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DERIVATIONS AND ACTIONS

FRANCES F. GULICK

This paper continues the study of functions which act in
a Banach algebra containing compact operators on a Hubert
space. In particular, a strong action of a function / in 5ί is
considered, that is, an action T-*f(T) from %Ό={Te «: a{T) c U}
into 21 such that f(T) commutes with all operators of finite
rank which commute with T. Let E\(T) be the projection of
the Hubert space onto ker(ΛI- Tf)v(λ) such that kev Eλ(T) =
(λl— T)v(λ)iJ. If /defines a strong action Γ->/(T) in S, then
for each Te^tv and λeσo(T) there exist α0, αi, , αWλ)-ie C
such that /(T)S λ(Γ)=Σi=o" 1(l/i!)αi(Γ-^7)^ λ(Γ) (Theorem
3.4). If an algebra ^ ^ of functions defines what is called a
D-action ^ in 2Ϊ, then, in fact, there exists a system of deriv-
ations {Dk' 0 ̂  & < m} from ^ C into the algebra of all functions
on £7such that φ(J, T)Eλ(T) = Σϊ=o-1 (Xlj\)Djf(λ){T-λI)ίEχ(T)
for all fs^t, Te^ίjT and Λe<70(T) (Theorem 4.2). Finally, it
is shown that if ^f defines an action φ in 2Ϊ, the function
cc(ί) = £ is in u / and (̂cc, •) is a D-action of a? in 21 which is
continuous when restricted to {Te 2ί: <7(T)c[| z | < r]}, then for
every analytic function fe^f φ(f, T) is defined by a sum
involving the Cauchy integral formula and terms of the form

In this paper we continue the study of the concept of what we
call the action of functions in Banach algebras, a study which we
began in [2]. Generally speaking, let 21 be a Banach algebra, U the
open unit disk of the complex plane, 2ί̂  the set of all elements of 21
with spectrum contained in U and / a complex-valued function with
domain U. Then we say / acts in 21 or / defines an action in 21 if
there exists a mapping x—+f(x) of 21̂  into 21 such that for every
maximal commutative subalgebra ^ of 21, a complex homomorphism
h on ^ and x e <& n 21̂ , f(x) is in & and h{f(x)) = f(h(x)). An algebra
^£ of functions defined on U acts in 21 if there exists a mapping
φ\ ̂  x 2Itf—>2I such that for each fe^f,x—*φ(f,x) is an action
of / in 21 and for each x e 21̂ , / —> φ(f, x) is an algebra homomorphism.

In addition to defining the concept of functions acting in general
Banach algebras and establishing some properties of such actions, we
also described the algebra of functions which acts in certain Banach
algebras containing only normal compact operators on a Hubert space
H, the functions being determined by the algebra of operators. This
paper extends that study of actions of functions in Banach algebras
of compact operators to algebras which contain nonnormal operators.
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While we do not characterize those functions which can act in such
algebras, we do describe the restriction of f(T) to certain finite-
dimensional subspaces of H.

Let 31 be a Banach algebra which has as its elements compact
operators on a Hubert space H. Since TeSI is compact, the spectrum
of T consists only of eigenvalues and each nonzero eigenvalue has
finite index v(λ). There is a projection Eλ(T) of H onto ker (λl - T)vlλ)

such that the kernel of Eλ{T) is the range of the operator (λJ - T)v{λK
If / is analytic on the unit disk U with /(0) = 0, then for every

TeSItf the Cauchy integral formula defines an operator /(T)eSI and
the mapping T—>/(T) from 31̂  into SI satisfies the definition of /
acting in SI (see p. 568 of [1]). In addition, for each nonzero eigenvalue
λ of Te^U9f(T) can be described on ker (λI - T)v{λ) by the equation

y{λ)—ι 1

f(T)Eλ(T) = Σ 4j / ( i ) (λ)(Γ- λ Ι ) ^ ( Γ )

[1, p. 559], If / and g are both analytic on the unit disk and Te 3I#,
then the coefficient of (T — Xl)3Έλ(T)fjl in the sum expressing
(f + g)Eλ(T) is the constant /(i)(λ) + gij)(X) while the coefficient in
the sum expressing (fg)(T)Eλ(T) (fg the pointwise product) is the
constant (fgYj)(X) = Σ M O / ^ W ^ M .

Now suppose we change the hypotheses somewhat. Suppose / is
any function which defines an action T—>f(T) in our algebra 31 of
compact operators. Then is the operator f(T) (Te%π) still defined
on the finite-dimensional subspace ker (λJ — TYa)(X Φ 0) by a formula
of the form

(0.1) f(T)Eλ(T) = Σ 4ra3(T - Xl)jEλ(T)l

Let us assume for the moment that the answer to our question
is yes for some TeSI^ and a nonzero eigenvalue λ of T and that a
second function g defines an action S—>g(S) in SI such that g{T)Eλ(T) =
Σ ϊ S " 1 (VJl)b3(T - Xiy'Eλ(T). The mappings S->f(S) + g(S) and S->
f(S)g(S)(Se Sk) are actions of the functions/ + g and fg, respectively,
in SI. A straightforward calculation shows that ( / + g)(T)Eλ(T) and
(fg)(T)Eλ(T) are defined by formulas similar to (0.1) but with a3- + bό and
Σi=o(i)ΛyδA-i> respectively, replacing aά in (0.1). Thus the coefficients
of {T-Xl)jEλ{T)IJ\ in these two sums expressing (/ + g)(T)Eλ{T) and
(fg)(T)Eλ(T) bear the same type of relationship to the coefficients in
the sums expressing f(T)Eλ(T) and g(T)Eλ(T) as they did when /
and g were analytic. In fact, the coefficient of (T - Xl)jEλ(T)/jl for
the product looks very much like the Leibniz rule for higher-order
derivatives or for a system of derivations (see [3]). Suppose ^£ is
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an algebra of functions which defines an action φ in §1 and suppose
<P(f, T)Eχ{T) (Te%UfX a nonzero eigenvalue of T) is defined by an
equation similar to (0.1). Is there a system of operators {Dk: 0 ^ k < m}
(m possibly infinite) defined on ^ such that Dk is linear, Dk(fg) =
ΣJ=o (*)Φi/)(-D*-iff) for each integer k<m and/, ge^tf and such
that <?(/, T)Eλ{T) is defined by equation (0.1) with α, = 2?y/(λ) for
ί = 0,1, . . . , i ; ( λ ) - l ?

For that matter, is it possible for an algebra ^ f of functions
to act in 2t if there is a system of derivations defined on ^"l Is
equation (0.1) the guide to defining the action?

These are some of the questions we tackle in this paper. We
show that if a function / defines an action T—>f(T) in §1 such that
f(T) commutes with every operator of finite rank that commutes with
T, then f(T)Ex(T) is, in fact, given by an equation of the form (0.1)
(Theorem 3.4). Moreover, if 21 contains an element with nonzero
spectrum and the mapping (/, T) —*f(T) is what we call a D-aetion
in 21 of an algebra ^ of functions, then there exists a system of
derivations (J)ky from ^ f into the algebra of all functions on U such
that f{T)Eλ{T) is defined by equation (0.1) with a5 = DJiX) (Theorem
4.2).

