DECOMPOSABLE SYMMETRIC TENSORS

Larry J. Cummings

Abstract

A k-field is a field over which every polynomial of degree less than or equal to k splits completely. The main theorem characterizes the maximal decomposable subspaces of the $k^{\text {th }}$ symmetric space $\mathrm{V}_{k} V$, where V is finite-dimensional vector space over an infinite k-field. They come in three forms:

(1) $\left\{x_{1} \vee \cdots \vee x_{k}: x_{k} \in V\right\}, x_{1}, \cdots, x_{k-1}$ fixed;
(2) $\langle a, b\rangle_{k}=\left\{x_{1} \vee \cdots \vee x_{k}: x_{i} \in\langle a, b\rangle\right\}$; and
(3) $\left\{\mathbf{x}_{1} \vee \cdots \vee x_{k-r} \vee\langle a, b\rangle_{\left(r^{\prime}\right)}\right\}, x_{1}, \cdots, x_{k-r}$ fixed;
where a and b are linearly independent vectors in V and $\langle a, b\rangle$ is the subspace spanned by a and b.

We consider symmetric tensor products of vector spaces and the problem of characterizing their maximal decomposable subspaces. This problem has been resolved in the skew-symmetric case by Westwick [4] using results due to Wei-Liang Chow [1, Lemma 5] when the underlying field is algebraically closed with characteristic zero.

A k-field is a field F over which every polynomial of degree at most k splits completely. In this paper we determine the maximal decomposable subspaces in the symmetric case when the underlying vector space is finite-dimensional over an infinite k-field whose characteristic (if any) exceeds the length of the product.

1. Let F be a field and V a vector space over F. The k-fold Cartesian product of V will be denoted by V^{k} where $1<k$. A rank k symmetric tensor space is a vector space together with a k-multilinear symmetric mapping σ which is universal for k-multilinear symmetric maps of V^{k} and is spanned by $\sigma\left(V^{k}\right)$. We will use the notation $\mathrm{V}_{k} V$ for this space. (The anti-symmetric or Grassman space is usually denoted by $\Lambda^{k} V$.)

If $\mathrm{V}_{k} V$ with $\sigma: V^{k} \rightarrow \mathrm{~V}_{k} V$ is a symmetric tensor space, the decomposable symmetric tensors or "symmetric products" are those elements of $\mathrm{V}_{k} V$ in the set $\sigma\left(V^{k}\right)$. We will denote $\sigma\left(x_{1}, \cdots, x_{k}\right)$ by $x_{1} \vee \cdots \vee x_{k}$. A subspace S of $\mathrm{V}_{k} V$ is decomposable if $S \subseteq \sigma\left(V^{k}\right)$. Trivial decomposable subspaces are the zero subspace and those consisting of scalar multiples of a single product. The factors of the product $x_{1} \vee \cdots \vee x_{k}$ are the 1-dimensional subspaces $\left\langle x_{1}\right\rangle, \cdots,\left\langle x_{k}\right\rangle$ of V.

If V is n-dimensional, it is well-known that $\mathrm{V}_{k} V$ is vector space isomorphic to the space of homogeneous polynomials of degree k over F [3, p. 428]. Any linear mapping $f: V \rightarrow V$ induces a unique linear mapping $\mathrm{V}_{k} f: \mathrm{V}_{k} V \rightarrow \mathrm{~V}_{k} V$ obtained by extending the mapping
$f^{k}: V^{k} \rightarrow \mathrm{~V}_{k} V$ defined by $f^{k}\left(x_{1}, \cdots, x_{k}\right)=f\left(x_{1}\right) \vee \cdots \vee f\left(x_{k}\right)$. This mapping will be denoted by simply V_{f} when the length of the product is not in question.

Proposition 1. If x and y are decomposable symmetric tensors with $k-1$ common factors (counting repetitions), then $x+y$ is decomposable.

Proof. The mapping σ is multilinear.
If U is any subspaces of V and x_{1}, \cdots, x_{k} vectors of V then $\left\{x_{1} \vee \cdots \vee x_{k} \vee u \mid u \in U\right\}$ is a decomposable subspace of $\mathrm{V}_{k+1} V$ and will be denoted by $x_{1} \vee \cdots \vee x_{k} \vee U$. Clearly,

$$
x_{1} \vee \cdots \vee x_{k} \vee U \cong x_{1} \vee \cdots \vee x_{k} \vee V
$$

Decomposable subspaces of the form $x_{1} \vee \cdots \vee x_{k-1} \vee V$ will be called type 1 subspaces.
2. Let x be a product $x_{1} \vee \cdots \vee x_{k}$ in $\sigma\left(V^{k}\right)$. If $w \in V$ then $w \vee x$ denotes the product $w \vee x_{1} \vee \cdots \vee x_{k}$ in $\sigma\left(V^{k+1}\right)$.

