we define

whether finite or infinite; and we define

= s u p { μ n : l ^ n

Equivalently, [1, p. 1089], H-SΓĤ  is the operator norm of X. Then
cp consists of all compact X with ||^Π]*P finite.

See [1], [2], and [6] for a detailed treatment of cp spaces and for
additional references. Also, [3, Appendix D] contains a number of
results in case H is finite-dimensional.
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We proceed to define g^ spaces. These spaces were introduced
by R. A. Kunze [5] primarily for the purpose of having analogues of
4 spaces in the study of harmonic analysis on compact non-Abelian
groups. They have been studied and exploited for this purpose espe-
cially by Hewitt and Ross [3].

DEFINITION 1.2. Let / be an index set. For each eel, let HL

be a finite-dimensional Hubert space and let aL ^ 1. We let &(I)
denote the *-algebra ΐ[ιBl &(HL) with all operations defined coordi-
natewise. Let E = (EL)ιeIe if (I). For 0 < p < oo, we define

we also define

For 0 < p ^ co3 g^J) is defined to be the set of all # e gf (I) for which
\\E\\P is finite. In addition, Wm{I) is the set of Ee^(I) for which
{celiE^O} is finite; and g^I) is the set of Ee^(I) for which
{ce I: \\EL\\Φoa ;> ε} is finite for all ε > 0, Frequently we write g^ in
place of S?p(/). We notice that if each HL is one-dimensional, then
g^I) is just the {αt}-weighted 4 space which we will call Lp; namely,

{cL}ιeτeLp if a n d only if cL e K for e a c h c el a n d \\c\\p = (T^eiaL\cL\pylP <
00. In addition, if each αt = 1, then ίfp(I) is just 4(1). Also, it is
convenient to think of g^ as a product of cp spaces with a weighted
4 norm on the product.

2Φ An embedding theorem and some consequences* In Hewitt
and Ross [3], several basic facts about rgp for 1 ^ p ^ 00 are proved.
There it is shown that Holder's inequality, Minkowski's inequality
and certain generalizations of these hold. The major result of this
section is (2.2), a theorem describing a linear isometry of gfp onto a
subspace of an appropriate cp space. The theorem is then used to
derive a number of inequalities for g^ from results known about cp.
We begin with a description of the setting.

Let I be an index set and let Ht be a finite-dimensional Hubert
space for each eel. Also, let αt ^ 1 for each eel. For 0 < p <i 00,
Ilî llp and g*p will be as in (1.2). Now from the Hubert space direct
sum @LeiHc', namely

with addition and scalar multiplication defined coordinatewise and with
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an inner product defined by <{?J, {ηS} = Σιe/<ft> V^ϊ I* * s w e ^ known
that φteiHL is a Hubert space under these definitions.

DEFINITION 2.1. Let 0 < p < co and let E = (EL)LeIe gV Define
Γ p(#) - T* where TE({ζL}) = {a)lPEL(ξL)} for all {£J G Θ.ez # . If P = «>
and # e g^, let T 4 # ) - TE where 7y{fJ) - {EL(ξL)}.

If ί> = oo, it is known that TEe^(©LeIHL) and
In general we have the following theorem.

THEOREM 2.2. Le£ 0 < p < co cmd ^ ί Γ^ δe defined as above.
Then Tp is a linear, ^-preserving isometry of &P(I) onto the subspace
ep = {Te cp(@ιeIHL): HL is invariant under T for all ce 1} of cp(@LeIHL).

Proof. First, let ξ - {fj G φ ι β / ίZ" 4 so that
for £7= (EL)LeIe ^p. Then using [1, p. 1093, 9 (a)] to obtain the
second inequality below, we have

T h e r e f o r e , TE({ζL})e®LeI HL and \\TE({ζL})\\ ^ \\E\\p\\ξ\\. A l so, Γ* is
clearly linear. Hence, TEe ^((BLeIHL) and 11 T̂ 11 <Ξ | |J^| |P. It is easy
to check that Tp is linear and ^-preserving.

We must now see that TE is compact for £ e ^ . Since E—>TE

is continuous and ĝ o is dense in g^, we need only note that TE is
compact for Ee g^. This is obvious since TE has finite-dimensional
range for Ee &00.

To see that Tp is an isometry, we make the following observation.
Suppose {φ{:j = 1, 2, , cί;>} is an orthonormal basis for Hλ of dimen-
sion dλ for each λ e I. For each λ e I and i = 1, 2, , <i;, let φλ>3' —
W'0cβ/€© ι e i f l ; be defined by

0 i f ί ^ λ .

