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SELF-ADJOINT DIFFERENTIAL OPERATORS

ARNOLD L. VILLONE

Let ^f denote the Hubert space of square summable
analytic functions on the unit disk, and consider the formal
differential operator

where the Pi are in Sίf. This paper is devoted to a study
of symmetric operators in Sίf arising from L. A charac-
terization of those L which give rise to symmetric operators
S is obtained, and the question of when such an S is self-
adjoint or admits of a self-adjoint extension is considered.
If A is a self adjoint extension of S and E(X) the associated
resolution of the identity, the projection EΔ corresponding to
the interval Δ = (a, b] is shown to be an integral operator
whose kernel can be expressed in terms of a basis of solutions
for the equation (L — /)u = 0 and a spectral matrix.

Let Szf denote the space of functions analytic on the unit disk
and £ίf the subspace of square summable functions in Szf with inner
product

(f, 9) =

Then 3ζf is a Hubert space with the reproducing property, i.e., for
each z there exists a unique element Kz of Sίf such that

M = (/, Kz) .

Moreover, if the sequence {fn} converges to / in norm, fn(z) con-
verges to f(z) uniformly on compact subsets of the disk. A complete
orthonormal set for έ%f is provided by the normalized powers of z,

en(z) = [(n + l)/πγ»zn, n - 0, 1, . . .

From this it follows that 3ίf is identical with the space of power
series Σ£=oαns* which satisfy

(1.1) Σ I an \
2/(n + 1)< oo .

Consider the formal differential operator

L = pnD
n + + PlD + Po ,

517
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where D — d/dz and the Pi are in Ssf. For / in ^f the element Lf
is in j ^ but not necessarily in £%f. To see this we take L = d/dz
and f(z) = Σn=ιn~ll2zn, from (1.1) it follows that / is in J ^ but Lf
is not. In order to consider L as an operator in 3{f we must
restrict the class of functions on which L acts in some suitable
manner. Since our concern is with densely defined operators it is
only natural to demand that powers of z be mapped into £έf. This
requires some restrictions on the coefficients of L. As an example
consider the operator L = pD where p(z) = Σ~=o(w + l)sw.

We have Lek(z) = k(k + I)1/27r~1/2 Σ?=*-i(^ ~ &)1/2sw, and hence
Lek £ < ^ A sufficient condition for the Lek to be in J^ 7 is that the
coefficients p{ be in £ίf.

Let L = Σ?=oί>»-D% where the ^ are in <%̂  and let £^0 denote
the span of the ek and ^ the set of all / in ^f for which Lf is
in £ίf. We now define the operators To and ϊ1 as follows.

TJ=Lf fe^rQ,

Tf=Lf fe^r.

THEOREM 1.1. To and T are densely defined operators with
range in Sίf, To gΞ Γ, and T is closed.

Proof. We first show that T is closed. Let {/J be a sequence
of functions in &f such that /»—>/ and Tfn—>g, hence /n(z) and
Lfn(z) converge uniformly on compact subsets to f(z) and g(z) re-
spectively. But Lfn(z) also converges to Lf(z). Hence Lf(z) — g(z)9

I 2 I < 1, so T/e ^f and Γ/ = gr.
Since ^ is dense in ^f and To/ = ϊ7/ for fe ^ Π ̂  it suffices

to show that the ey are in ^ . Since Leά = Σi=oPiDiej a n ( i Pi^βj is
either zero or of the form j^e* for some nonnegative integer &, it
sufficies to show that Piek e έ%f. Let Pi = ΣΓ=o îei> a simple com-
putation yields

eke3. = [(k + l)τrF[(i + 1)1(3 + ft + l)]1 / 2^ + . ,

and consequently,

To and T are respectively the minimal and maximal operators
in 3ίf associated with the formal operator L. We now proceed to
study the class of formal differential operators for which To is
symmetric.

It is clear that the operator To associated with the formal
differential operator L is symmetric if and only if
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(1.2) (Len, em) = (en1 Lem) , n, m = 0, 1, . . . .

We shall refer to those formal operators satisfying (1.2) as formally
symmetric. As an example we have the real Euler operator

n

i=Q

di real. Then Leά = p{j)eά where p is the characteristic polynomial

p(x) = α0 + a,x + + anx(x — 1) (x - n + 1) .

Since p(j) = p(j), L is formally symmetric. A characterization of
formally symmetric L in terms of the coefficients Pi is given in the
next section. We now proceed to the consideration of the adjoint
operators To* and T*. In what follows we shall make use of the
result that if L is formally symmetric of order n, then the coefficients
Pi are polynomials of degree at most n + ί, i — 0,1, , n. A
proof of this is given in Theorem 2.2.