Proposition 2. If D is a decomposable subspace of $\mathbf{V}_{k} V$ then $w \vee D$ is a decomposable subspace of $\mathrm{V}_{k+1} V$.

Proof. We will show that if $x+y=z \in \sigma\left(V^{k}\right)$ and $w \in V$ then $w \vee x+w \vee y=w \vee z$.

Define an injection $i: V^{k} \rightarrow V^{k+1}$ by

$$
i_{w}\left(v_{1}, \cdots, v_{k}\right)=\left(w, v_{1}, \cdots, v_{k}\right)
$$

The universal property of $\mathrm{V}_{k} V$ implies there is a unique linear $f: \mathrm{V}_{k} V \rightarrow \mathrm{~V}_{k+1} V$ such that

$$
f\left(x_{1} \vee \cdots \vee x_{k}\right)=w \vee x_{1} \vee \cdots \vee x_{k}
$$

The desired result follows because f is linear.

Clearly f is injective. Moreover the image of a decomposable subspace of $\mathrm{V}_{k} V$ under f is decomposable.

Proposition 3. $x_{1} \vee \cdots \vee x_{k}=0$ if and only if some $x_{i}=0$.
Proof. Suppose x_{1}, \cdots, x_{k} are nonzero vectors. Choose any basis $\left(e_{i}\right)_{i \in I}$ of V over a field F. For each x_{i} assume the $p_{i}^{\text {th }}$ coordinate to be nonzero. Let $p=\left(p_{1}, \cdots, p_{k}\right)$. Define a multilinear and symmetric mapping $f_{p}: V^{k} \rightarrow F$ by

$$
f_{p}\left(x_{1}, \cdots, x_{k}\right)=\alpha\left(1, p_{1}\right) \cdots \alpha\left(k, p_{k}\right)
$$

where each vector x_{i} has coordinates $(\alpha(i, j))_{j \in I}$. Then $f_{p}\left(x_{1}, \cdots, x_{k}\right)$ is nonzero and since $f_{p}=\sigma \circ \bar{f}_{p}$, where \bar{f}_{p} is the extension of f_{p} to $\mathrm{V}_{k} V, x_{1} \vee \cdots \vee x_{k}$ could not be zero.

Since σ is multilinear $x_{i}=0$ for some $i=1, \cdots, k$ implies $x_{1} \vee \cdots \vee x_{k}=0$.
S_{k} denote the set of k ! permutations of $\{1, \cdots, k\}$.
Proposition 4. Let V be an n-dimensional vector space. The identity

$$
x_{1} \vee \cdots \vee x_{k}=y_{1} \vee \cdots \vee y_{k} \neq 0
$$

holds if and only if there is $a \pi \in S_{k}$ and scalars $\lambda_{1}, \cdots, \lambda_{k}$ such that
and

$$
\lambda_{1} \lambda_{2} \cdots \lambda_{k}=1
$$

$$
x_{i}=\lambda_{i} y_{\pi(i)} \quad i=1, \cdots, k
$$

Proof. This is a result of the fact that the rank k symmetric tensor space is isomorphic to the $k^{\text {th }}$ component of the polynomial algebra in n indeterminants over F [3, p. 428]. The latter is a unique factorization domain.

In what follows we will suppose $x=x_{1} \vee \cdots \vee x_{k}$ and $y=y_{1}$ $\vee \cdots \vee y_{k}$ are independent products such that $x+y$ is decomposable, say $x+y=z_{1} \vee \cdots \vee z_{k}$. We will often use the assumption that x and y are nonzero products without explicit mention. The subspace of V spanned by the vectors x_{1}, \cdots, x_{k} will be denoted $[x]$ and its dimension by $|x|$. For notational convenience we set

$$
\begin{aligned}
& x \cap y=[x] \cap[y] \\
& x \cup y=[x]+[y] .
\end{aligned}
$$

If S is a subspace of V then $S_{(k)}$ is the set $\left\{x_{1} \vee \cdots \vee x_{k} \mid x_{i} \in S\right\}$. In general $S_{(k)}$ is not a subspace. If U is a subspace of $\mathrm{V}_{k} V$ then the one-dimensional subspace $\langle v\rangle$ of V is a factor of U if

$$
U \subseteq v \vee V \vee \cdots \vee V
$$

We will frequently denote a repeated product $U \vee \cdots \vee U$ by $U_{(k)}$.
Remark. If $x+y=z$ it is always true that $[z] \subseteq x \cup y$. For, if some $z_{i} \notin x \cup y$ and B is a basis of $x \cup y$ we may choose $f \in L$ (V, V) so that

$$
\begin{array}{r}
f\left(z_{i}\right)=0 \\
f(b)=b
\end{array}
$$

$$
b \in B
$$

Then, $x+y=(\mathrm{V} f) z=0$, contradicting our standing assumption that x and y are independent.