Then it is easy to see t h a t {φλ'd: λ e J, j = 1, 2, , dλ) is an orthonormal

basis for φ t e 7 i ϊ t . Now, let Ee g^ and let {/5^:i = 1,2, •••, ̂ } be
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the eigenvalues of \Eλ\ for each λ e l . For each λe I, we choose
[φ{:j = 1, 2, •••, dj} to be an orthonormal basis for Hλ consisting of
eigenvectors corresponding to the eigenvalues (β[j))2 of EλEf; that is,
EλEfφi = {β'ffΦi. Letting ψu be as above, we have that TET£φu =
TETE*φλ>> = 07Jι67 where ηL = aψEλEUi = α$'W)Vίι if * = λ and
^ = 0 for ί ^ λ . That is, TET£φλ>j = (aψβPfφ1-*; or {^':λe /,j =
1, , dj} is an orthonormal basis for © t 6 I £Γt consisting of eigenvectors
corresponding to the eigenvalues (a\lPβ{

?

j)y of TETE. Hence, by defini-
tion, we have

λel

V

p

Thus, Tp is an isometry.
Finally, we show that Tv maps g^ onto ep(φιeIHL). Consider S

in βp(φ t e I£Γ t). For each eel, we let EL = a r 1 ^ ! ^ . Since ίZ"t is in-
variant under S, Et e &{H) for each eel. Also, we notice that Ht is
invariant under S* for each eel. Hence, for ξl9yjLeHιf we have

and so Ef = aτllPS* \Hι for each c e I. Now we essentially repeat an
earlier argument. Namely, let {β[j):j — 1, 2, , dλ} be eigenvalues
of \EX\ for each Xel and let {^i:i = 1, , dλ} be an orthonormal
basis for Hx consisting of eigenvectors corresponding to the eigenvalues
{(βPY' O = 1, , di} of EλEϊ. Then, as above, SS*φx>> = aT{β[j))Ψ'j

so that \\S\\l = \\E\\* where E = (Et)ιeI, and hence Ee &p. Clearly,
S(ξ) = Γ ί̂f) for all ξeHL,ceI; thus, by linearity, S(£) = TE(ξ) for all
ί e ®ιeiHt with ίt ^ 0 for only finitely many ce I. By the density of
the latter set in φ t e J Hι9 S(ξ) = TE(ξ) for all fe© ι67.ff t. Hence
T9(E) = S and so Tp maps onto e p (φ t 6 Z £Γt).

We state several corollaries which follow immediately from results
for cp spaces found in [1, XI, § 9], [2, III, § 7] and [6]. Also, compare
[3, §28].

COROLLARY 2.3. Let 0 < p ^ q ^ oo. Then &P(I) c &q{I) and
\\E\\q<k\\E\\p.

COROLLARY 2.4. Suppose 0 < p ^ 1; let E, Fe g^(/).
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Thus, &P(I) is a metric space with metric p where p(A, B) = || A — J3||J.

Inequalities (i) and (ii) in the following are due to McCarthy [6,
Th. 2.7] for cp spaces.

COROLLARY 2.5. (Clarkson's inequalities). Let E, Fe^(I). Then,
for 1/p + ljpf — 1, we have

( i ) 2»

( i i ) \\E + F\\lf + \\E - FWΐ ^ 2(\\E\\Ϊ + | | 2 V " K V ^ 2,

(iii)

(iv) 2(| |#| |; + \\F\\irlP ̂  WE + F\\l'

COROLLARY 2.6. For 1 < p < oo, i?p(/) is uniformly convex.
(Recall that a normed linear space X is said to be uniformly convex
if δ(ε) — i n f {1 — 1/2|α? + y \ : \x\ = | y | = 1, | # — 2/| = ε} is strictly posi-
tive in some range 0 < ε < ε0.)

Proof. Use the Clarkson inequalities (2.5) (ii) and the right hand
half of (2.5) (iii) to obtain

|| JE7 + ί Ί | ; ' ^ 2p/ - \\E - F\\p

p' for 1 < p ^ 2

and

Il-E + F\\l ^ 2P - \\E - FWP

P for 2 ^ p < oo

when || j£| |P = \\FWP = 1. If, in addition, | | # - F l ^ = ε, we have

1 - — WE + JPH, ̂  1 - — (2p/ - e*')1**' for 1 < p ^ 2 ,
2 2

and

1 - J L WE + F | | p ̂  1 - — (2P - ε ψ p ίov 2^p< oo .