In answer to the last question above we show that if 21 has as
its elements only operators of finite rank and ^t is an algebra of
functions defined on Z7, then every member of a restricted class of
systems of derivations from Λ? into the algebra of all functions on
U determines a different action of ^ in 5t (Theorem 2.5). Note
that for such an algebra Theorem 4.2 is a converse to this theorem.

The action of an analytic function / in 21 defined by the Cauchy
integral formula has the property that whenever a sequence <ΓΛ>c2tσ-
converges to T, then the sequence </(Tft)> converges to f(T) (see p
1101 of [1]). We show that if a D-action of a function / has this
limit property, then the associated function Dkf are continuous
(Theorem 5.4). Finally we prove that if T—+x(T) is a D-action which
has this limit property when restricted to the set {Te SI: σ(T)a[\z\ < r]}
for some 0 < r < 1, then there exists a natural action (/, T)-+f(T)
of the algebra of functions analytic on U vanishing at zero (Theorem
6.1). In fact, if Te% σ(T)a[\z\ < r], then the image of T is

f{T) = _ M f(z)(zl - x(T))~ldz .
2m J\z\=r

1* Notation and terminology* Throughout this paper R and
C denote the real and complex numbers, respectively. All algebras
are complex algebras. If X is a topological space, then C(X) is the
algebra of all continuous complex-valued functions defined on X while
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CQ(X) is the subalgebra of C(X) containing all functions which "vanish
at infinity—/ is in C0(X) if, and only if, for each e > 0 there exists
compact KczX such that |/(ί)| < ε for t$K.

We denote by [\z — X\<r] the open complex disk {ze C: \z — X\<r}.
Let H be a Hubert space, L(H) the Banach algebra of continuous

linear operators on H with the operator norm | |Γ | | . We denote by
Ceo the set of all compact operators in L(H), a closed two-sided ideal
of L(H) with the algebra of all operators of finite rank dense in it.
We denote by CQ the algebra of operators in L(H) of finite rank. If
T is in CU then the spectrum of T, σ(T) = {XeC'.Xl - T is not in-
vertible} is at most countable and zero is the only possible cluster
point. Each Xeσ(T) is an eigenvector of T [12, p. 219]. For each
TeL(H) we denote by σQ(T) the nonzero elements of σ(T).

For each TeL(H) and Xeσ(T), the index vτ(X) = v(X) of X for
T is the smallest integer k (if it exists) such that ker (XI — T)k =
ker (XI - T)k+\ The index of X Φ 0 for compact T is finite, the sub-
space ker (XI — T)Hλ) has finite dimension and H is the direct sum of
ker (λ/- T)v{λ) and (XI - TY{λ)H [12, p. 219]. We call the projection
Eλ(T) of H onto ker(λ/- τya) with ker#,(T) - (XI - Tya)H the
iϋίβsz projection onto ker (λ/— Γ)v U ).

Suppose Te Ceo and λ e ^ T ) , Of great use in determining the
behavior of an operator on Eλ(T)H is what we call a Jordan basis
of Eλ(T)H. This is a basis {^ : 1 ^ i ^ m, 1 ^ i ^ r j of Eλ(T)H
such that y(λ) = rx ^ r2 ^ ^ rw ^ 1, n + r2 + rm = dim Eλ(T)H
and

//P Λ rx f̂ +1 f θ r -1 = '̂ < r*> X = * = m

( i — XljXij = \

(0 f o r j = riyl ^ i ^ m .
Such a basis is constructed in the same manner as the basis for the
Jordan canonical form of a matrix (cf. [1], p. 563).

Let & be a subalgebra of CΌo such that (i) & contains Co; (ii)
^ is a Banach algebra with respect to a norm | | and \\T\\ ^ \T\
for all Te <^; (iii) σ^(T) = σ(T) for all Te ^ . We call such an
algebra a Banach algebra of compact operators and it is to such
algebras that we restrict our attention. The algebras Cp, 1 ^ p ^ °°,
[1, 9] are Banach algebras of compact operators.

If H is finite-dimensional, then & — L(H) as a consequence of
(i). If & is closed under the usual involution T—• T*, then the
condition \\T\\ ^ | Γ| above is redundant; the identity mapping T—+T
of & into L(iί) is a *-homomorphism and hence a norm-reducing mapp-
ing [10, p. 208].

For a commutative Banach algebra 21 we denote by M% the
maximal ideal space of 21 regarded also as the space of nonzero com-
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plex homomorphisms on 21 with the relative weak*-topology. The
Gelfand mapping x —> x of 2ί into C0(Mw) is defined by setting x(h) =
Λ(a?) for all & e ikfe, x e 21.

For each set Sc2ί the commutant of S in 21 is the set S^ =
{T/G 21: xy = yx for all xeS}. If S = {&}, then we write {α;}̂  = (#)^.
The second commutant of S in 31 is the set ( S ' ^ = Ŝ J.

Throughout the paper the symbol U denotes the open unit disk
of the complex plane unless stated otherwise. If 2ί is a Banach
algebra, 2ί̂  denotes the set {xe 21: σφήcz U) or, equivalently, the open
unit ball in the topology generated by the spectral radius.

2* Functions which act in algebras of compact operators* We
first present the definition basic to this paper.

DEFINITION 2.1. A set S? of complex-valued functions defined on
U acts in 2Ϊ (or defines an action in SI) if there exists a mapping

φ: S^ x SXJT- —> 21 such that (i) for every maximal commutative sub-
algebra <£f of 21 and x e <if n %u /O) is in i f and [f(x)Γ = / ° ί on
il ί̂ ; (ii) whenever /, # and af+g are in ^ (or /, g and /# are in
^ ) , then 9>(α/ + flr, a?) = α?>(/, ») + φ(g, x) (or ^(Λr, a?) = φ(f, x)φ{g, x))
for all xe%v. If fe£ζ we say / acts in 21. The mapping <p(f, •):
21̂  —• 2ί is called an action of / in 21 while φ is called an action of
£f in St. [2].

Definition 2.1 can be set for functions whose domain is an arbi-
trary set UdC but the results and proofs are essentially the same
for arbitrary sets as for the open unit disk with the exception of
those in §6. In §6 we can replace the open unit disk by a simply-
connected open set and obtain similar results. Throughout the paper,
therefore, we assume all functions are defined on the open unit disk
of the complex plane.

Several examples of functions which define actions in Banach
algebras are given in [2]. The next theorems establish the existence
of algebras of functions which act in Banach algebras containing
compact operators.

Unless stated otherwise & denotes a Banach algebra of compact
operators, 21 a closed subalgebra of & and 2Ϊ(Γ) the closed subalgebra
of 21 generated by Te2I, or by T and I if dim£Γ< oo.