Proposition 5. If B is a basis of [y] and there are i, j such that $B \cup\left\{x_{i}, z_{j}\right\}$ is an independent set then x and y have a common factor.

Proof. Choose $f \in L(V, V)$ so that

$$
\begin{aligned}
f\left(x_{i}\right) & =x_{i} \\
f\left(z_{j}\right) & =0 \\
f(b) & =b
\end{aligned}
$$

$$
b \in B
$$

Then,

$$
f\left(x_{1}\right) \vee \cdots \vee x_{i} \vee \cdots \vee f\left(x_{k}\right)=-y_{1} \vee \cdots \vee y_{k}
$$

Proposition 4 now implies $\left\langle x_{i}\right\rangle$ is also a factor of y.
Proposition 6. If x and y have no common factors and $[y] \nsubseteq[x]$ then for all $i=1, \cdots, k$

$$
y_{i} \notin[x] \text { and } z_{i} \notin[x] .
$$

Proof. Let $y_{j} \notin[x]$. If B is any basis of [x] we may complete the independent set $B \cup\left\{y_{j}\right\}$ to a basis of V. Consequently there is $f \in L(V, V)$ such that

$$
\begin{aligned}
f\left(y_{j}\right) & =0 \\
f(b) & =b
\end{aligned} \quad b \in B
$$

If some $z_{i} \in[x]$ we have

$$
x_{1} \vee \cdots \vee x_{k}=f\left(z_{1}\right) \vee \cdots \vee z_{i} \vee \cdots \vee f\left(z_{k}\right)
$$

Proposition 4 implies $\left\langle z_{i}\right\rangle$ is then a factor of x. The choice of any $g \in L(V, V)$ with ker $g=\left\langle z_{i}\right\rangle$ together with Proposition 4 shows $\left\langle z_{i}\right\rangle$ is also a factor of y. We have shown that if x and y have no common factors then no $z_{i} \in[x]$.

Choose some z_{i} and complete the independent set $B \cup\left\{z_{i}\right\}$ to a basis. Define $h \in L(V, V)$ by

$$
\begin{aligned}
h\left(z_{i}\right) & =0 \\
h(b) & =b
\end{aligned} \quad b \in B .
$$

Then

$$
x_{1} \vee \cdots \vee x_{k}=-h\left(y_{1}\right) \vee \cdots \vee h\left(y_{k}\right)
$$

and we obtain a common factor whenever some $y_{i} \in[x]$ since then $h\left(y_{i}\right)=y_{i}$.

Proposition 7. If B is any basis of $[y]$ and for some i and j $B \cup\left\{x_{i}, x_{j}\right\}$ is an independent set then x and y have a common factor.

Proof. Choose $f \in L(V, V)$ such that either $f\left(x_{i}\right)=0$ or $f\left(x_{j}\right)=0$ and $f(b)=b$ for every $b \in B$. Then

$$
y_{1} \vee \cdots \vee y_{k}=f\left(z_{1}\right) \vee \cdots \vee f\left(z_{k}\right) .
$$

If some $z_{i} \in[y]$ then it is a common factor. Assume no $z_{i} \in[y]$. We claim one of the following is the zero subspace:

$$
\begin{aligned}
& {[y] \cap\left\langle x_{i}, z_{1}\right\rangle} \\
& {[y] \cap\left\langle x_{j}, z_{1}\right\rangle .}
\end{aligned}
$$

For, if both are nonzero there are scalars α, β such that

$$
z_{1}=\alpha x_{i}+y^{\prime}=\beta x_{j}+y^{\prime \prime} \quad \text { where } y^{\prime}, y^{\prime \prime} \in[y] .
$$

Hence,

$$
\alpha x_{i}-\beta x_{j} \in[y] .
$$

Since $z_{1} \notin[y]$, both α and β are nonzero. But this violates the hypothesis. If $[y] \cap\left\langle x_{i}, z_{1}\right\rangle=0$ we apply Proposition 5 to $B \cup\left\{x_{i}, z_{1}\right\}$ and conclude x and y have a common factor.
3. F is a k-field if every polynomial over F of degree at most k splits completely over F. Let L_{k} denote $\left\{x \in \mathrm{~V}_{k} V:|x|=1\right\}$. L_{k} is composed of all products $\alpha x_{1} \vee \cdots \vee x_{1}$ where $\alpha \in F, x_{1} \in V$. If F is a k-field then in particular

$$
\alpha x_{1} \vee \cdots \vee x_{1}=\left(\alpha^{1 / k} x_{1}\right) \vee \cdots \vee\left(\alpha^{1 / k} x_{1}\right) .
$$

However L_{k} need not be a subspace unless $k=p^{r}$ where r is a positive
integer and p is the prime characteristic of F. That it is a subspace in this case is apparent because $\binom{p^{k}}{m}$ for $m=1, \cdots, p^{k}-1$ and so

$$
x_{1} \vee \cdots \vee x_{1}+y_{1} \vee \cdots \vee y_{1}=\left(x_{1}+y_{1}\right) \vee \cdots \vee\left(x_{1}+y_{1}\right) .
$$

Proposition 8. If F has prime characteristic p and $k=p^{r}, r a$ positive integer, then $\operatorname{dim} L_{k}=\operatorname{dim} V$.