The uniform convexity of g^ for 1 < ί) < co is now clear.

COROLLARY 2.7. (Radon-Riesz theorem). Letl<p<oo. Let(E{n))
be a sequence in S?P(I) and Ee S?P(I) ŝ cfc ίΛαί £7(%) —>E weakly and

Then WE{n)-EWP-*0.

Proof. &P(I) is locally uniformly convex; see [4, 15.17 (a)].
Hence, apply [4, 15.17 (a)].



160 JEANNE LADUKE

3* The conjugate space of ί?p for 0 < p < 1. Theorem (3.4)
below is a characterization of the conjugate space of ξf9 for 0 < p < 1.
The conjugate spaces of £fp for 1 ̂  p < oo are described in [3, § 28].
We first state and prove some easy results which will be used in the
proof of (3.4).

LEMMA 3.1. Let H be a finite-dimensional Hilbert space and let
0 < p, q ^ co. For each Ae &(H), there exists Be &(H) such that
\\B\\φp = 1 and | | A | L = \\AB\\φq = tτ(AB).

Proof. (Compare [3, D.54].) Let a be the eigenvalue of | A\ such
that a = || A\\Φcβ. By [3, D.30] there is an operator V in ^(H) such
that AV=\A~. Let {ζlf ζ2, , ζn} be a basis for Hsuch that \A\ζί =
αd Let P be the operator on H such that Pζx = d and Pζό = 0 for
1 > 1. Finally, let B = VP. By [1, p. 1090, 4 (c)], we have \\B\\φp =
| | P | | ^ - 1. Since AB = AFP - | A|P, we have AS = aP, and hence

and

tr (AB) = tr

LEMMA 3.2. Lei H be a finite-dimensional Hilbert space, and let
A e &?(H). Then

( i ) For 0<p<Lq-^oo,we have

\\\\f_ j { \ \ \ U t ( ) and

and

(ii) for 0 < p ^ 1, we

, the supremum is attained in (i) and (ii).

Proof. Let a = sup {|| AB\\φq: \\B\\φp ^ 1} for 0 < p ^ q ^ «>. Then

by [1, p . 1093, 9 (d) and 9 (a)]",

| | A B | L ^

so that α
For 0 < p ^ Γ, let /S = sup {|tr (AB)\: \\B\\φp ^ 1}. By [3, D.46J,

we have

| t r (AB)\ <: \\AB\\Φl ^ \\A\\Φoo \\B\\Φl ^ \\A\\Φoo \\B\\φp ^

so t h a t β ^ || A\\Φoo.
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The opposite inequalities and the fact that the supremum is
attained in (i) and (ii) follow from (3.1).

LEMMA 3.3. Let 0 < p < 1, Ee gfp(JΓ) and Fe &JJ). Then EF
and FE are in !?„(/),

( i ) \\EF\\V^\\E\\P\\FU and
(ii) \\FE\\P^\\F\U\\E\\P.

Proof. Use [1, p. 1093, 9 (d)] to write

\\EF\\l = \φp J I I U J L
eel p eel P

^ \\F\\lΣaL\\EL\\*φp = \\F\\L\\E\\l .

Assertion (ii) follows similarly.

THEOREM 3.4. Let 0 < p < 1, and let Fe ξf(I). If there exists
a real number c > 0 such that \\FL\\ΦOQ ^ ca^lv)"1 for all eel, then TF,
defined on ξ?p(I) by TF(E) = (E, Fy = Σte/ αt tr (EtF*), is a continuous
linear functional on %?P(I). Conversely, if T is a continuous linear
functional on %fP(I)9 then T — TF for some Fe&(I) such that

ca[llP)~ι for some c> 0 and all eel.

Proof. First, suppose there exists c > 0 such that

cαd/ί»-i for a i i c e L Then, for Ee&p(I), the number TF(E) =
Σιe/α ιtr(j& t2^*) is well-defined (the series converges absolutely) since
by (3.2) and an observation below, we have

\TF(E)=

( 1 )

The last inequality follows since 1 < 1/p so that | |6 | | 1 / p ^j | |6 | | i for
be sl9 and in particular for b — {b) where bζ = α , | | ^ | | 5 .