THEOREM 2.2. Let S^ he a set of functions analytic on U with
/(0) = 0 if dim H = oo, Then 6^ defines an action φ in any closed
subalgebra 21 of & such that (1) for each Te%πiφ{f, T) is in (T)%
and (2) if a sequence <Γ%>c2ί converges to Γe2I^, then for large n
φ(f, Tn) is defined and ζφ(f, Tn)y converges to φ(f, T).
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Proof. If (/, T) e S? x %Ό choose r < 1 such that r > max {|λ|:
λeσ(Γ)} and define φ(f, T) by the Cauchy integral formula

(2.1) φ(f, T) = - M f(z)(zl - T)-ιdz .
2π% J ι « ι = r

Then φ(f, T) is in 3t(T) and in (Γ)£ [1, p. 1101]. Since ΓeSt, St(T>
is contained in 3t and consequently φ maps St̂  into St. Conditions (i)
and (ii) of Definition 2.1 follow quickly from the continuity of homo-
morphisms and the "homomorphism theorem" [1, p. 568, and 11, p.
203]. The proof of (2) of the theorem can be adapted from the proof
in [1] (p. 1101) for sequences in Cp and the details are left to the
reader.

If Te %\eσo(T) and fe S^ then

Γ) = Σ -±-P

[1, p. 559], Using this equation as a prototype we can define many-
actions of a function on some Banach algebras by means of higher-
order systems of derivations.

DEFINITION 2.3. A set of m + 1 linear operators {Do, A , , Dm}
from an algebra ^/έ into an algebra £>f is a system of derivations-
of order m (from ^£ to Sf) if for every pair x,ye ~^€ and integer
k = 0,1, , m Dk(xy) satisfies the Leibniz rule

(2.2) Dk(xy) - Σ Cf){Dάx)(Dk_άy) .

A sequence of linear operators Dό: ^y£ —> ^ j — 0,1, 2, , is a system
of derivations of infinite order if {Do, Dίf , Dk) is a system of order
k for each integer k ^ 1. [3].

EXAMPLE 2.4. Let

- {fe C(R): f«> e C(R), j = 0,1, 2 . . . , n) ,

where /(A;) = dkf/dtk. Choose functions ^ , fe2 e C(R) and set i ) 0 / = / ,
DJ = ^i/(1) and A / - ^/ ( 2 ) + h2f

w. It is easily checked that
(Do, Dly D2) is a system of derivations of order two from Cn(R) into
C(R). (For further examples and properties see [3].)

THEOREM 2.5. Let ^t be an algebra of functions defined on IT
and Sί a subalgebra of έ%? which contains only operators of finite
rank. Set m = sup {^(λ): Te St, λe σ{T)}. Then every system of
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derivations {Dk: 0 ^ k < m} of order m — 1 {infinite order if m — oo)
from ^//t into the algebra of all functions on U such that Do is the
identity operator on ^f defines an action φ of ^J? in 21 if dim H < oo
or of ^ = {/e^T:/(0) - 0} m SI if dimiϊ=oo. For
(f T) e ^y£ x §ίtf, ?>(/, Γ) is in the second commutant of T in

Proof. Suppose {Dk: 0 ̂  k < m) is a system of derivations from
into the algebra of all functions on U with Do the identity operator.
For each (/, T) e ΛT x 2ϊσ set

(2.3) φ(f, T) = Σ {4r^i/(λ)(Γ - \I)jEλ(T): 0^j< v(λ), λ e

That 9>(/, Γ) is well-defined and an element of §1 if dim H < oo and
fe ^t or if dim H = oo and / e ^ ί j follows from the fact that v(λ) ̂  m
for λ G σ(Γ), (T - Xl)jEλ(T) is in 31 for Q^j < v(X) and Eλ(T) e 21 if
d i m i ϊ < oo. Since ^ ( Γ ) is in the second commutant of T i n . ^
φ(f, T) also must be. Condition (ii) of Definition 2.1 follows from
the properties of systems of derivations (linearity and the Leibniz
rule).

It is shown in § 4 that what we call a D-action in Sί of an algebra
Λ £ of functions determines a higher-order system of derivations on
^T. The action φ can then be described on Eλ{T)H(Te 21 ,̂ λ e σo(T))
by equation (2.3).

EXAMPLE 2.6. Let 21 = L(CN). Denote by ^ f the algebra of all
polynomials in the functions yt, y2, •• ,yn defined on Z7. For each
polynomial f in n variables denote by f3- the partial derivative of /
with respect to the i-th variable. Define Dk: ^-±^ k = 0,1, , m :>
N - 1 by sett ing DJ = f ΌJ = ΣUfsiVi* %,•••, Vn) and ΌJ =

A Φ * - i / ) f o r e a c h / ? - ^ I* i s easily checked that φ 0 , Z)x, . . . , Dm)
is an m-th order system of derivations on ^C. Thus for each
(/, Γ) G Λ€ x 2tcr we define φ(f, T) by formula (2.3) and the mapping
φ is an action of ^J£ in 2Ϊ.

EXAMPLE 2.7. Although Definition 2.1 is stated for the unit disk,
we present this example of an action of a function defined on an
interval (a, b) because it is well-known.

Let St = L(CN) and ̂ T - Cm(a, 6), m ̂  N - 1, with £>,/ - /<&) for
/ G ^ ^ and k = 0,1, , m. An action £> of ^ ^ in 21 is defined by
equation (2.3). If we regard the operators on CN as N x N matrices,
we find that φ(f, T) is the matrix corresponding to fe Cm (α, 6) and
Te %u defined by Gantmacher [4].
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For Banach algebras of compact operators on infinite-dimensional
Hubert spaces we have the following generalization of Theorems 2.2
and 2.5. Note that Co is the set of operators of finite rank.

THEOREM 2.8. Let ^ be an algebra of functions defined on IT
such that fe ^ is analytic on a disk [\z\ < δf] and /(0) = 0. Sup-
pose (JD0, D19 •) is an infinite order system of derivations from ^/έ
into the algebra of all functions on U such that Do is the identity
operator on ^£ and for each f£^€, and \z\ < δf, Dkf(z) = f{k)(z)»
Then ^f acts in every closed subalgebra of &.

Proof. Let 21 be a closed subalgebra of &. If Te2ίίΊcifo, then
each operator in 2I(T) is of finite rank so that the mapping φ0:
^€ x 21(7%—> 21 defined by equation (2.3) is an action of Λ £ in the
algebra SI(T) (Theorem 2.5). For each f<z^£ the mapping φx{f, •):
{Telϊ:σ(T)(z[\z\ < Ŝ ]} —>SC defined by the Cauchy integral formula
(2.1) (lim^oo || Tn\\lln < r < δf) is an action in 21 of the restriction of /
to [\z\< δf] (Theorem 2.2). Note that if Te 21, σ{T)a[\z\ < δf] and
σ is a finite subset of σ(T)9 then

v{λ)-l 1

(2.4) φtf, Γ)Σ Eλ(T) = Σ Σ 4rf
λeσ λeσ j=0 Jl

(D3 f = fU) on [\z\<δf]). Moreover, if Te%π and P = Σ {Eλ(T):
|λ | ^ δf}, then φtf, T - TP) = φx(f, T - TP)(I - P) as a result of
the homomorphism theorem for the Cauchy integral formula [1, p. 568].