Proof. Under these conditions it is not difficult to show that x_{1}, \cdots, x_{m} are linearly independent in V if and only if $x_{1} \vee \cdots \vee x_{1}$, $\cdots, x_{m} \vee \cdots \vee x_{m}$ are linearly independent in L_{k}.

Proposition 9. L_{k} is a decomposable subspace if and only if F has characteristic p and $k=p^{m}, m$ a positive integer.

Proof. We have seen that this condition is sufficient. If u, v are independent vectors in V then $u_{(k)}=u \vee \cdots \vee u, v_{(k)}=v \vee \cdots \vee v$ are in L_{k} and part of a basis for $\mathrm{V}_{k} V$ by Proposition 8. Since L_{k} is decomposable there is a nonzero scalar γ and vector w such that

$$
\begin{equation*}
u_{(k)}+v_{(k)}=\gamma w_{(k)} . \tag{1}
\end{equation*}
$$

The remark preceeding Proposition 5 implies there are scalars α, β such that $w=\alpha u+\beta v$. By induction,

$$
\begin{aligned}
w_{(k)}= & \alpha^{k} u_{(k)}+\binom{k}{1} \alpha^{k-1} u_{(k-1)} \vee v+\cdots \\
& +\binom{k}{r} \alpha^{k-r} \beta^{r} u_{(k-r)} \vee v_{(r)}+\cdots \\
& +\beta^{k} v_{(k)} .
\end{aligned}
$$

Since the products $u_{(k-r)} \vee v_{(r)}$ are part of a basis of $\mathrm{V}_{k} V$ we obtain

$$
\begin{aligned}
& \gamma \alpha^{k}=\gamma \beta^{k}=1 \\
& \gamma\binom{k}{r} \alpha^{k-r} \beta_{r}=0 \quad r=1, \cdots, k-1
\end{aligned}
$$

Because both α and β are nonzero $\alpha^{k-r} \beta^{r}$ is and so

$$
\binom{k}{r} \cdot 1=0 \quad r=1, \cdots, k-1
$$

Hence F has characteristic p and

$$
p \left\lvert\,\binom{ k}{r} \quad r=1\right., \cdots, k-1
$$

It is not difficult to show that this implies k is a power of p.
4. If a and b are two independent vectors in V then the set $\left\{x_{1} \vee \cdots \vee x_{k} \mid x_{i} \in\langle a, b\rangle\right\}$ is denoted by $\langle a, b\rangle_{(k)}$. Let $F[\alpha]$ denote the polynomial algebra in one variable over F and define a linear map${ }_{k}^{*}$ ping $g:\langle a, b\rangle \rightarrow F[\alpha]$ by $g(a)=\alpha, g(b)=1$. If $f: V \rightarrow\langle a, b\rangle$ is a projection on $\langle a, b\rangle$ then $\mathrm{V}_{k} g \circ f: \mathrm{V}_{k} V \rightarrow F[\alpha]$ is a linear mapping obtained by extending $(g \circ f)^{k}: V^{k} \rightarrow F[\alpha]$ defined by

$$
(g \circ f)^{k}\left(v_{1}, \cdots, v_{k}\right)=\prod_{i=1}^{k} g \circ f\left(v_{i}\right) . \quad v_{i} \in V
$$

If

$$
t=\prod_{i=0}^{k} \gamma_{i} a_{(k-i)} \vee b_{i} \quad \gamma_{i} \in F
$$

is any element of $\langle a, b\rangle_{(k)}$ then

$$
\begin{equation*}
\left(\bigvee_{k} g \circ f\right) t=\gamma_{0}+\gamma_{1} \alpha+\cdots+\gamma_{k} \alpha^{k} \tag{2}
\end{equation*}
$$

The equality (2) implies that the restriction of $\mathbf{V}_{k} g \circ f$ to $\langle a, b\rangle_{(r)}$ is a linear isomorphism onto $F[\alpha]$ which preserves "products", i.e., a decomposable tensor corresponds to a product of k linear polynomials.

Proposition 10. F is a k-field if and only if each $\langle a, b\rangle_{(k)}$ is a decomposable subspace of $\mathrm{V}_{k} V$.