The linearity of TF follows immediately from the linearityJof t r
[3, D.16]. The inequality (1) also shows that TF is continuous at 0,
hence on %?P(I). (Recall that ifP(Γ) is a metric spaces with p(A, B) =
| | A — B\\ζ.) Thus, TF is a continuous linear functional on £fp(JΓ).
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Conversely, let T be a continuous linear functional on &P(I). Let
e ^ ( I ) : ^ = 0 for X Φ ή. Then s/t is isomorphic with
Restricting T to jyj, we use elementary algebra to see that

there exists Ft e ^{H) such that T(E) = ae tr (EtF*), for all
The linearity of T shows that

T(E) = Σ ae tr
.'6J

for all £7e gfooCO Let F = (Fe)eeI, so t h a t T = TF on gΌoCO
Now suppose t h a t for every real number c > 0, there exists eel

such t h a t | | F , H ^ > ca{

c

llP)~\ In particular, for ne{l,29 •}, let r Λ e /
be such that cn Φ cm for m Φ n and \\F(n\\Φoo > nha{^p)~\ where A; is a
real number greater than zero and such that 2/(1 + k) < p.

For each rc e {1,2, •••}, let Bl%e^{HCr) be such that \\BeJ\φp =
1 and \\FCn\\Φcx> = tr (FtfBtn) as in \s.l). Let 6W = {atnn*)-u* for each
π, and define E = (Ee)eeI, where Ef = bnB?n if c = cn for some n, and
Ec = 0 otherwise. Then

so that Ee ^P(I).
For each positive integer N, define E(N) = (E\N)),eI, where -

E, i£ e = cn with % ^ ΛΓ, and E™ = 0 otherwise. Then EN) e
and 11 Em \ \% ^ 11E \ \% for each N. However,

) = TF(Em) = Σ a, tr {E[mF*)
elΣ

eel

α, tr

= Σ, alΛb,tτ ((Fι%BJ*)

N

Σ
n = l
N
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A simple argument now shows that T is discontinuous, a contradiction.
Therefore, there exists c > 0 so that \\Fe\\Φco £ ca?1*-1 for all eel.
Thus, TF and T are continuous linear functionals on g^(/) which
agree on g"Όo(7)> a dense subspace of g^(I), so that T = TV on gp(/).

Several easy corollaries follow and will be stated without proof.
The notation is as in (3.4).

COROLLARY 3.5. If 0 < p < 1 and if sup,6 7α, < ©o, then g y =

COROLLARY 3.6. Lβί 0 < p < 1 αwd Zeί Lp be a weighted 4 space;
II δ | | p = (Σ«βi a, Ibt \ψ> for {bc} e Lp. For b = [b] e Lp and c = {cc},

let Tc(b) = Σceidcbccc. Then

L * = {Tc: \ e t \ ^ ka?1*-1 f o r some J c > 0 a n d a l l e e l } .

COROLLARY 3.7. If 0 < p < 1, then 4* = {Tc:ce s*).

4+ Some multiplier theorems* Theorem (4.2) is a collection of
results concerning (g^, ^-multipliers. We use the following defini-
tion: Let sf and & be subsets of ^ ( J ) . We say that E in g?(I)
is an ( j^\ ̂ )-multiplier if £ Ά G ^ for all 4 e J / . The set of all
(J^, ^)-multipliers is denoted by ^f{j*f, &).

Clearly, multipliers may be discussed in a context much wider
than that of £fp spaces. For example, it is known that 4 — ̂ ^ ( 4 , 4)
for 0 < p < q < 00 with 1/r = 1/p — 1/q. Also, it is shown in McCarthy
[βy Ths. 2.3 and 5.1] that ^€(cq, cp) = cr for p, q and r as above.

In Hewitt and Ross [3, 35.4] ^{Jzf, &) is described for any
pair (J^, &) chosen from the spaces g7 ,̂ g^, g^, gΌo with 1 ̂  p <
q < 00 with the following exceptions: if sup ί e zα, = 00, it is shown
only that ^ ( j ^ , &) ^ g^, where J ^ = g^ and ^ = g"g or ̂  = g;
with 1 ̂  ί) < g < 00. Our theorem which follows extends the results
of [3, 35.4] to all p and q with 0 < p < q < 00. Also, it identifies
^(Jϊf, &) precisely in the exceptions mentioned above when
sup,67α, = 00. The major tool used in the identification of . / / ( j / , &)
in the cases where sup^α, = °° is (3.4), our characterization of g y
for 0 < p < 1.

Before stating our theorem we note that the following lemma
may easily be verified using [6, Th. 2.3] and the generalized Holder
inequality.

