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THE HYPO RESIDUUM OF THE AUTOMORPHISM
GROUP OF AN ABELIAN P-GROUP

JUTTA HAUSEN

Throughout the following G denotes an abelian p-group (for
some fixed prime p) and A(G) its automorphism group.

The subject of this article is the question to what extent
the structure of G and the structure of A(G) determine each
other. Theorems of the type:

G is a P-group if and only if A(G) is a Q-group,

where P and Q are group theoretical properties, have been
proved by R. Baer; some others are well-known.

This paper gives a characterisation of this kind for the
class P of all abelian p-groups whose homogeneous direct sum-
mands have finite rank (an abelian p-group is called homogene-
ous if it is a direct sum of isomorphic subgroups of rank 1).

For this purpose it is convenient to define, for every group
X, a characteristic subgroup ΩX, called the hypo residuum of
X This is the product of all normal subgroups N of X, such
that every finite epimorphic image of N is trivial.

The main result is the following

THEOREM A. Every homogeneous direct summand of G
has finite rank if and only if ΩA(G) = 1.

A consequence of this theorem is the following fact: if
A(G) contains a quasicyclic subgroup, then the group of all
permutations on a countably infinite set (and hence every count-
able group) is isomorphic to a group of automorphisms of G.
This happens (if and) only if G possesses a homogeneous direct
summand of infinite rank.

The group Γ(G) of all automorphisms γ of G inducing the
1-automorphism in G/pωG is of special significance. It is shown
that ΩΓ(G) = 1 for every reduced abelian p-group G (Theorem
2) and furthermore

THEOREM B. If G is reduced then ΩA(G) = 1 if and only if
A(G)/Γ(G) is residually finite.

Closely connected with the concept of the hypo residuum
of a group X is the descending chain of the so called higher
residua &μX of X: let &0X = X, define &χX= n μ < λ &μX
if λ is a limit ordinal and ^ μ I has been defined already for
all ordinals μ < λ, and let &μ,+1X be the intersection of all
subgroups of &μX of finite index. Then ΩX — &σX for
sufficiently large <τ, and the following result is proved:

THEOREM C. If G is an abelian p-group of Ulm type τ
such that ΩA(G) = 1, then &τ+1A(G) = 1. Moreover, if G is
reduced, then &τA(G) = 1.
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2* Notation* Our notation and terminology concerning abelian
groups will be standard as it can be found in [3] and [6].

As usual, ω denotes the first infinite ordinal. A + B denotes the
direct sum of the abelian groups A and B. Σ a n d II* are our sym-
bols for a direct sum and a cartesian or unrestricted direct product
resp. The rank of an abelian ^-group H is the dimension of H[p] as
a vector space over the primefield of characteristic p. An abelian p-
group is called homogeneous if it is a direct sum of isomorphic groups
of rank 1. The maximal divisible subgroup of H will be denoted by
dH. If Δ is a group of automorphisms of H, then H{Δ — 1) is the
set of all xδ — x where x e H and δ e A. The group of all automor-
phisms of H shall be denoted by A{H).

Following [3], we define subgroups paH inductively in the follow-
ing way: p°H — H; if pμH is constructed already for an ordinal μ,
then pμ+Ή = p-pμH; and pΉ = f)μ<λp

μH if λ is a limit ordinal.
Clearly,

for every ordinal μ. The rank of the elementary abelian p-group

(pμH)[p]/(pμ+ίH)[p]

is called the μ-th Ulm-Kaplansky invariant of £Γ(cf. [6], p. 27), and
is denoted by fH(μ). If H is a direct sum of cyclic groups and k ^ 0
an integer, then fH(k) is the number of cyclic direct summands of
order pk+1 in such a decomposition (see [6], p. 27). It is well known
that fB(k) — fH(k), for every basic subgroup B of H, and every natural
number k. From this it follows easily that the ranks of homogeneous
direct summands of H are finite if and only if rk(dH) < y$0 and
fH{a) < y$0, for every ordinal a < ω.

If X can be imbedded into a group F, we write X Q Y.

