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ON MATRICES WITH A RESTRICTED NUMBER
OF DIAGONAL VALUES

J. E. H. ELLIOTT

This note confirms the following conjecture of Marcus:
Let A = (βii) be an % X % matrix of strictly positive entries
with at most (n—ϊ) distinct diagonal values, then A is singular.
We also show that there exist matrices with strictly positive
entries with n diagonal values which are nonsingular.

DEFINITIONS. If A is an n x n matrix and σ is a permutation of
{1,2, •••,%}, then the product auσω-a2.σ{2) an>σ{n) is called the di-
agonal of A corresponding to σ.

If Alf A2 are two n x n matrices, then Ax is called a diagonate of
A2 if A1 can be obtained from A2 by a finite number of operations of
the following kinds:

(i) Multiplication of all entries of some row, (or column) by
some c > 0.

(ii) Interchange of any two rows (or columns).
The notation A[μ |γ], A(μ |τ) is that of [1].

PRELIMINARY REMARKS. ( i ) The property of being a diagonate
is an equivalence relation.

(ii) If a matrix is singular (nonsingular), then each of its di-
agonates is singular (nonsingular).

(iii) If a matrix A1 has diagonal values ρι < p2 < < pr then
a diagonate A2 of Ax has diagonal values kpι < kp2 < kρr1 where
k = k(A2), and | det A, \ = \ k det A2|.

(iv) If a matrix has strictly positive (positive) entries, then each
of its diagonates has strictly positive (positive) entries.

LEMMA. If X — (xe{i>j)) is an n x n matrix with entries in an
extension F(x) of the real field F, where e(i, j) are nonnegative
rational integers i, j = 1, 2, n and e(l, j) — 0 for j = 1, 2, n,
then

det X = (x — l)n~ιg{x), where g(x) is a polynomial in x with
rational integral coefficients.

The proof of the lemma is by induction. The result is trivial
for n = 2. The result is therefore assumed to hold for all n < N9

and N > 2. If n = N, subtracting the first row of X from the second
and expanding X by its second row, we have
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det X = Σ (- iY{xe{2 j) - 1} det X(2 \ j)

but each of the matrices X(2 | j) is of the form of the matrix of the
hypothesis, and therefore by the induction assumption we have

where gj(x) is a polynomial in x with rational integral coefficients.
Thus

det X = Σ (- l ) ' {a <2'' > - l}(a? - l ) " - 2 ^ ) = (a? - l ) - 1 ^ ) .

We are now in a position to prove the conjecture.

The conjecture is proved below by induction on the order of the
matrix. Therefore we first prove the theorem for a 3 x 3 matrix.

THEOREM 1. // Aa is a 3 x 3 matrix of strictly positive entries
with at most two distinct diagonal values, then Aa is singular.

To prove this, it is supposed that Aa is nonsingular: then there
exist nonsingular minors Aa(i \j) with diagonal values p^i, j) < p2(i, j).
Consequently there exists a diagonate Aβ of Aa where the ratio λ =
|O2(1, Ij/p^l, 1) is maximal, and Aβ has two distinct diagonal values
7uft(l, 1), XΎnPiil, 1). Thus there exists a diagonate Ar or Aβ such
that Ύ3i = 7ί3 = 1 for i == 1, 2, 3, γ22 = λ where Ar = (τ^ ). Since Aα

is nonsingular Ar is also nonsingular, and λ retains its maximality
property in A7. Now if d is the entry Ar(ί, 3 | i , 3) where i Φ 3, j Φ 3,
then T^ cί and <ί are both diagonal values, so consideration of their
ratio shows that Ίi5 — λ, 1 or λ~Λ Consideration of the minors
Ar[l, 3 I 2, 3] and Ar[l, 2 [ 2, 3] shows, by the maximality property of
λ, that γ2i, T12 are no less than 1. Putting yn = 1 therefore, since
no columns (rows) are equal, yields 721 = y12 = λ. This gives a con-
tradiction, as the matrix now has three distinct diagonal values 1, λ
and λ2. If λn = λ"1, then Ar has distinct diagonal values λ, λ"1, and
a consideration of their ratio leads to a contradiction. We must there-
fore have Tii = λ, and so Ar has diagonal values λ, λ2. However,
since j21 and γ12 are also diagonal values each equal to 1, or λ, then
T12 = T21 = λ, and again since Ar is nonsingular we have a contradiction.
But this has exhausted all possibilities for the value of Yn and so the
proof of Theorem 1 is complete.