Finally, we define φ: ^ x 21̂  -> §1 as follows: for (/, Γ J e J ' x %π

set P = Σ {^(Γ): |λ | ^ a,} and ?>(/, Γ) = ^ ( / , T - TP) + φo(f, TP)P.
The fact that φ satisfies conditions (i) and (ii) of Definition 2.1 follows
from Theorems 2.2 and 2.5. The proofs that φ is linear and preserves
products are essentially the same so we prove that φ preserves products*

Suppose /, g e ΛT and T e %π. Set e = min (δf, δgy δfg), P =
Σ {Eλ(T): |λ | ^ ε} P, - Σ ί^(Γ): |λ| ^ δ,} and P, = Σ {^(Γ): |λ| ^ δ j .
We assume, without loss of generality that ε = δfg ^ δf ^ δg. Then,
in view of the definition of ψ and equation (2.4) we have

φ(f, T)φ(g, T)

- TPf) + φ0(f, TPJPAfaig, T- TPg) + φ0(g, TPg)Pg]

, T-TP) + 9>o(/, TP)P][^(^, T-TP) + φQ(g, TP)P]

, T - TP)φ1{g9 T-TP) + φo(f, TP)φo(g, TP)P

, T-TP) + φo(fg, TP)P = ?>(/(/, Γ) .

The action defined in the proof of Theorem 2.8 is the action de-
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fined by the Cauchy integral formula when j# is an algebra of func-
tions analytic on U which vanish at zero and Dkf = f{k) for
k = 0,1, 2, •••.

EXAMPLE 2.9. Let ^t be an algebra of functions which are
analytic on the disk [\z\ < r] for some r < 1 and have infinitely dif-
ferentiable real and imaginary parts defined on U (considered as a
subset of the real plane JB2). If fe ^£ and f{z) — u{x, y) + iv(x, y),
set Dkf = fm(z) for \z\<r and Dkf(z) = (dk/dxk)(u + iv)(x, y) for

r^\z\<l(z = x + iy). Then {Dk: k = 0,1, 2, . .} is a system of
derivations on ^C The action of <^€ in 21 of Theorem 2.8 is then a
generalization of the action defined in Theorem 2.5.

3* Form of the operator f(T)Eλ(T). We have seen that an
algebra ^Jt of functions with domain U and a system of derivations
of order m from j& into the algebra of all functions on U can define
an action of ^t in subalgebras of L(CN), N fgm + 1, via equation
(2.3). In the next sections we show that under certain conditions an
action of ^>£ in SI determines a higher-order system of derivations.
As a first step we prove that for each Te 31 and λe σo(T), there exist
constants ak, 0 ^ k < v(X), such that

(3.1) f(T)Eλ(T) = " g l ' l α , ( Γ - λI)'J0a(Γ) .

In order to do so we need operators which may not be elements of
21 although they always belong to & since they have finite rank.
Thus we note that each of the actions defined in §2 has the property
for Te%u f(T) is in the second commutant of T in & and set the
following definition.

DEFINITION 3.1. Let & be a Banach algebra, 21 a closed sub-
algebra of &. A set Sf of functions defined on U acts strongly
(defines a strong action) in 21 if £f acts in 21 in the usual sense and
if the action φ has the additional property that for every (/, x) e Sf x 21̂ ,

If & is a Banach algebra of compact operators, then ^ contains
all operators of finite rank and as a result has no nonzero central
idempotents [10, p. 165]. Thus if dim if = oo and / acts strongly in
21, then /(0) = 0 [2].

In order to obtain equation (3.1) not only for Te2ί and Xeσo(T)
but also for Te2ίίΊC0 and all Xeσ(T) we make use of the following
lemma.
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LEMMA 3.2. If T is a nonzero operator of finite rank and
<J(T) — {0}, then for any nonzero λeC, there exists an operator S
of finite rank such that \eσo(S) and T = (S — Xl)Eλ(S).

Proof. Since dim TH < co, the index of zero must be a finite
integer n; otherwise for k > (dim TH) + 1 there would be x e ker Tk —
ker Tk~~ι and the set {Tx, T2x, , Γ*"1 }̂ would be linearly independent.

The spaces TH and ker T* are orthogonal with Ti ϊc ker Tn~ι

and H — T i i 0 k e r T*. Therefore we can choose by induction ele-
ments y1,y2, — satisfying the following conditions: T^ekerΓ*,
Tn~1y1 Φ 0; ys e ker Trj, where rx = n and rjy j ^ 2, is the largest in-
teger such that ker Trj φ sp {Tk-%: 1 ̂  i < i, 1 ̂  A < r< - r ^ J is a
proper subspace of H. This process must end after a finite number—
say m—of steps. Set xiS = ϊ7 '-1^. Either ker Γ 0 sp {%: 1 ̂  i ^ m;
1 ^ j < Ti) = i ϊ or there exists a largest integer k (2 < k ^ rm) such
that ker Tk~l © sp {a?4i: 1 ̂  i ^ m; 1 ̂  i < r j is not all of i ϊ and a
vector 2/ orthogonal to this subspace such that Tky = 0 and T*"1?/ Φ 0.
Then the vectors y, Ty, , T*"1^ and {xi3 : 1 <^ i <: m,l ^ j <: rd} form
a linearly independent set. The vector Ty is in TH and hence a linear
combination of the vectors xij9 a contradiction.

Let P be the projection onto Ho = sp {â  : 1 ̂  i ^ m, 1 ̂ j ^ r j such
that kerP is the orthogonal complement in ker T of sp(a?lri, , xmτj
Then S = (Γ + λI)P is the desired operator.

In an attempt to simplify Lemma 3.2 the orthogonal projection
onto TH was considered but if H = C4 with the usual inner product
and if Γ(α, δ, c, <Z) = ( i ( - α + δ + c + d), c - d, |(α - 6 + c + d), 0),
then the orthogonal projection P onto the range of T is given by
P(a, 6, c, d) — (α, 6, c, 0). It is easily checked that for λ Φ 0
ΓP - λ(P - I)ΦT.

If dim H < oo, then the set {α?<y: 1 ̂  i ^ m, 1 ̂  i ^ r j in the
proof above can be extended to a Jordan basis {xi3 : 1 ̂  i ^ m0,1 ^ i <; r j
for ίZ" such that ΣΓΛ ^ = dim H, r{ = 1 and Ta^ = 0 for m < i ^ m0.
If To is the matrix for T with respect to this basis, then we obtain
the matrix for S by substituting λ for zero on the diagonal of each
nonzero block of To.

COROLLARY 3.2.1. // TeC0 and 0 e σ(T), then for nonzero XeC,
there exists an operator SeC0 such that λ e σo(S), ker E0(T)cker EX(S),
Eλ(S)HdE0(T)H and TE0(T) = (S - \I)Eλ(S).

Proof. The operator To = TE0(T) satisfies the hypotheses of
Lemma 3.2. Therefore there exists SQ e L(E0(T)H) such that λ e σo(So),
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So has finite rank and To = (SQ - Xl)Eλ(S0). Define S by setting
SE0(T) = So and S(I - E0(T)) = 0.

As a first step toward equation (3.1) we determine the form on
Eλ(T)H of any operator which commutes with T.