3* The hypo residuum. For an arbitrary group X we define
the residuum of X as the intersection of all subgroups of finite index
of X and denote it by &X. It is a consequence of a well known
theorem by Poincare, that every subgroup of X of finite index contains
a normal subgroup of X of finite index. Therefore, &X is also the
intersection of all normal subgroups of X of finite index.

If < ?̂X is trivial, X is called residually finite (cf. [4], p. 16).
The property of residual finiteness is inherited by subgroups but

neither by extensions nor by epimorphic images. For our purposes
we therefore introduce the concept of higher residua of X, obtained
by interating the process of forming the residuum. As stated in the
introduction, we define ^X = X, &μ+1X = &(&μX)f and
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if λ is a limit ordinal.
Clearly, all the &μX are characteristic subgroups of X, called the

higher residua of X; &μX is called the μ-th residuum of X. From
our definitions it follows that

X = ̂ o ϋ ̂ 1 3 2 ^ 1 3 ^ ω + 1 3 . . .

is a descending chain of subgroups of X, and that &μX = &μ+ίX
implies ^ X = ̂ α X for every a^ μ. Hence, for all X, there exists
a least ordinal τ such that ^ Γ X = <^X, for all μ^τ. &τX then
is called the hypo residuum of X and denoted by ΩX. Note that
&μX = ΩX for every sufficiently large ordinal μ. Hence, ΩX = 1 if
and only if there exists an ordinal μ such that &μX = 1.

We remark that ΩX = X for every infinite simple group X. Also
Z{jΓ) = έ%Z($Γ) — ΩZ(p°°), where as always Z(pw) denotes the quasi-
cyclic p-group.

We are now going to develop the tools we will need in order to
prove our results.

Throughout this section X, Y, and X{ are multiplicative groups.
It is convenient for us to denote the set of all normal subgroups of
finite index of X by ^~{X). Hence

= n N.

LEMMA 3.1. If I g Y, then &μX^k&μY, for every ordinal μ*

Proof. First we want to show

( + ) if I g Γ , then ^ I g ^ 7 .

Let Ne^(Y). Then Y/N is finite and so is XN/N = X/(XίΊ N).
Hence, X Π N is a normal subgroup of X of finite index, for every
N e ̂ ( Y). Consequently,

= n N3
N

and we have proven ( + ).
A simple transfinite induction on μ using (+) completes the proof

of Lemma 3.1.

LEMMA 3.2. For a subgroup W of X the following properties
are equivalent.

(1) W - ΩX.
(2) W is the product of all normal subgroups N of X suck
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that every finite epimorphic image of N is trivial.
(3) W is the set theoretical union of all subgroups S of X such

that every finite epimorphic image of S is trivial.

Proof. Note that every finite epimorphic image of a group S is
trivial if and only if &S — S. Hence, ΩX is a normal subgroup of
X whose finite epimorphic images are trivial, and, by Lemma 3.1,
every subgroup S of X satisfying S = &S is contained in ΩX. This
proves the theorem.

As immediate consequences of Lemma 3.2 we state

COROLLARY 3.3. ί / I g F and ΩY = 1 then ΩX = 1.

COROLLARY 3.4. Let Y be a normal subgroup of X. If ΩY = 1
and Ω(X/Y) = 1 then ΩX = 1.

According to these corollaries the property of having a trivial
hypo residuum is inherited by subgroups and extensions. It is not
inherited by epimorphic images (cf. Lemma 3.7 and note that ΩZ{p°°) —

LEMMA 3.5. Let Y be a normal subgroup of X and &a(X/Y) = 1
for some ordinal a. Then ^ α I e 7 .

Proof. First we want to show, for a subgroup S of X,

( + ) if £g(X/Y) = S/Y then J Ί £ S .

We know that

&(X/Y) = Q (Af/Γ) = ( Q Af)r = S/Γ

and consequently

s= n

Now M/Ye^~(X/Y) if and only if M is a normal subgroup of X of
finite index containing Y. Hence,

S= Π 5 Π
Y M r { X ) J V ~ (

and we have proven (+).
As a subgroup of X/Y every higher residuum &μ(X/Y) of X/Y

is of the form
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= Sμ/Y

for some subgroup Sμ of X. By a simple transfinite induction on μ
using (+) and Lemma 3.1 one shows easily that &μXS-Sμ for every
ordinal μ. Hence, if £Pa(X/Y) = SJY = 1, then ^ I g S α = Y as
stated in the lemma.