THEOREM 1.2. If TQ is symmetric, To* = T and T* Q T. The
closure of To, S, is self adjoint if and only if S = T.

Proof. By Theorem 2.2 the coefficients pt are polynomials of
degree at most n + i. This implies that To maps £§?0 into itself.
In particular,

Lem = Σ a&i 9 0 ^ m ^ n ,
(1.3) Λτ°i

Len+i = Σ{aiei , j = 1,2, . . . .

Using this we show that To* £ T. Let g = Σ7=o&A and ^* = Σ ^ o ^ ̂
be in the graph of To* and consider the sequence {gp} in &0 defined
as gp = Σy=o^A Since gp—>gwe have (Toβk, gp) —> (Toβ/<;, (/) = (eΛ, flr*).
Hence (ek, Togp) —> (eΛ, g*). Now Lg is in j y and rô j» converges to
Lg uniformly on compact subsets. Since the e3- are just the normalized
poλvers of z, the power series expansion of Lg can be written
as Σ7=o^ ̂ i(^). Since Lgp(z) = Σ?=o^LeJ(^) converges uniformly to
ΣSUCj eyOs), it follows from (1.3) that Lgp has the same coefficient
of em as does Lg for p > n + m + 1. Hence (em, Tô p) = cm for
ί? > n + m + 1 and since (ew, Togj,) —> (βm, g*) we have cm = 6m. There-
fore g* = Lg, so that ge & and g* = Γg.

To show that T £ To* it will suffice to show that (Toβw, g) =
(em, Tg) for all g in £& and m = 0,1, •••. Let g = Σ?=o%^ be in
^ and gp as before. Since To is symmetric and gp-+ g we have
(em, Togp) = (Toem, gp)—>(Toem, g). By precisely the same argument
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as before (em, Togp) = (em, Tg) for p > n + m + 1, from which it follows
that (em> Tg) = (Toem, g) and To* - T. Since Γ o g Γ , T* g 7? = T.

The closure S of the symmetric operator TQ is given by To** =
Γ * g Γ . Since T is closed T** = T, from which it follows that
S* = Γ. Hence S = T implies S = S*. Conversely if S is self-
adjoint we have S = T* = S* = T.

A sufficient condition for T to be self-adjoint is given by the
following theorem.

THEOREM 1.3. Forf=Σi?=<fl& set f„ = %?=<&,•**- If supm|| 7Ym||<co
for each f in 2$, then S is self-adjoint.

Proof. Since T* Q T, T symmetric implies T = T* and hence
S = S*. We show that (Tf, g) - (/, Tg) vanishes for all /, g in &r.
If L is of order n we have (Tfm, gp) = (Tf, gp) for m > n + p + 1.
Using this fact and the symmetry of To we obtain

n + iy 9kn) =z \fkn+n + l> Tg^n)

z= (jkn-n-11 -LQkn) + \Jkn + n + l Jkn-n-lf ^fcn)

— (fkn-n-11 Tg) + (/A Λ+Λ + 1 ~ fkn-n~H Tgkn)

fc = 1,2,
Therefore,

= lim (/fcn+n+1 - / t M _ l f Γ^.) .

Since the ΓflrΛw are bounded in norm this implies (Tf, g) — (f, Tg) = 0.

COROLLARY. If L is a formally symmetric Euler operator,
then S is self-adjoint.

Proof. For / = ΣΓ=oδ;β/ in 3ϊ, Tf and Tfm are given by
YiT^piJ^jej and ΣΓ=oP(i)My respectively, where p(α) is the charac-
teristic polynomial for L. Hence

5=0

and the result follows.

2. Formal considerations* The formal operator L =
is formally symmetric if

w, em) = (en, LeJ, w, m = 0,1, .

To obtain a characterization of the formally symmetric operators
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in terms of their coefficients we first determine the action of L on

LEMMA 2.1. Let L = Σ?=oft-Dί where pt(z) = Σ?=oMΌ 2fc

= Σ?=oC»J e i wΛerβ

c ί5 = A(ΐ, i) Σ -B(i» k)as-i+k(k) , i, i = 0, l ,
k=0

A(i,j) [(i

' B(i,k) = i\/(i - Jfc)! i^k

= 0 i < Λ; .

Proof. Consider the elementary operators L^ = ^ p i) ?, p, q =
0, 1, •••. A simple calculation yields

Lpqem = B(m, g)A(m, m + p -

Now consider Lem (as an element of

- Σ Σ^WiK
<=0 A=0

| ε | < 1 .

But ek(z) is just a multiple of zk, therefore it follows from the
uniqueness of power series representation of elements of sf, that
Σ?=o cmkek converges to Tem in έ%f.

It follows that L is formally symmetric if and only if the
coefficients ak{s), A k = 0,1, • ••, satisfy the linear system

(2.2) ciά = 57 i f i , i = 0, 1, . . . .