LEMMA 3.3. Suppose TeC^ and Xeσo(T) with {xjk: 1 <£ j £ in,
1 <L k <̂  Tj} a Jordan basis for ker (XI — T)Hλ). If S and T commute,
then there exist constants b)s, j — 1, 2, , rs; k, s = 1, 2, , m,

(3.2) 6J' - 0, for 8 < fc, 1 ^ j ^ r s - r ,

(3.3) Sxtj - Σ Σ δw+iίc.* for 1 ^ i ^ m, 1 ^ A; ^
ί=1k=j

If constants b)% 1 ^ j" ̂  r s, 1 ^ &, s ^ m satisfy (3.2), £/&e% ί/̂ erβ ex-
ists SeCoo such that S commutes with T and is defined on Eλ{T)H
by (3.3).

Proof. If TeC^XeσoiT) and if S commutes with T, then
SEλ(T) = Eλ(T)S so that there exist constants δj such that Sxkl =
ΣΓ=i Σi^i δis^si Since S and T - XI commute and (T - Xl)hxsi = 0
for r s — rfc < i ^ rβ, fc ^ s ^ m, and a?Aί = (T — λ l ) ' - 1 ^ for 1 ^ i ^ rA,
we have 0 = S(T - Xl)rkxki = Σϊ=ί Σ ί S r * δ*%,rfc+ί . Therefore, 6f = 0
for 1 ^ j ^ r s — r&, 1 ^ s < fc, and Sa;^ is given by (3.3).

Now let bj8,1 ^ j ^ rs, 1 ^ k, s ^ my be constants satisfying (3 2).
Set S(I - Eλ(T)) = 0 and define Sxki by (3.3). It is a straightforward
computation to show that S and T commute.

COROLLARY 3.3.1. Let T = {R — μ!)Eμ{R), where ReCQ and
μ e (70(R)y und let {χk3 1 ^ 3 ^ τki 1 ^ ^ ^ ^} δ# C6 Jordan basis for
Eμ(R)H. Then for every operator S which commutes with both T
and Eμ(R) there exist constants b)% 1 ^ j ^ r s, 1 ^ fc, s ^ m, satisfying
(3.2) swΛ ί/̂ αί S is defined on Eμ{R)H by equation (3.3). Conversely,
if {b)s: 1 ^ j ^ rs, 1 ^ k, s ^ m} satisfies (3.2), ί/̂ βre βxisίs α^ operator
S which commutes with T and Eμ(R) such that Sxijy l^i^m,l^j^ri9

is defined by (3.3).

THEOREM 3.4. Let f be a function with domain U and a strong
action T —>f(T) in a closed subalgebra % of a Banach algebra & of
compact operators. Then for each Te"Άπ and Xeσo(T), or TeSί^nCΌ
and Xeσ(T), there exist constants a0, a19 •• ,α%_1 (n be the index of
X for T) such that a0 = f(X) and

(3.4) f(T)Eλ(T) = Σ -±γCLk{T - XIYEX{T) .
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Proof. Choose TeSI^ and Xeσo(T) and let n be the index of λ
for Γ. Let {xkj: 1 ̂  j ^ rk, 1 ̂  ft ^ m} be a Jordan basis for Eλ(T)H.
Set i? = Eλ(T). Since /(Γ) and Γ commute, there exist constants
&*% 1 ̂  i ^ rβ, 1 £ ft, s ^ m, satisfying (3.2) such that f(T)xki is de-
fined by (3.3).

Let P&, 1 ̂  ft ̂ S m, be the projection onto the span of {xki: l^i^ rk},
such that ker Pk = ker Eλ(T) © sp {x{j: 1 ̂  i ^ m, 1 ̂  j ^ riy i Φ k}.
Since Γ and Pk(l ^ ft ^ m) commute, f(T) and Pk commute. Thus

As a consequence of Lemma 3.3 the operator S defined by setting
S(I - E) = 0 and Sxki = ΣΓ=* xai commutes with T. But then S and
/(T) commute so that for 1 ̂  k ^ m, 1 ̂  i ^ rA,

and S/(Γ)a?Λi = Σiέ:iΣΓ=fcδ**i+i».i a^e equal. Thus we must have
6}*ί+1 = 6;s_ί+1 for k ^s <^rn,i ̂ p ^rs.

Set αA = ft! 6J.1, ft = 0,1, , n — 1. It is easily checked that
f(T)E2(T) = Σi*=i(Vft)*j(T-\iyEλ(T). If i f is a maximal com-
mutative subalgebra of SI, Te^ and Λ is a C-homomorphism on ^
such that Λ(T) - λ, then

/(λ) = h(f(T)Eλ(T)) = hΓf^T - XiyEλ(T)) = α0 .

If TeSI^nCO and λ = 0 is in σ{T), then there exists ReC0 and
^ e σQ(R) such that JΓ£Ό(T) = (R - μI)Eμ(R), ker jEΌ(Γ)cker Eμ(R),
Eμ(R)Hc:E0(T)H (Lemma 3.2). The proof of the existence of constants
α0, αn , αn_x (n the index of 0 for T) such that α0 = /(0) and
f(T)Eμ{R) = ̂ zl{llJ\)αόT

jEμ{R) is similar to the proof for TeSI^
Xeσ(T). Since f{T)e%C\{T)% and & contains Co, we have
f(T)EQ(T)(I-Eμ(R)) = 0, f(T)E0(T) =f(T)Eμ(R) while

When / is analytic on U and the action of / in SI is defined by
the Cauchy integral formula, then for each ΓeSI^ and λetf(T), we
have f(T)Eλ(T) = Σ ϊ ^ " 1 (l/U)/(i)(λ)(Γ - Xl)jEλ(T) (cf. §2). The coef-
ficients of (T - Xl)jEλ(T), 0 ̂  j < v(X), depend only on λ and the
function /—i.e., for any SeSI^ with λeσo(S), (l/ϋ)/(i)(λ) is the coef-
ficient of (S - Xl)3Έλ(S) in the sum expressing f(S)Eλ(S). The fol-
lowing example for 2 x 2 matrices demonstrates that in general the
coefficient of (T - Xl)jEλ(T) in the sum expressing f(T)Eλ(T) depends
not only on λ and / but also on T.

EXAMPLE 3.5. Let SI be the full algebra of 2 x 2 matrices, re-
garded as operators on two-dimensional Hubert space, and / a function

defined on U. If T - (J JVand σ(T) = {λ}c U, define f(T) by
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0(1 — Kl) = I .
V be f(X) + (d — X)b/

If T = (jf J ) with «r(Γ) = {λ, μ)a U(X Φ μ), set

f(T) = -l—[f(X)(T - μl) - f(μ)(T - XI)} .

It is easily checked that the mapping T—*f(T) defined in this way
is an action of / in §1. Obviously, the coefficient of (T — XI) in (3.5)
depends on T.

There are actions of analytic functions other than the one defined
by the Cauchy integral formula or the action described above which
are of interest to us. They are important because for these actions
we can define a higher-order system of derivations which in turn
determines the behavior oΐf(T) on the spaces ker (λl — T)Hλ\ X e σQ(T).
Consequently, we make the following definition.