Proof. Assume F is a k-field. If x and y are products in $\langle a, b\rangle_{(k)}$ let $P(\alpha)=\left(\mathbf{V}_{k} g \circ f\right)(x+y)$. There are elements r_{i} in F such that $P(\alpha)=r_{0}\left(\alpha-r_{1}\right) \cdots\left(\alpha-r_{k}\right)$. Consider

$$
z=r_{0}\left(a-r_{1} b\right) \vee \cdots \vee\left(a-r_{k} b\right) \in\langle a, b\rangle_{(k)}
$$

Clearly, $P(\alpha)=\mathrm{V}_{k}(g \circ f) z$ which implies $x+y=z$ because the restriction of $\mathrm{V}_{k} g \circ f$ to $\langle a, b\rangle_{(k)}$ is injective. Therefore $\langle a, b\rangle_{(k)}$ is decomposable.

Conversely if $\langle a, b\rangle_{(k)}$ is decomposable and

$$
P(\alpha)=\gamma_{0}+\gamma_{1} \alpha+\cdots+\gamma_{k} \alpha^{k} \in F[\alpha]
$$

then (2) implies $P(\alpha)=\left(\mathbf{V}_{k} g \circ f\right) t$ for some $t \in\langle a, b\rangle_{(k)}$.
But t is a product, say

$$
t=\left(\lambda_{1} a+\mu_{1} b\right) \vee \cdots \vee\left(\lambda_{k} a+\mu_{k} b\right)
$$

Hence

$$
P(\alpha)=\left(\lambda_{1}+\mu_{1} \alpha\right) \cdots\left(\lambda_{k}+\mu_{k} \alpha\right)
$$

Lemma 11. If F is infinite and $\langle x, y\rangle \leqq \sigma\left(V^{k}\right)$ then $|x|>2$ implies x and y a common factor.

Proof. Assume x_{1}, x_{2}, x_{3} are independent and are contained in a basis B of V. For every $\lambda \in F$ there is a product $z(\lambda)=z_{1}(\lambda) \vee \cdots \vee$ $z_{k}(\lambda)$ such that $x+\lambda y=z(\lambda)$. Define three linear mappings of V by

$$
\begin{aligned}
f_{i}\left(x_{i}\right) & =0 \\
f(b) & =b \in B-\left\{x_{1}, x_{2}, x_{3}\right\}
\end{aligned} \quad i=1,2,3 .
$$

Extending each mapping to $\mathrm{V}_{k} V$ we obtain for each $\lambda \in F$:

$$
\begin{equation*}
\left(\mathbf{V} f_{i}\right) y=\left(\mathbf{V} f_{i}\right) z(\lambda) \quad i=1,2,3 \tag{3}
\end{equation*}
$$

If (3) is zero for some i we infer from Proposition 3 that $f_{i}\left(y_{j}\right)=0$ for some $j=1, \cdots, k$. This means that $\left\langle x_{i}\right\rangle=\left\langle y_{j}\right\rangle$ is a common factor of x and y. For each λ, the vectors $z_{1}(\lambda), \cdots, z_{k}(\lambda)$ may be chosen so that (3) and Proposition 4 imply

$$
\begin{equation*}
f_{1}\left(y_{j}\right)=f_{1}\left(z_{j}(\lambda)\right) \quad j=1, \cdots, k \tag{4}
\end{equation*}
$$

Let $z_{i}(\lambda)$ and y_{j} have coordinates $\left(\alpha_{i b}(\lambda): b \in B\right)$ and ($\beta_{j b}: b \in B$) respectively. For each $\lambda \in F$ (4) implies

$$
\begin{equation*}
\alpha_{j b}(\lambda)=\beta_{j b} \quad b \neq x_{1} \tag{5}
\end{equation*}
$$

If $i=2$ then (3) and Proposition 4 implies for each $\lambda \in F$

$$
f_{2}\left(z_{j}(\lambda)\right)=c_{j}(\lambda) f_{2}\left(y_{\pi(j)}\right) \quad j=1, \cdots, k
$$

where $\pi \in S_{k}$ and the $c_{j}(\lambda)$ are scalars such that $\prod_{j=1}^{k} c_{j}(\lambda)=1$. Therefore,

$$
\begin{equation*}
\alpha_{j b}(\lambda)=c_{j}(\lambda) \beta_{\pi(j) b} b \neq x_{2} \quad j=1, \cdots, k \tag{6}
\end{equation*}
$$

If for some $j, \alpha_{j b}(\lambda)=0$ for every $b \neq x_{2}$ then $\left\langle z_{k}\right\rangle=\left\langle x_{2}\right\rangle$ is a common factor of x and $z(\lambda)$; hence a common factor of x and y. Accordingly, we may assume for each j there is a basis element $b(j) \neq x_{2}$ such that $\beta \pi_{(j) b(j)} \neq 0$. If for some $j b(j) \neq x_{1}$ as well, then (5) and (6) imply

$$
\begin{equation*}
c_{j}(\lambda)=\beta_{j b(j)} \beta_{\pi(j) b(j)}^{-1} \tag{7}
\end{equation*}
$$

On the other hand, suppose $b(j)=x_{1}$ for some j and $\beta_{\pi(j) b}=0$ for all b distinct from x_{1} and x_{2}. From (3) with $i=3$ we obtain

$$
\begin{equation*}
\alpha_{j b}(\lambda)=d_{j}(\lambda) \beta_{\omega(j) b} \quad j=1, \cdots, k \tag{8}
\end{equation*}
$$

where $\omega \in S_{n}$ and the $d_{i}(\lambda)$ are scalars such that $\prod_{j=1}^{k} d_{j}(\lambda)=1$.