LEMMA 3.6. ^ ( Π * ^ < ) S Π * ( ^ Λ ) / ^ βvβri/ ordinal μ.

Proof. Again, the proof will be by transfinite induction on μ.
First we want to show that

Let xe &([[* Xi). Then, by definition of the residuum, x is con-
tained in every normal subgroup of Π* X% of finite index. But, for
every j , if N is a normal subgroup of finite index of Xj9 then JV ΠiW A
is a normal subgroup of Π** X% oί finite index. Hence,

xe n \N.(π*xi]\ = ( n

and this is true for every j . Consequently,

x e 0 [(^ίi) (π* *«)] - Π

for every xe &(Y[? Xt). This proves (+) and we have shown the
lemma for μ = 0 and μ = 1.

Let

be true for every ordinal μ < a. In order to establish (*) ίor μ — a
we distinguish two cases.

( i ) α is a limit ordinal. In this case

and

(2) IΓG^UQ = π* (n ^-zi) = n (π* ^
t i \μ«x J μ<a\ i

as one checks easily. By comparing (1) and (2) and using the induc-
tion hypothesis it follows that

= n Wπ A) S n I
μ<cc \ i / μ<cc i
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We have derived (*) for μ = a.
(ii) a — μ + 1. In this case we have

( 3 )

and

( 4 )

by induction hypothesis and Lemma 3.1. Since ( + ) is established for
arbitrary cartesian products already, we know that

( 5 ) 3

Comparing (3), (4), and (5), the statement (*) follows for μ — a. This
proves Lemma 3.6.

LEMMA 3.7. If A is an (additively written) abelian group, then

Proof. For every subgroup S of finite index of A, there exists
an integer n such that nA £ S. Hence, if x e f | ^ i n ^ then x is
contained in every subgroup of finite index and therefore

(1)

In order to show that equality holds in (1), let aeA, and a g f |^ i nA.
Then there exists an integer m such that aίmA. Since A/mA is
bounded, it is a direct sum of (finite) cyclic groups (see [3], p. 44,
Th. 11.2). It follows that A possesses subgroups F and H such that

(2) A/mA = F/mA + H/mA , aeF ,

and F/mA is finite. Therefore

A/H ~ (A/mA)/(H/mA) ~ F/mA

is finite, i.e., H is a subgroup of finite index of A. But a&H, for
otherwise, aeFf]H~mA because of (2), which is contradiction to
our choice of a £ mA. Hence, a ί &A, and we have proven equality
in (1).

4* Higher residua of automorphism groups* From now on
we are concerned with automorphism groups of abelian groups. The
word "p-group" always is used in the sense of abelian p-group.

If A is an abelian group and S a subgroup of A, the set of all
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automorphisms of A which fix S elementwise and induce the identity-
automorphism in A/S is called the stabilizer of S in A and shall be
denoted by ^(A:S). By a well known theorem of Kaloujnine Σ ( A : S)
is abelian (cf. [7], p. 88, Satz 19).

LEMMA 4.1. If H is a p-group and SQH, then the stabilizer
Σ ( i ϊ : S) of S in H is residually finite.

Proof. A closer examination of the proof of [7, p. 88, Satz 19]
shows that actually Σ*(H:S) = Horn (H/S, S) (cf. [5], p. 153, Hilfssatz
1.4). Hence,

(+) j5? Σ (H: S) s & Horn (H/S, S) .

By Lemma 3.7

& Horn (H/S, S) = Γi ™ Hom (H/S, S) ,

and since H/S is a p-group, Rom (H/S, S) contains no element
which is divisible by every power of p (see [3], p. 206, D)). Conse-
quently, Γϊk^i Pk Horn (H/S, S) = 0, and in particular

& Horn (H/S, S) = Γ) n-Rom (H/S, S) = 0 .