The following provides a simplification of the system (2.2).

THEOREM 2.2. If L — Σ? = o P*Di is formally symmetric the p{

are polynomials of degree at most n + i.

Proof. Consider cn+PfQ for p ^ 1. Since j — n — p < 0 for p ^ 1
and i = 0, •••, w, a^n_p(j) = 0. Consequently cw+3,,0 = co,%+3, reduces
to A(0, n + p)αw+p(0) = 0, p ;> 1, and p0 is of degree at most ^ . We
now proceed inductively. Consider
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S i n c e k + 1 + j - n - p < 0 f o r p ^ k + 2 a n d i = 0 , •••,%, ( 2 . 3 )
r e d u c e s t o

1 , n + p ) Σ B(k + 1 , J X + ^ ^ O " ) - 0 , p ^ k + 2 .

Since w + p + i — & — 1 ^ % + i + l , i t follows from t h e inductive
hypothesis t h a t a^p+^^j) = 0 for i = 0, •••, k, and hence

A ( k + l , n + p)(k + 1 ) ! a n + p ( k + 1 ) = 0 , p ^ k + 2 .

Therefore degree pk+1 ^ n + k + 1.
This result allows a considerable simplification of the system

(2.2). For each nonnegative integer p consider the subsystem Sp

of (2.2)

Ci,i+P — Ci+p,i i i = 0, 1, .

Since the equation C^^G^ appears only in SH_j] we have a partition
of (2.2). Since the p{ are polynomial of degree at most n + i,

O>S+P(S) = 0 P> n , s = 0, -- ,n ,

from which it follows that Sp is trivial for p > n. From (2.1) we
see that a/(i) appears only in S^-n- Hence (2.2) is equivalent to
the n + 1 systems,

Sp: ciiiΛp — ci+p,i , i = 0, 1, ,

where the aj+p(j) appear only in Sp. Using (2.1) this becomes

(2.4) Sp: Σ ap+k(k)B(i, k) = Σ ak-p(k)B(i + p, k)A\ί + p, i) .
k=0 k=p

THEOREM 2.3. The system Sp is satisfied if and only if

(2.5) jl aj+p(j) = Ri j = 0, 1, , n ,

where R\ — Σ2=P ΰk-P(k)B(i + p, A:)A2(ί + j?, i), and the R\ are obtained
recursively by

(2.6) Ri - Ri+! - Rt1 .

Proof. For fixed p denote the left and right hand sides of the
ith member of Sp by L\ and R\ respectively. We now employ a reduc-
tion scheme. Form the sequence of systems {L\ = i? }, {L = i2 }, •••,
where

ί,j = 0, 1,
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By induction on j it can be shown that

Li = ±ak+p{k)B{i,k-j)P5(k)
k=0

where Pj(k) == k(k — 1) (k — j + 1). Consequently, Li = jl dj+p(j)
and the necessity follows.

For the sufficiency we use the fact that for a given system of
linear equations, Lj = Rj, j = 0 •••, n, there exists a unique set of
linear systems {£? = JRS}, ••-,{£? = JS?} which have the properties
P I thru PS.

PI

P2

PS

u =
Ri =

U =
U =

Liϊi -

U, Ri
T n ΊDnL , Ki

Rί-

= R1

= Rn

j = 1, •••, n
i = 0, 1, •••
j = 0, — ,n

ί = 0, 1, ••• .

This set is constructed in the following manner.
The system {£? = #?} is defined by PS. To satisfy P I and P2

we define the system {Lnrι = Rnr1} inductively by U~ι = Ln~\ RΓ1 =
iϊ^-1, LΓ+!1 = L?-1 + L%, and M^+ί = RΓι + J2Λ- Similarly we define
the system φr2 = Rt~2} through {LJ = Λ } by means of the equations

£ ? - 2 = Ln~\ Rn

Q~2 = Rn~2

Lΐ+ΐ = £ r 2 + L?- 1, Br+ί - Rnr2 + β?-1

£oo = L\ R\ = R°

From the method of construction the systems {L\ = RI} thru {£? = R*}
are the unique systems satisfying P I thru PS.

Since Pό{k) vanishes for 0 ^ k g j — 1 it follows that Lf = 0
for j > n and all i. Moreover, for j = π we have L? = n\ an+p(n),
a constant independent of ί. From (2.4) we see that iϋ =
Σ?=P^A-P(^)^(^)» where the Ck(i) are polynomials in i of degree /c.
Hence R\ — R\+1 — R\ can be written in the form Σk=pΰk-P(k)Cl(i),
where the Cι

k(i) are of degree k — 1. Continuing in this manner
we obtain

Ri = 0 j > n ί = 0, 1, ,

Ki = it/o % = U, 1, .