Were $\beta_{\omega(j) x_{2}}=0$ then $\left\langle z_{j}(\lambda)\right\rangle=\left\langle x_{1}\right\rangle$ would be a common factor of x and $z(\lambda)$, hence a factor of y as well. If $\beta_{\omega(j) x_{2}} \neq 0$ then (5) together with $b=x_{2}$ in (8) imply

$$
\begin{equation*}
d_{j}(\lambda)=\beta_{j x_{2}} \beta_{\omega(i) x_{2}}^{-1} \tag{9}
\end{equation*}
$$

From (5) we know that for any $\lambda \in F$ all coordinates of $z(\lambda)$ except $b=x_{1}$ are in the finite set $C_{1}=\left\{\beta_{j b}: j=1, \cdots, k ; b \in B\right\}$. For each $i=1, \cdots, k$ we have from (6)

$$
\begin{equation*}
\alpha_{j x_{1}}(\lambda)=c_{j}(\lambda) \beta_{\pi(j) x_{1}} \tag{10}
\end{equation*}
$$

and from (8) we obtain

$$
\alpha_{j x_{1}}(\lambda)=c_{j}(\lambda) \beta_{\pi(j) x_{1}}
$$

Now if $b(j) \neq \imath_{1}$ then (7) and (10) imply

$$
\alpha_{j x_{1}}(\lambda)=\beta_{j b(j)} \beta_{\pi(j) b(j)}^{-1} \beta_{\pi(j) x_{1}}
$$

and if $b(j)=x_{1}$ then (8) and (9) imply

$$
\alpha_{j x_{1}}(\lambda)=\beta_{j x_{2}} \beta_{\omega(j) x_{2}}^{-1} \beta_{\omega(j) x_{1}}
$$

We conclude that for any $\lambda \in F$ the coordinates of each $z_{j}(\lambda)$ are contained in the finite set

$$
C_{1} \cup\left\{\beta_{j b(j)} \beta_{\pi(j) b(j)}^{-1} \beta_{\pi(j) x_{1}}, \beta_{j x_{2}} \beta_{\omega(j) x_{2}}^{-1} \beta_{\omega(j) x_{1}}: j=1, \cdots, k\right\}
$$

Accordingly, the number of vectors $z_{j}(\lambda)$ is finite and there are only a finite number of distinct products $z(\lambda)=z_{1}(\lambda) \vee \cdots \vee z_{k}(\lambda)$. But F is infinite. Hence there are distinct scalars $\lambda, \lambda^{\prime}$ such that $x+\lambda y=x+\lambda^{\prime} y$ which implies $y=0$. This contradicts our standing assumption that x and y are nonzero products and completes the proof.

We need the following lemma in order to prove Theorem 13.
Lemma 12. Let V be a finite-dimensional vector space over a field F and \mathscr{C} any collection of proper subspaces of V. If $V=\bigcup \mathscr{C}$ then Card $F \leqq \operatorname{Card} \mathscr{C}$.

Proof. When $\operatorname{dim} V=1, V$ has no proper subspaces and the conclusion is vacuously true.

If b_{1}, \cdots, b_{n} is any basis of V denote the (n-1)-dimensional subspace $\left\langle b_{1}, \cdots, b_{n-2}, b_{n-1}+\lambda b_{n}\right\rangle$ by S_{λ}, where λ is a scalar. Then Card $\left\{S_{\lambda}: \lambda \in F\right\}=$ Card F. For, if $S_{\lambda}=S_{\lambda}$, then in particular

$$
b_{n-1}+\lambda b_{n}=\alpha_{1} b_{1}+\cdots+\alpha_{n-2} b_{n-2}+\alpha_{n-1}\left(b_{n-1}+\lambda^{\prime} b_{n}\right)
$$

for some scalars $\alpha_{1}, \cdots, \alpha_{n-1}$. Thus $\alpha_{i}=0$ for $i=1, \cdots, n-2$. and $\alpha_{n-1}=1$ which implies $\lambda=\lambda^{\prime}$.