This together with (+) proves our proposition.

LEMMA 4.2. If H is a p-group of finite rank, A(H) is residually
finite.

Proof. Let Θk denote the set of all automorphisms of H which
fix every element of H[pk]. Then θk is a normal subgroup of A(H)
and A(H)/Θk is essentially the group Φk of automorphisms of H[pk]
which is induced by A(H). Clearly, f |^ i θk = 1.

We recall that for a p-group H of finite rank H[pk] is finite for
every k ^ 1. Hence the group Φk of automorphisms of H[pk] induced
by A(H) is finite, and every θk has finite index in A(H). It follows
that

and the lemma is proven.

Following the notation of L. Fuchs (see [3], p. 117f) we define
subgroups Gμ of G in the following way.

Let G° = G. If Gμ is constructed already for an ordinal μ, then
pωQ^ a n ( j (jλ = Q^ < ; I Qμ jf λ j s a i | m i t ordinal.
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The Ulm type of G is the least ordinal τ such that Gτ = GΓ+1.
Clearly, all the Gμ are characteristic subgroups of G and consequently
every automorphism of G induces an automorphism in Gμ and in G/Gμ.

LEMMA 4.3. If A is a group of automorphisms of G inducing
the identity automorphism in G\Gμ for some ordinal μ, then A induces
the identity automorphism in Gι/Gμ+1.

Proof. By hypothesis we have y(δ — 1) e Gμ for every y eG and
every δ e A. If xeG1 — pωG, then there are elements yneG such that

x = pnyn for n = 1, 2,

Hence, for every δ e A,

x(δ -1) = pnyn{δ - 1) e pnGμ for n = 1, 2, .

and

x(δ - 1) G Π VnGμ = PωGμ = Gμ+1 ,

for every x e G1. Therefore, as stated in the lemma, every δ e zl in-
duces the identity automorphism in GιjGμ+\

For a p-group if, the set of all automorphisms of H which induce
the identity automorphism in H/pωH is a normal subgroup of A{H)
which shall be denoted by Γ(H).

THEOREM 1. &μΓ(G) induces the identity automorphism in G/Gμ

for every ordinal μ. Moreover, if μ is finite, &μΓ(G) induces the
identity automorphism in GjGμ+ι.

Proof. The proof of both statements will be by induction on μ.
In order to simplify our notation let Γ = Γ(G). Since Γ — ̂ Γ in-
duces the identity automorphism in G/G\ the first step of each induc-
tion has been established.

First we want to prove the second part of Theorem 1. Assume,
that &J1 fixes every coset of G/Gn+1 for some finite n ^ 0. Let A
be the set of all elements in &nΓ which induce the 1-automorphism
in G/Gn+2. Then A is a normal subgroup of &nΓ and (&nΓ)IΔ is
essentially a group Σ oΐ automorphisms of G/Gn+2. By Lemma 4.3,
&nΓ and therefore Σ induces the 1-automorphism in

Ql/Qn+2 a Qn + llQn+2 ?

and Σ likewise fixes (G/Gn+2)/(Gn+1/Gn+2) elementwise. Hence, Σ =
is a subgroup of the stabilizer of Gn+1/Gn+2 in G/Gn+2, which
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according to Lemma 4.1 is residually finite. Lemma 3.1 then implies
— 1 a n d , by using Lemma 3.5, we obtain

Consequently &n+1Γ induces the identity automorphism in G/Gn+2.
Finite induction proves the second part of the theorem.

To show the first result we make the induction hypothesis

( + ) G(^μΓ -l)^Gμ for all μ < λ

If λ is a limit ordinal then &λΓ = Γ\μ<χ&μΓ and (+) implies

- 1) g Γl & = Gλ .