DEFINITION 3.6. A strong action T—>f(T) of a function / in 21
is a J9-action if it satisfies the following condition for every pair of
operators Tlf T2e%v:

(D) If Tl9 T2e%jj and \eσo(Tjnσo(TJ, or Γlf Γ2 e St̂  Π Co and
\eσ(Tjnσ(TJ, and if /(T^E^T,) = ^U1 (VJDa^T, - XiyEx(T{) (i -
1, 2; Vi the index of λ for Γ )̂, then alά = a2j for ^ = 0,1, , m i n ^ , v2) — l.
We say that a strong action <p: S^ x 21̂  —> SI of a set £f of functions,
each defined on Z7, is a 12-action of S? in SI if for each feS^, the
mapping <p(f, •): SÎ  —>3I is a D-action of / in SI.

It is possible to prove that if an action of a function satisfies
certain conditions involving invertible operators and projections, then
the action is a Z)-action. This proof is omitted here because it does
not contribute to the general purpose of the paper which is to show
the relationship between systems of derivations and actions.

4* Z)-actions and systems of derivations* In §2 we showed
that if ^/ί is an algebra of functions defined on Z7, {Dk: 0 ^ k < m} is
a system of derivations from ^€ to the algebra of all functions on
Z7, and Do is the identity operator, then there exists an action of ^€
in any algebra 31 such that SIcC0 and sup {vτ(X): Te %Xeσ(T)} ^ m.
This action, defined by equation (2.3), satisfies condition (D) of Defini-
tion 3.6. In this section we prove that every D-action defined by
^y/ί in a closed subalgebra 21 of an algebra of compact operators has
associated with it a higher-order system of derivations.
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Throughout this section we assume 2ί contains an element with
nonzero spectrum and m = sup {vτ(X): Te 21, X e 0O(T)}.

PROPOSITION 4.1. // / defines a D-action T-+f(T) (Te^Lπ) in
21, then there exists a family {Dkf: 0 ̂  k < m}, o/ functions defined
on U such that for each Te^ and XeσQ(T), or T e 21̂  f]C0 and
Xeσ(T),

(4.1) f(T)Eλ(T) = " Σ l ^ / ( λ ) ( Γ - λ J ) ^ ( Γ ) .

Proof. Suppose first that dim H < oo and 21 contains an identity.
In this case m ^ dim H and there exists Te 21 and Xeσ(T) such that
vτ(X) = m. For each ze *7, set T2 = Σ*eσ<r>(Γ - (λ - z)I)Eλ{T) =
T - Σ;6σ(r)(λ - z)Ex(T). Then Γ, has the single eigenvalue z, the
index of z for Tz is m and T2 e 2Î  Therefore there exist constants
α0, αlf , αw_, such that α0 = f(z) and /(Γf) = Σ?^ 1 (l/U)α,(Γ, - «J)^
(Theorem 3.4). Set Dsf(z) = aj9j = 0,1, ~ ,m - 1. That D,./: ί7->C
is well-defined is an immediate consequence of the definition of a in-
action.

Now suppose dim H < oo and 2ί does not contain an identity or
dim i ϊ = oo. Choose an integer k such that 0 ̂  k < m and Te2I,
λG σo(Γ) such that vτ(X) = n>k. For se U set Γβ = [Γ-(λ-«)J]^(Γ).
Then Tze 2ί, σ(Tz) = {0, z} and % is the index of z for Γβ. If z Φ 0,
then #,(T) - Jg?,(Γs), while if z = 0, then TQ = (T - Xl)Eλ(T). Thus
there exist constants ak, k = 0,1, , w — 1, such that α0 = f(z) and
f(Tz)Ez(Tz) = ΣPo1 (l/U)αy(Γf - ziyEλ(T) (Theorem 3.4). Set D*/(s) =
αfc. As a consequence of the definition of a D-action the function
ΌJ\ U-+C is well defined and f(T)Eλ(T) is defined by equation (4.1)
for Te%u and λeσo(T), or TeS^nCΌ and Xeσ(T).

Using the algebra homomorphism property of an action of an
algebra of functions in 2ΐ, we obtain the following theorem relating
jD-actions and systems of derivations.

THEOREM 4.2. If φ: ̂  x 21̂  —> 2ί is a D-action in 2t of an
algebra ^ of functions with domain U, then there exists a system
of derivations {Dk: 0 ̂  k < m] of order m — 1 if m < oo, or of in-
finite order ifm— oo, from ^/£ into the algebra of all functions
defined on U and Do is the identity operator. For Te%π and X e oύ(T),
or for Te2ί^ΠC0 and Xeσ(T), φ(f, T)Eλ{T) is defined by equation
(4.1).

Proof. Since φ is a D-action of ^ C in 21, for each f<z^/£ there
exist functions ΌJ, 0 g k < m, such that φ(f, T)EX(T) is defined by
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(4.1) for each Te %„ and λ e σo(T), or Te 21̂  Π Co and λ e σ{T) (Proposi-
tion 4.1). Define Dk to be the mapping f—>Dkf (fe ^£, 0 ^ k < m).

Choose an integer k < m and Te 21, λe σo(Γ) such that vτ(X) =
n > k. Define Tz,ze U, as in the proof of Proposition 4.1. As a
consequence of Definition 2.1 we obtain for each ze U, aeC, and

- Dig(z)){Tz - zIYEx{T)

and

= Σ |rΣ

The operators (T0 — zI)jEλ(T), 0 ^ j < n, form a linearly independent
set so that we must have Dk(af + g)(z) = aDkf(z) + Dkg(z) and

Dk{fg){z) = Σi=o (jjDdf(z)Dk^g(z). Thus {JD4: 0 ^ Λ < m} is a system

of derivations from ^£ to the algebra of all functions defined on £7.

We say that the system of derivations of Theorem 4.2 is the
system of derivations associated with the D-action φ of ^ in St.

5* Continuous actions* Suppose / is a function analytic on U
and T—>f(T) is the strong action of / in 21 defined by the Cauchy
integral formula. This action has the additional property that if a
sequence <T%> converges to ΓG2I^, then f(Tn) is defined for large n
and </(Tw)> converges to f(T) (Theorem 2.2). Suppose / is any other
function which defines an action T-+f(T) in St with this limit
property—that is, whenever a sequence <Γw)>c2tC7 converges to Te 2^,
then lim^o. f(Tn) = f(T). Then is / continuous? If the action of / in
2ί is a Inaction, then is the associated family of functions in 0(11)7
These are the questions we consider in this section.

DEFINITION 5.1. Let 21 be a Banach algebra. A function / de-
fines a continuous action x —•/(&) in 2ί if the mapping x —•/(&) (x e 2ϊσ)
is an action of / in 21 and for each sequence <#%>c2Itr with limit
x e Stff, limn^f(xn) = f(x).

PROPOSITION 5.2. // a Banach algebra St contains an element
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with nonzero spectrum and f defines a continuous action in SI, then
f is continuous.

Proof. For y e 21, set r(y) = max {| λ |: X e σ(y)}. Choose x e 21 such
that r(x) = 1 and 16 σ(x). If ζ0 e U and <ζ% > c U is a sequence with
limit ζ0, set an = ζnx (n = 0,1, 2, •)• Since | ζ n | = r(xn), xn is in 2ΐ̂
for each % and lίmn_oo xn — x0. The action of / in 21 is continuous so
lim^co f(xn) — f(x0). If ^ is a maximal commutative subalgebra of
21 such that xe^, then < ^ > c ΐ ^ and hence < / ( ^ ) ) > c ^ . Therefore
/(£») — /(Co) is in the spectrum of f(xn) — f(x0) (Definition 2.1) and
0 - l i m _ | | / ( O - f{x,) || ^ lim%_ |/(ζΛ) - /(ζ0) |.