Consider $\mathscr{C}_{2}=\left\{S_{\lambda} \cap T: T \in \mathscr{C}\right\}$. Because $V=\bigcup \mathscr{C}$ we have $S_{2}=\bigcup \mathscr{C}_{\lambda}$. The set mapping from \mathscr{C} to \mathscr{C}_{2} defined by $T \rightarrow S_{\lambda} \cap T$ is onto. Consequently, Card $C_{\lambda} \leqq \operatorname{Card} \mathscr{C}$. Since $\operatorname{dim} S_{\lambda}=n-1$ induction yields Card $F \leqq \operatorname{Card} \mathscr{C}_{2}$, completing the proof.

If D is a decomposable subspace of $\mathrm{V}_{k} V$ and $v \in V$ then $D(v)$ denotes $\{t \in D \mid\langle v\rangle$ is a factor of $t\}$. Any $D(v)$ is a subspace of D and is the zero subspace when v is a factor of no product in D. A nontrivial decomposable subspace can have at most $k-1$ factors. We have already remarked that any decomposable subspace with exactly $k-1$ factors (counting repetitions) is contained in a type 1 subspace. At the other extreme we have:

Lemma 13. If V is finite dimensional over an infinite k-field either without characteristic or with characteristic $p>k$ then the only maximal nontrivial decomposable subspaces of $\mathrm{V}_{k} V$ without factors are those of the form $\langle a, b\rangle_{(k)}$.

Proof. Let D be a maximal decomposable subspace without factors. If Char $F=p$ then Proposition 8 and $p>k$ imply L_{k} is not a subspace. Thus, we can assume $D \neq L_{k}$; i. e., D contains at least one product x with $|x|>1$. We proceed by showing first that D cannot contain a product x with $|x|>2$:

Assume, on the contrary, that $x=x_{1} \vee \cdots \vee x_{k}$ is such a product of D.

For every product $y \in D$ we have $\langle x, y\rangle \subseteq D \subseteq \sigma\left(V^{k}\right)$. Lemma 11 implies each nonzero $y \in D$ must have a factor in common with x. Hence $D=\bigcup_{i=1}^{k} D\left(x_{i}\right)$, where each $D\left(x_{i}\right)$ must be a proper subspace since D is without factors. Since V is finite-dimensional Lemma 12 implies Card $F<k$, contrary to hypothesis. Accordingly $|x| \leqq 2$ for every $x \in D$. Since D is not L_{k}, D contains a product x with $|x|=2$. In what follows we suppose x_{1}, x_{2} are independent.

Were $y \in D$ and $|y|=1$ then $y=\alpha y_{1} \vee \cdots \vee y_{1}$. If $y_{1} \notin[x]$ Proposition 7 implies x and y have a common factor and so $y_{1} \in[x]$, a contradiction. Therefore $[y] \subseteq[x]$ for every $y \in D$ with $|y|=1$.

Suppose $y \in D,|y|=2$ but $[y] \nsubseteq[x]$. The rest of the proof is in two parts and we consider first such y with no factors in common with x :

Complete x_{1}, x_{2} to a basis B and define $f \in L(V, V)$ by

$$
\begin{array}{rrr}
f\left(x_{i}\right)=x_{1} & i=1,2 \tag{11}\\
f(b)=b & b \in B-\left\{x_{1}, x_{2}\right\}
\end{array}
$$

Were $\left(\mathbf{V}_{F}\right) y=0$ then some $y_{i} \in[x]$, contrary to Proposition 6. If $\left|\left(\bigvee_{F}\right) y\right|=1$ then

$$
\begin{equation*}
\alpha x_{1} \vee \cdots \vee x_{1}+\beta f\left(y_{1}\right) \vee \cdots \vee f\left(y_{k}\right)=\left(\mathbf{V}_{F}\right) z \neq 0 \tag{12}
\end{equation*}
$$

would imply (as in §3) that the underlying field has characteristic p and $k=p^{r}$ for some prime p and positive integer r, contrary to hypothesis. (If $\left(\mathrm{V}_{F}\right) z=0$ then some $z_{i} \in[x]$, again contradicting Proposition 6.) The remaining alternative is $\left|\left(\bigvee_{F}\right) y\right|=2$. Since we are assuming x and y have no common factors, (12) and Proposition 7 imply for some $i=1, \cdots, k$

$$
\begin{equation*}
\left\langle x_{1}\right\rangle=\left\langle f\left(y_{i}\right)\right\rangle . \tag{13}
\end{equation*}
$$

But (11) and (13) imply $y_{i} \in[x]$, a contradiction of Proposition 6 again.