So, in this case, ( + ) holds for μ = λ.
If λ = μ + 1, then G2 = pωGμ and, by what we have shown already,

we may assume μ > 0. Let Δ denote the set of all elements of &μΓ
which induce the 1-automorphism in G/Gλ. As before, &μΓ\Δ is es-
sentially a group of automorphisms of GjGλ which, by (+) and Lemma
4.3, fixes (G/Gλ)/(Gμ/Gλ) and G'/Gμ+13 Gμ/Gμ+1 = Gμ/Gλ elementwise. As
a subgroup of a stabilizer this group is residually finite (Lemmas 4.1
and 3.1). Hence, Lemma 3.5 implies

&λΓ = &μ+1Γ = &&μF s Δ ,

and &JΓ induces the identity automorphism in G/Gλ.
Transfinite induction proves (+) for all ordinals μ.

THEOREM 2. ΩΓ(G) = 1 for every reduced p-group G.

Proof. Let τ be the Ulm type of G. Then Gτ = 0 and G/Gτ = G.
By Theorem 1, ̂ τΓ(G) induces the identity in G/G7. Hence, &TΓ(G) = 1
and therefore ΩΓ(G) = 1.

THEOREM 3. If G is a p-group without elements of infinite height
such that fG(a) is finite for every ordinal a < ωy then its automor-
phism group A(G) is residually finite.

Proof. It is easy to verify that the finiteness of fG(a) for every
a < a) is equivalent to the condition that

(+) G[pk]/(pnG)[pk] is finite for all n, k ^ 1 .

In order to prove our theorem we consider the set Δ(n, k) of all
automorphisms of G which induce the identity automorphism in

G[pk]/(pnG)[pk] .
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All the G[ph] and pnG are characteristic subgroups of G; therefore
every Δ(n, k) is a normal subgroup of A(G) and A(G)/Δ(n, k) is essenti-
ally a group of automorphisms of G[pk]/(pnG)[pk], which according to
(+) is finite. Hence, every Δ(ny k) has finite index in A(G) and

{+ + ) £PA(G) S Π Δ{n, k) = Δ .

We want to show Δ = 1. Let δe Δ and xeG arbitrary. Then pkx = 0
for some integer k Ξ> 1, and S e J g f l ^ i Φ ) &) implies

α(δ - 1) G ( f G ) [ / ] g p κ G for all w ^ 1 .

Hence

a;(S -l)ef\pnG = PωG = 0

and

$δ = a; .

This being true for all xeG and every δ e Δ gives us Δ — 1 and (+ +)
proves the theorem.

THEOREM 4. Lβί G be a p-group whose homogeneous direct summ-
ands have finite rank. If τ is the Uhn type of G, then &τ+1A(G) = 1.
Moroever, if G is reduced, &τA(G) — 1.

Proof. Let B — Σ i 2 £ 1 ^ be a basic subgroup of G where B{ is a
direct sum of cyclic groups of order p\ Then every Bt is a bounded
pure subgroup of G and therefore a direct summand (cf. [3], p. 80,
Theorem 24.5). Hence all the B{ and, by a structure theorem for
divisible groups (cf. [3], p. 64, Th. 19.1), also dG are homogeneous
direct summands of G. Our hypothesis implies

( 0 ) Bi is finite for all i ^ 1

( d ) rk(dG)< Ko.

Again, fB(a) = fG{a) for all finite a and fB(i) = rk(Bi+1). So, (0)
implies

( 1 ) Ma) < «o for all a < ω .

If τ = 0, G is divisible and G — dG has finite rank according to
(d). In this case Theorem 4 is a consequence of Lemma 4.2. So we
may assume that

( 2 ) r ^ l .

Again, A((τ) induces in G/pωG a group # of automorphisms, and
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( 3 ) θ

where as before Γ(G) denotes the normal subgroup consisting of all
elements of A(G) which induce the 1-automorphism in G/pωG. G/pωG
is a p-group without elements of infinite height whose basic subgroups
are isomorphic to the basic subgroups of G. Hence, fGιP<oG(a) — fG{a)
for all a < ω, and by (1), G/pωG satisfies the hypothesis of Theorem
3. It follows that A(G/pωG) is residually finite and (3) together with
the Lemmas 3.1 and 3.5 gives us ^ A ( G ) S Γ ( G ) , Applying Lemma
3.1 to this inclusion it follows that

( 4 ) &μ.<3PA{G) S &μΓ{G) for all μ .