If U is an arbitrary set in the complex plane such that 0 e U if
21 does not have an identity and if 31 contains a nonzero idempotent,
then we can prove that every function which defines a continuous
action in 21 is continuous. The proof is similar to that of Proposition
5.2 but with the nonzero idempotent replacing x.

It is not true, however, that a continuous function defines a con-
tinuous action in 21. Even for an analytic function there exists an
action in an algebra 21 which is not continuous.

EXAMPLE 5.3. Let 2ί be the algebra of 2 x 2 matrices and / a
function analytic on U. Choose geC(U) such that g is not identi-
cally one. Define fg(T), Te %Uf as follows: if σ(T) = {λ, μ}a U{XΦμ),
set fg(T) = (X - μ)~i[f(X)(T - μl) - f(μ)(T - XI)] while if σ(T) =
{X}aU, set fg(T) = f(X)I + f (X)g(X)(T - XI). This mapping is an
action of / in 2Ϊ [2j. Choose Xe U such that #(λ) Φ 1 and sequences
<^>, <X>, ζdny from C such that an Φ dn (n = 1, 2, •), lim^oo an =

l i m ^ ^ - λ and lim^ bn = 1. Set Tn = (jj J ) and

Then σ(Γ.) = {an, dn} and σ(Γ) - {λ}, while fg(T) = (/(

Q

λ>

and

Λ ( β) v o
Consequently, the limit of the sequence fg(Tn) is ( ^ -C^Λ Φ fg(T).

Therefore, the action T —>fg{T) of / in 31 is not continuous.

Now let us return to the setting of a closed subalgebra 21 of a
Banach algebra & of compact operators. We assume again that 21
contains an element with nonzero spectrum and set m = sup{vΓ(λ):
Te 21, Xe σo(T)}. Each function which defines a continuous D-action
in 21 is continuous. If the action is both continuous and a D-action,
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then are the functions Dkf,0<k<m, associated with the action
also continuous?

THEOREM 5.4. Let T—>f(T) he a continuous D-action of f in SI.
Then the functions D5f, 0 ^ j < m, associated with the action are
continuous.

Proof. We prove the proposition by induction. Since 21 contains
an element with nonzero spectrum, / = Dof is continuous on U
(Proposition 5.2). Suppose D3f is continuous for 0 ^ j < k (k < m).

Choose zoe U and a sequence ζz^aU converging to z0. Choose
Te SI and λ€ σo(T) such that vτ(X) = v>k. Set Tn = [T-{X-zn)I]Eλ{T)
for n = 0,1, 2, . Then l i m ^ T% = Γo so that \\mn^f{Tn) = f(T0).

Let {Xiji 1 ^ i ^ p, 1 ^ j ^ Ti} be a Jordan basis for Eλ(T)H.
Then

n) - f(T0)]xl9V_k = ΣilrDif(zn)xuv_k+j - Σii^Dif(z0)xu^k+i

so that

(5.1) \DJ(zn) - Dkf(zQ)\

As a result of the induction hypothesis the functions Dάf, 0 ^j < k,
are continuous. Hence the limit of the expression on the right of
(5.1) is zero so that lim^*, Dkf{zn) — Dkf(z0) = 0. This proves that
Dkf is continuous at z0.

6* Continuous D-actions and analytic functions* Suppose an
algebra ^ of functions defines a strong action φ in SI and ^ con-
tains the function x defined by x(t) = t (te U). Then the action of
a polynomial / = ^t^akx

k(aQ = 0 if dim H = oo) can be described in
terms of the action of x in SI—that is, φ(f, T) = Σ/U «*[?>(&, ϊ7)]*
for all Te 21 .̂ An analytic function / e ^ f is the limit of polynomials
in the topology of uniform convergence on compact sets. Is it possible
then to describe the operators φ(f, T),fe^^ analytic and TeSI^,
in terms of φ(x, T), perhaps by means of the Cauchy integral formula?

In this section we show that if the action φ of ^£ in SI has the
property that φ(x, •) is a D-action of x in SI and there exists 0 < r < 1
such that the restriction of each mapping φ(f, •) (fe^t) to the set
{Te SI: σ(T)d[\z\ < r]} is continuous, then, in fact, we can describe
the action of an analytic function fe^/ί in terms of the Cauchy
integral formula and terms of the form Σ^l
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Let us set the stage for this theorem. Let 21 be the closed sub-
algebra of a Banach algebra & of compact operators such that SI
contains an element with nonzero spectrum. Set m = sup {vτ(X): Te 21,
Xeσo(T)}. Let ^ be an algebra of functions defined on U and φ
a strong action of ^ in 21. We assume the function x defined by
x(t) = t (te U) is in ^ and denote by P(x) the subalgebra of ^€
consisting of all polynomials in x (if dim H = °o, then these are the
polynomials in x without a constant term). The mapping φ(x, •):
21^ —> 21 is a Z)-action of x in 21 such that the associated functions
D3x (0 ^ j < m) are continuous. The action <£> of ^ in 21 has the
additional property that there exists an open disk V = [\z\ < r] con-
tained in U such that the restriction of φ(f, •) (fe^y£) to 2IF is
continuous.

Since & defines a JD-action in 21, each polynomial / e P(x) also
defines a inaction in 21. Thus there exists a system of derivations
{Dk:0 ^k <m} from P(x) into C(C7) such that Do is the identity
operator and φ(f, T)Eλ{T) - Σ i ^ " 1 (l/jl)Djf(X)(T - Xl)jEλ(T) for each
/ e P(x), Γ e 2ίσ and λ e σo(T) (or T G 2t^ n Co and λ e σ(T)) (Theorem
4.2). There exist functions Ckj G C(C7), 1 ^ i ^ fc < m, such that ΌJ =
Σ i = i ^ i / ( i ) for feP(x), 0^k<m [3]. Thus the functions Dkfr

fe P(x), 0 ^ k < m, are continuous.
Associated with this system of derivations is a family of multipli-

cative seminorms (m-seminorms) defined on P(x) for each integer
n, 0 ^ w < m, and compact set ΐΓc C7 by

(6.1) P«(/) = Σ-η- sup \D3.f(z)\.