LEMMA 4.1. Let 0 < p, q, r < 00 with 1/p + 1/q = 1/r. If Ee
&,(I),Fe g m then EFe &r(I) and \\EF\\r ^ \\E\\p\\F\\q.
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THEOREM 4.2. Let 0 < p < q < oo and let r be so that 1/r =
1/p — 1/q. For each space s%? listed to the left of the matrix below
and each space & listed above the matrix, the corresponding entry
of the matrix is exactly

if,

9?
<S> p

g-.

sr.

g ;

& oo

q-p + pq

OP
& 0

S> o

gΌo

s = — - —

g ?

gΌo

g -

g7.*

g = "

g',*

Q _ _,τ_

The proof of the above theorem will be broken into several parts.

Part I. For 0 < p ^ 2?/ — S" oo

Proof. In case 1 ^ j> ^ oo, we use the proof of [3, 35.4, Part
II] with dOn replaced by ao% throughout.

Now let 0 < p < 1. The fact that g ^ c ^e(gfp, i?p) follows from
(3.3). The proof of the opposite inclusion is similar to the proof of
[3, 35.4, Part II]. Namely, suppose Eg !?«(/). Then there is a
sequence {cn}n=i of distinct elements in I such that \\Eln\\ΦoQ > n for
each n. By (3.1), there exists BCn in ^{HCr) such that ||ib,n.B,J|# > ^
and \\Bίn\\φp = 1. For % G { 1 , 2, .*}, let an = (ac%n1+p)-llP. Define Ae
^(1) as follows: A,w = anBe% for π e {1, 2, - •} and Ac = 0 for all other
c's in I. Since

we have that Ae
S?P(I) because

. On the other hand, EA does not belong to

Σ
n—l

= oo .
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Thus, E$^(&p, &p) and so ^ ( g ; , $fp)a g ^ / ) . Hence, entries
(1, 4), (3, 2), and (4,1) are verified.

Part II. For 0 < p < oo, we have that Sfp = ^f(&0, ξfp) =
gΌo, g7,). This will verify entries (1,1), (1, 2), (2, 1), and (2, 2).

Proo/. Using (3.3) we see that, for 0 < p < 1, <gp c ^ # ( g ^ , g7,) c
Ό, g^). The rest of the assertion is proved in [3, 35.4, Part

VII] if we replace dσ by aσ throughout.

Part III. Let 0 < p < q < <*> and let s = pq/(q — p Λ- pq)- Then

Proof. Consider TF e g^* with s as above. Then 0 < s < 1 so
that by (3.4), there exists a real number c > 0 such that
•ca\ιh)~\ Let Ee g^. The following is seen to be true by using || \\^g ^
j | \\/p for 0 < p < q < co and the results (3.3), [3, D.52.L], and (2?.3).

Γ Ί

= c Σα.ll^.llϊp

Thus, ί Ή e g7, so that F e ^ g 7 , , gQ. Hence, g7.* c
On the other hand, suppose TV<£ gy*. Again, by (3.4), we have

that for every c > 0, there exists ί β l such that \\Fe\\Φoo> cal11*^1.
Or, in particular, for each %6{1,2, •}, let cn be such that cn Φ tm

for n Φ m and

where fc is a real number satisfying k ^ 2/p — 1/q; that is, 1 ^
q(2/p - k). For each we{l, 2, •••}, let Bine^(Hίn) be such that
HftJI,, - 1 and \\Ft%Bt%\\9q = \\FJ\Φoo as in (3.1). Let bn = (a^n*)-1*
and define Ec = 6%Si% if c — cn and Ee = 0 otherwise. Let E = (Ee)eeI.
Then
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= Σ Mv 1 )" 1 = Σ iM2 <
% = 1 91 = 1

so that ΐ e ^ , However,

^ Σ α, {atn
2)-qlpnqkaσ

t

l8-q

n=ί n n U

Thus, F # £ g; so that Fί^e(&p, &q). We have, therefore, that
g? and (4,2) is verified

Part IV. We verify entries (3, 3), (3, 4), (4, 3) and (4, 4) by show-
ing that for 0 < p < oo,

& s — ^y/iC- \ & p>) (c? Q) — u^/C- \ £? p? & oo) VV11U11/ o — o

Proof. Let TFe g7 |c. We will first show that
By (3.4), there exists a constant c > 0 such that \\Fc\\Φco ^ ca\'s~ι =
ca]lp for all eel. Let Ee CS'P so that ^eiac\\E,\\lp < oo. Then, for
ε > 0,at\\Et\\p

φ ^ (e/c)p for all except finitely many eel. Thus,

< " II Z7
7
 II \\ TP \\ <r \\ Ί? \\ \\ JP \\

for all except finitely many re I. Hence, FEe g^ so that Fe
$?0). Clearly ^(^p, ^c.^i&p, c ^ so that it remains only to
show that ^f(gfp, gfoje g7/.