Clearly, if μ is finite, we have ^μ^A(G) = &μ+1A(G). If μ is in-
finite, then &μ&A(G) = &1+μA(G) = &μA(G). Hence, we can rewrite
(4) in the form

for μ < ω ,

for μ ^ ω .

Let Φ be the set of all automorphisms of G which induce the
identity in G/dG. If τ is the Ulm type of G, then Gτ = dG. We claim
that

To prove ( + ) we distinguish two cases. By Theorem 1, &τΓ(G) in-
duces the identity automorphism in G/Gτ — GjdG. So, in the case τ
is infinite, ( + ) follows from the second part of (4)*.

If τ ;> 1 (cf. (2)) is finite, &τ_JΓ(G) already induces the identity
in G/GT — G/dG, again according to Theorem 1. In this case ( + ) follows
from the first part of (4)*, and is therefore proven in general.

In particular, if G is reduced, ( + ) implies &τA(G) = 1 as claimed
in the theorem.

Let Δ be the set of all automorphisms of G fixing dG elementwise.
Then, as before, Δ is a normal subgroup of A(G) and A(G)/Δ is essenti-
ally a group of automorphisms of dG. But dG has finite rank accord-
ing to (d), hence by Lemma 4.2 its automorphism group is residually
finite. We conclude (Lemmas 3.1 and 3.5)

Comparing (+) and ( + + ) and recalling that τ ^ 1 (see (2)) it follows
that

( 5 )

But Φ Π Δ is the stabilizer of dG in G, hence by Lemma 4.1 residually
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finite. Again applying Lemma 3.1 the statement (5) finally gives us

and the theorem is proven.

REMARK. Unfortunately, we were not able to determine the
smallest ordinal a such that &aA(G) = 1 (if ΩA(G) = 1). We do not
even know whether &aA{G) = 1 is possible for an ordinal a less than
the Ulm type of G.

A consequence of Theorem 4 is the following

THEOREM 5. For a p-group G the following statements are
equivalent.

( 1 ) G possesses a quasicyclic group of automorphisms.
( 2 ) Every countable group is isomorphic to a group of automor-

phisms of G.
( 3 ) The group of all permutations on a countably infinite set

is isomorphic to a group of automorphisms of G.
( 4 ) ΩA{G)Φl.
(5 ) G possesses a homogeneous direct summand of infinite rank.
( 6 ) Either rk(dG) ^ ^ 0 or fG{a) ^ y$0 for some ordinal a < ω.

REMARK. For an arbitrary abelian torsion group G the statements
(l)-(5) still are equivalent. (6) has to be modified in an obvious way
(cf. Lemma 3.6).

Proof. As stated several times before, (5) and (6) are equivalent.
Clearly, (5) implies (3). Since by a well known theorem every

countable group is a group of permutations on a countably infinite
set, (2) follows from (3). (1) is a trivial consequence of (2).

Let us assume the validity of (1) and recall that ΩZ(q°°) = Z(q°°)
for every prime q. Therefore, by Corollary 3.3, ΩA{G) Φ 1 and we
have derived (4) from (1).

It remains to show that (4) implies (5). But this is just the
previous Theorem 4. The proof of the theorem is completed.

Theorem A, stated in the introduction, is an obvious consequence
of this result.

Theorem C above follows readily from Theorems 5 and 4.

It remains to give a
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Proof of Theorem B. Let G be reduced and assume first that
A(G)/Γ(G) is residually finite. Then Ω(A(G)/Γ(G)) = 1 and, by Theorem
2, also ΩΓ(G) = 1. Hence Corollary 3.4 implies ΩA(G) = 1.

Conversely, suppose ΩA(G) — 1. Then fG{a) < oo for all finite
ordinals a by the previous Theorem 5. Since fQ(a) = fGlPo»G(a) for all
a < ω and G/pωG has no elements of infinite height, Theorem 3 applies
to GJpωG and we obtain

Since, by definition, A(G)/Γ(G) is essentially a group of automor-
phisms of G/pωG, Lemma 3.1 and (+) imply the residual finiteness of
A(G)/Γ(G).

All the theorems stated in the introduction are proven.
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