The completion A( U) of P(x) with respect to this family of m-seminorms
is the algebra of analytic functions on U if dim H < °o or the algebra
of analytic functions on U which vanish at zero if dim H — oo [3].
Each operator Dk, 0 ^ k < m, can be extended uniquely to an operator
Dk from A(U) into C(E7) such that {Dk: 0 ^ k < m} is a system of
derivations. Furthermore, for each ge A(U), Dkg is defined by the
equation Dkg = ΣiUCkSg

{i).
Since feA(U) is analytic, we have

lim sup
K - Σ = 0

for each compact set Kc U. From this limit we obtain

— y — fU)(θ)xά') — y -ii-suΌ D (f — y —
5=0 j ! / A;=0 Jcl zeK \ 3=0 Jl
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k=0 lc\ zeK Σ
p=0

^Σ-FrΣsup|C,,(β)|sup
Λ=0 /^T p=0 ί

/(ί))(«) - Σ -^

so that

(6.2) lim

for each 0 ̂  q < m, compact Jfc C7 and / e A(U).
As a consequence of the definition of the m-seminorms pnK

(0 -^ n < m, Ka U compact) on P(x) and hence on A(U) the algebra
homomorphism <p( , T): P(x) —>SI is continuous for each TeSί^nCΌ.
Thus φ(f, T) (Te^uΠCo) can be extended to a continuous algebra
homomorphism <p( , Γ): A(17) ->§I. Thus, since σ(g>(x, T)) = σ(T) if
Te%u [2], we obtain for each Te%f]C0 and feA(U),

Φ(f, T) = limφ(± i/<Λ(0)^, Γ) - limΣ

Σ 4r/ω(
i0 JΪ

= lim

Moreover, if Γe2t σnC 0, then Tr = T(Σιzt<rEχ(T)) is in Strf]C0 so
that for each/eA(f7)

φ(f, T) = φ(f, Tr) Σ

(6.3)

Σ Σ ±

If SinCo = §1 (hence for dim£T< oo), we are finished, for this is
the desired result. If dim H = oo, then we use the hypothesis that
2InC0 is dense in 21 to obtain (6.3) for all Te %,π,fe A(U)Π ~/£.

Suppose Te %v, P = Σui^r EX(T) and Tr=T~ TP. Then σ(Tr)c: V
and there exists a sequence <Γn>c2ln Co such that lim^oo | Tn — Tr\ — 0
and σ(Tn)aV [1, p. 568]. For each feA(U)f)^f the restriction of
Φ(f> •) to 5tF is continuous so that <(φ(f, Tn)y converges to <p(f, Tr).
But
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<P(f, T.) = - M f(z)[zl - φ(x, Tn)]-ιdz
2m J i2i=r

and
Km [zl - φ(x, TJ]-1 - [zl - φ(x, T,)]-1

(this last a consequence of the continuity of the action φ(x, •) on 3IF

and of inversion). Thus φ(f, Tr) = l/(2πi)[ f(z)[zl - φ(x, Tr)\~ιdz.
J | z | = r

In order to complete the proof we need to show that φ(f, Tr) =
φ(f, Tr){I—P). To see this choose a sequence <T%>c:CΌn§ί with limit
T and set Pn = Σ {^(Γ%):λ6 FίΊσ(T%)}. Since <Γw>cC0, we have
<p(/, T j y = Σ m < r Σ ϊ ^ M l / ^ so that <?(/,
r%P%) = φ(f, Tn)Pn. Since the characteristic function of V is analytic
in a neighborhood of σ(P%) (n = 1, 2, •) and of σ(I — P), the sequence
<P%> converges to I- P [cf. 1, p. 1101], Therefore l i m ^ T%P% = Γr

and lim%_^(/, Tr) = lim^ <p(f, TnPn)Pn = φ(f, Tr)(I - P). Combin-
ing these results we obtain

φ(f, T) = <p{f> Tr) + Σ <P(Λ T)Eλ(T)

\X\ ~£.r 7 = 0 0 i

Finally we show that the action ψ can be extended from A( U) (
to all of A(U). This follows if <?(•, T): A(U)Π^f ->§I is continuous
for each T e %π. Suppose (/w>c4( U) Π ^£ converges to / e A(U) Π ̂ ^
Te$lϋ,P= Σ*\λ\*rEλ(T) and Tr = T - TP. Then the sequence </n>
converges to / uniformly on compact sets and | [zl — φ(x, TV)]"11 is
uniformly bounded on V [cf. 1, p. 1101] so that

\9>(f., Tr) - φ(f, Tr)\ =

^ r max \f%(z) - f(z) \ max | [zl - ?>(», Γr)]~ι | .
\\ | |
\z\=r

Set g = max {vΓ(λ) - 1: λ e (τ(Γ)\F} and K = σ(T)ΠV. Then

n -f,T)P= Σ Σ 4rA (Λ - /)(λ)(Γ - xiyEλ{T)

XIYEX{T) |: λe

Therefore, I m w |9>(/,Γ) - φ(/, Γ) | = 0.
Let ψ: A(U) x St^—Sί be the extension of ^ from (A(ί7) n ̂ T) x Sϊp

to A(Z7) x Sίp. As a consequence of the continuity of ψ{ , T) for
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each TeWίu, ψ(f, T) also is defined by equation (6.4) if fe A(U). This
completes the proof of Theorem 6.1.

THEOREM 6.1. Let ^//f be an algebra of functions which defines
a strong action φ in 31 such that for some open disk V = [\z\ < r]aU
the restriction of φ(f, •) to 2IF is continuous for all fe ^f. Suppose
xe^€ (x(t) = t) and φ(x, •) is a D-action of x in 21 such that the
associated functions Dkx, 0 ^ k < m, are continuous. If dim H < co
or if dim H = oo απrf 2tnC 0 is dense in 21, ίAβπ £ ê algebra A(U) of
all functions analytic on U which vanish at zero if dim H = oo de-
fines a D-action ψ in 21 such that for all Te%jj (i) ψ(f, T) = <p(f, T)
if feA(U)Π^ and (ii) φ(f, T) is defined by (6.4) for all feA(U).

Theorem 6.1 remains true when we replace the open unit disk
by a simply-connected open set U (with 0 e U if dim H = oo). The
proof requires only minor changes.

It is obvious that the identity mapping T —> T is a continuous
Z)-action in SI of the function x. The corresponding action of A(U)
in 21 is the action defined by the usual Cauchy integral formula. The
following example shows that there are actions T—+x(T) of x in 21
such that x(T) Φ T for some Te%π. It is true, however, that for
each such action there exists δ > 0 such that if Te 21 ,̂ then
[T - x(T)][I - Σ {Eχ(T): |λ | ^ <?}] = 0. It is not known if there is
an algebra 21 containing an operator of infinite rank and an action
T-+x(T) of x in 21 such that for each δ > 0 the set {[x(T) - T]Eλ(T):
Te 21 ,̂ λ e σo(T), |λ | < 8} is different from {0}.

EXAMPLE 6.2. Let 0 < δ < 1 be chosen and glf g2, be con-
tinuous functions on U such that for \z\ < 8 gt(z) — 1 and g3 (z) = 0
(j = 2, 3, •). Set 0O = a;. For each Te 21^ define x(T) by

Xiy'Ex(T): O^

The mapping T—>x(T) is a D-action of # in 21 which is the identity
mapping when restricted to the set {Te%: σ(T)(z[\z\ < <?]}. If ^ =
P(ίc), then we obtain an action of A(U) in SI which is distinct from
the Cauchy integral formula action if one of the functions g3- is not
constant on U. In fact, for each 8 > 0 and each choice of functions
g5 continuous on U and identically one if j = 1 or identically zero if
j >̂ 2 on the disk [|z| < δ], we obtain a different action of A(E7) in 21.
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