It remains to consider those $y \in D$ with $|y|=2$ which have factors in common with x. If for such $y,[y] \neq[x]$ then $x \cap y$ is 1 dimensional. Let $x \cap y=\langle u\rangle$ and assume $\langle u\rangle$ occurs at least r times as a factor of both x and y. Consider the products

$$
\begin{aligned}
& \bar{x}=x_{1} \vee \cdots \vee x_{k-r} \\
& \bar{y}=y_{1} \vee \cdots \vee y_{k-r}
\end{aligned}
$$

in $\sigma\left(V^{k-r}\right)$. We may suppose that \bar{x} and \bar{y} have no common factors. Since $x+y \in \sigma\left(V^{k}\right)$ and iterations of the mapping f in (0) are also injective we have $\bar{x}+\bar{y} \in \sigma\left(V^{k-r}\right)$. If either $|\bar{x}|=2$ or $|\bar{y}|=2$ then Lemma 10 implies

$$
\begin{array}{ll}
& {[\bar{x}] \cong[\bar{y}]} \tag{14}\\
\text { or } & {[\bar{y}] \cong[\bar{x}] .}
\end{array}
$$

Either statement in (14) implies $[x]=[y]$.
If $|\bar{x}|=|\bar{y}|=1$ then either $[\bar{x}]=[\bar{y}]$ or $\bar{x} \cap \bar{y}=0$. We will show $\bar{x} \cap \bar{y}=0$ is contradictory:

Let $\quad \bar{x}=\alpha x_{1} \vee \cdots \vee x_{1}=\left(\alpha^{1 / r} x_{1}\right) \vee \cdots \vee\left(\alpha^{1 / r} x_{1}\right)$

$$
\bar{y}=\beta y_{1} \vee \cdots \vee y_{1}=\left(\beta^{1 / r} y_{1}\right) \vee \cdots \vee\left(\beta^{L / r} y_{1}\right) .
$$

This is possible since F is an r-field for every positive $r \leqq k$. Replace u and v by $\alpha^{1 / r} x_{1}$ and $\beta^{1 / r} w_{1}$ in (1). Then Char F is a prime p and $r=p^{m}$ for some positive integer m. But by hypothesis $p>k>r$, a contradiction.

We conclude $[y] \subseteq[x]$ in all cases. Thus, $D \subseteq\langle a, b\rangle_{(k)}$ where $\{a, b\}$ is any basis of $[x]$. Since D was assumed maximal the proof is complete.

Theorem. If V is finite-dimensional over an infinite k-field F either without characteristic or with characteristic $p>k$ then the maximal nontrivial decomposable subspaces of $\mathrm{V}_{k} V$ are :
(i) type 1 subspaces
and for every independent pair of vectors a, b in v :
(ii) $\langle a, b\rangle_{(k)}$
(iii) $x_{1} \vee \cdots \vee x_{k-r} \vee\langle a, b\rangle_{(r)}$ where $x_{i} \notin\langle a, b\rangle$ for every $i=1, \cdots$, $k-r$ and $1<r<k$.

Proof. Lemma 13 states that the only decomposable subspace without factors are those of the form (ii). The image of a decomposable subspace under the mapping f in (0) is a decomposable subspace with at least one factor. Iterations of f in (0) yield decomposable subspaces in spaces of greater length. Thus, when F is a k-field, $\langle a, b\rangle_{(r)}$ is a decomposable subspace of $\mathrm{V}_{r} V$ for every $1<r<k$ and subspaces of the form

$$
x_{1} \vee \cdots \vee x_{k-r} \vee\langle a, b\rangle_{(r)}
$$

are decomposable. If x_{k-r}, say, is in $\langle a, b\rangle$ then

$$
x_{1} \vee \cdots \vee x_{k-r} \vee\langle a, b\rangle_{(r)} \cong x_{1} \vee \cdots \vee x_{k-r-1} \vee\langle a, b\rangle_{(r+1)} .
$$

Accordingly, subspaces of this type could be maximal only when $x_{i} \notin\langle a, b\rangle$ for each $i=1, \cdots, k-r$.

Conversely, if a decomposable subspace has exactly $k-r$ factors it is the image of a decomposable subspace of $\mathrm{V}_{r} V$ without factors under a composition of $k-r$ mappings f in (0). Lemma 13 states that subspace must be of the form $\langle a, b\rangle_{(r)}$. Hence (ii) and (iii) are the only types of decomposable subspaces with factors.

Routine arguments show that a space of one type cannot be properly contained in another of the same type or a different type. Since every decomposable subspace is contained in a maximal decomposable subspace the proof is completed.

Part of this work was contained in the author's thesis written under R. Westwick at the University of British Columbia. The author is indebted to conversations with B. N. Moyls.

References

1. N.Bourbaki, Éléments de Mathématique VII, partie 1, livre 2, Algèbre, Chapitre 3, "Algèbre, multilinéaire" (nouv. ed.), Hermann, Paris; 1958.
2. Wei-Lang, Chow, On the geometry of algebraic homogeneous spaces, Ann. of Math. 50 (1949), 32-67.
3. S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965.
4. R. Westwick, Linear transformations on Grassmann spaces, Pacific J. Math. 14 (1964), 1123-1127.

Received March 17, 1969.
University of Waterloo, Canada