We are now in a position to prove the conjecture for all n.
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THEOREM 2. // Aa is an n x n matrix of strictly positive entries
with at most (n — 1) distinct diagonal values then Aa is singular.

The proof of this theorem is by induction on n. The result is
trivial for n — 2, and it has been proved for n = 3. Therefore we
assume the theorem to hold for all n < N, where N > 3. It is sup-
posed that Aa is an JV x N matrix of the diagonate class A = {Aω; ωeΩ}.
The proof is by contradiction; we assume that Aa is nonsingular. By
the Expansion Theorem of Laplace, [1], given two rows r, s of Aa

there exist two columns t, u such that Aa[r, s\t,u) and Aa(r, s\t, u)
are both nonsingular. It then follows from the induction assumption
that the matrix Aa[r, s \ t, u] has at least two distinct diagonal values
i"i < fa &nd the matrix Aa(r, s\t,u) has at least (N — 2) distinct di-
agonal values p1 < ρ2 < < pN_2. Therefore Aa must have at least
the (N — 1) distinct diagonal values μλpλ < μ2pγ < μ2p2 < < μ2PN-2>
However Aa has at most N — 1 distinct diagonal values, and so these
diagonal values must also be exactly the values

μipi < μip2 < < μipN-2 < μ2pN~2.

It therefore follows that

/*2 _ P2 — . . . — PN-2 ^ -^

μi pi PN~S

Hence if λ denotes the ratio μjμ^ then the matrix Aa has for its
(N — 1) distinct diagonal values exactly the (N — 1) diagonal values
c < Xc < < XN~2c, where c = μtp19 Now there exists Aβ = (αiy) e A
such that atί = aH = 1 for i = 1, 2, , N, and Aβ has diagonal values
k < λfc < < λ^"2^ for some k > 0. If ώ is any diagonal value of
Aβ(l, i 11, j) then α^ d, and c£ are diagonal values of Aβ and thus ai5

is an integral power of λ. A division of the i-th row of Aβ by
min {α^ ; i = 1, 2, JV} for j = 2, 3, N, yields a matrix Ar e A,
^4r = (y..) such that T ^ = Xe{iJ) where e(i, j) is a nonnegative rational
integer for i, j = 1, 2, JV, β(l, j) = 0 for j = 1, ••• N, and ^4r has
diagonal values

Now let S denote the JV x JV matrix with (ΐ, i)th entry xe{i>j), where
x is transcendental over the real field. By the lemma, det E =
(x — l^^gty), where g(x) is a polynomial with rational integral co-
efficients. However E has exactly the diagonal values

χh < χh+' < . . . < a ? w ~ 2

and thus det E = ^{60 + M + bN_2x
N~2} = (a? - l ) * - 1 ^ ) where 6<,
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i = 0,1, N — 2 is a rational integer. This however implies that
δ0 = 6X = . . . = 6^_2 = 0, and thus

det Ar = λ*{60 + 6Λ + + δ^_2λ^-2} = 0 .

We therefore have Aa, Ar two matrices of the same diagonate class
one nonsingular and one singular. This is the required contradiction
which completes the proof of the conjecture. We can also conclude
the result below.

COROLLARY. If an n x n matrix A with strictly positive entries
has at most r distinct diagonal values and r <n, then rank(A) <̂  r.

To show that an n x n matrix of strictly positive entries need
not be singular if it takes on as few as n diagonal values, we may

: {consider the n x n matrix C = (cΐy), where cu — k for i = 2, 3, n,
and Cij = λ otherwise; and where k, X are positive integers such that
k > λ. Then det C = X(k - λ)^ 1 Φ 0.
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