Suppose TF£ gr*. Then by (3.4), for each ne{l,2, •••}, we can
choose distinct cnel with the property that \\Fίn\\Φoo > n2IP+1a~^lp. As
in (3.1), for each eel, let Bce^(Hc) be such that \\Be\\φp = 1 and
HJP.II^ = 11^5,11^. For each ne {1, 2, - •} let 6n = (atnn

2)~*lP and let
^ = (jB,)ίez where E', = bnBc% Ίi c = cn and Ec = 0 otherwise. An in
Part III, it is clear that Ee If,. However, \\FCnEln\\Φΰo = H F ^ ^ J I ^ =
Ί>n\\Fcn\\ΦθΛ> n for ^e{ l , 2, •••}. Thus, \\FE\U is not finite so that

\Z Hence, F ί ^ g 7 , , g7^) and so ^rίg 7 ,,, g7^) c g7,*.

Part V. If 0 < p < g < oc and l/j> - 1/g - 1/r, then
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Proof. This result is proved for 1 ^ p < q < oo in [3, 35.4, Part
VI]. That proof does not carry over to our wider range for p, q and
r, however.

The inclusion i? r c .^C( i?g, g^) follows immediately from (4.1).
To see the opposite inclusion, suppose that E — (Ee)ceI is in £?(/) but
not in ξ?r. We will show that E^^{^q, gfp).

Let Ίt = a]lr\\Ec\\Φr. Since E<£ gfr, {%} does not belong to <.(/).
However, since 4 = ^ # ( 4 , 4), there exists {βe}esq such that {yβJ g
4 . We may, and will, choose & so that & ^ 0 for all eel. Using
[ 6 , T h . 2 . 3 ] c h o o s e F e s o t h a t \\EeFe\\φp = \\Ec\\Φr\\Fe\\φq f o r e a c h e e l
and such that Et Φ 0 if and only if .F, ̂  0. [For example, let Fe —
\Ec\

rlQ. That the above equality holds in this case may be seen directly
using conditions for equality in Holder's inequality for 4.]

For our convenience below let Φ = {eel: ye Φ 0}. Note also that
Φ = {ceI:EeΦ 0}. For ceΦ, let cc = A«Γ1/ff l l ^ l l v otherwise c, = 0.
For all ce /, let F/ = c ^ and let F ' = (Fe')eGI. Then

ll*Ίllί = Σ α, 11̂ /115, = SlaMa71\\Fl\\%\\Fl\\}t = Σ ft ^ Σ ^ ? <
eel y ceΦ y H ceΦ eel

since {βe} e 4 . Thus, F' e g^. However,

= Σ

= Σ (7,/5;)
p = Σ

ίeΦ eel

since { τ A } ί 4 Hence Eg^t(ξ?q, ξ?p) and (3,1) is verified.

Part VI.

Proof. The proof in [3, 35.4, Part III] can be adapted to our
somewhat more general setting. However, an easy direct proof will
be given.

Since £f0 is an ideal of g^, we have g7* c ^ ( £?<>» £?<>)• Also,
clearly, ^ ( g * 0 , ^)a^t(^ g^). Thus we need to show only that
^ r ( g ^ , gΌo)c gΌo. Consider any £/ in &(I) that is not in g^. Then
for each ^€{1 ,2 , • • • } , let *w be such that cnφtm for ^ Φ m and

1^ > ^ 2 . Let F = (F ί ) ί e 7 where Fc = (l/w)/df for < - ^ and F, -



168 JEANNE LADUKE

0 otherwise. Then we have FegΌ and EFt g^, so that
g y . Hence, entries (2, 3) and (2, 4) are verified.

Part VII. It remains only to verify (1,3) by showing that

Proof. The proof is easy. Namely, g'o c ^£{ g^, gΌ) since |?0

is an ideal in g^. Finally, suppose Eg gV If Ft = Ide, then F G ^
but EFί g^ so that E^^{^^ gf0).
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