Hence the systems {Lj = iίj} j" = 0, •••, n satisfy P I thru PS
where Li = i?o corresponds to the L3' = i^' and the system {£? = JS }
corresponds to the system Sp. This yields the sufficiency.

This theorem provides an algorithm for determining all formally
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symmetric operators of a given order. As an application we give
the general formally symmetric first order operator. Use of 2.5 for
p = 0 and 1 yields

L = (cz2 + az + c)d/dz + (2cz + h) ,

where a and 6 are real.

3* Self-adjoint extensions* The operator S has another charac-
terization which will be of use in the study of self-adjoint exten-
sions. For / and g in & consider the bilinear form

(3.1) </</> = (Lf, g) - (/, Lg) ,

and let &r be the set of those / in & for which </#> = 0 for all
g in Sf. Since S = T* and &{T*) = £^, S has domain £&.

Let ϋ^ + andϋ^~ denote the set of all solutions of the equations
Lu = in and Lu — ~%u respectively, which are in έ%f. It is known
from the general theory of Hubert space [3, p. 1227-1230] that

(3.2) & = ϋr + ̂ r+ + &- ,

and every fe £& has the unique representation

Let the dimensions of £^ + and 2?~ be m+ and m~ respectively.
Clearly, m+ and m~ cannot exceed the order of L. These integers
are referred to as the deficiency indices of S, and S has self-adjoint
extensions if and only if m+ = m~. Moreover S is itself self-adjoint
if and only if m+ = m~ — 0.

We assume that m+ = m~ = m and seek to characterize all self-
adjoint extensions of S. Von Neumann has shown that the self-
adjoint extensions of S are in a one-to-one correspondence with the
unitary operators U of ϋ? + onto ϋ^~. Corresponding to any such
U there exists a self-adjoint extension A of S whose domain is the
set of all fe & which are of the form

f=f+(I-U)f+, (fe3,f+e^+),

where I is the identity operator on ̂ + . Conversly every such A
has a domain of this type.

We now introduce the notion of abstract boundary conditions
and indicate how the domain of any self-adjoint extension of S can
be obtained. A boundary condition is a condition on fe & of the
form

- 0 ,
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where h is a fixed function in £&. The conditions

are said to be linearly independent if the only set of complex
numbers alf , an for which

identically in fe 2$ is α^ = = an = 0. A set of w linearly in-
dependent boundary conditions (fhj) = 0, j 1 = 1, •••, n, is said to
be self-adjoint if <(h3 hky = 0, i , & = 1, , n.

The following theorem follows directly from the proof of Theorem
3 in the paper of Coddington [1].

THEOREM 3.1. If A is a self-adjoint extension of S with domain
&A, then there exists a set of m self-adjoint boundary conditions,

(3.3) </λ, > = 0 i = l, . . . , m ,

such that 3ίA is the set of all fe & satisfying these conditions.
Conversly, if (3.3) is a set of m self-adjoint boundary conditions,
there exists a self-adjoint extension A of S whose domain is the set
of all fe£& satisfying (3.3)

Let φu , φm and ψγ, , ψm be orthonormal sets for ^ + and
ϋ^~ respectively and (uj!c) a unitary matrix representing U, then
the hj are given by

(3.4) hj = φ3 - Σ ujkψk , j = 1, , m .

Let A be a self-adjoint operator associated with L and E(X) the
corresponding resolution of the identity. We shall show the pro-
jection Ej corrresponding to Δ — (α, 6] can be expressed as an
integral operator with a kernel given in terms of a basis of solutions
for Lu — Xu = 0 and a certain spectral matrix. Our work was
inspired by the treatment of E. A. Coddington [2] of the case when
A arises from a formal differential operator in the space L2(I), I
an open interval. We begin by showing that the resolvent operator
of A,

R{/) = (A- s)-1 , Im {/) Φ 0 ,

is an integral operator with a nice kernel.



526 ARNOLD L. VILLONE

THEOREM 3.2. R(A is an integral operator with kernel K,

(3.5) R(Af(z) = \\ K(z9 w, s)f(w)dudv , fe J T .
|W|<1

K is jointly analytic in z, w, and / on the region | £ | < 1, | w | < 1,
Im (/) Φ 0.

Moreover, K(z, w, /) — K(w, z, 7) and

(3.6) (L - s)K{w, z, /) = Kz(w), for fixed z and /.

Proof. Since R{/)f(z) = {R{/)f Kz) and R*(A = R(7), it follows
that (3.1) holds with K(z, w, A = R(7)Kz(w). Hence K is analytic in
w for fixed z and /. That K(z, w, /) = K(w, z, 7) can be seen from
the following computations,

K(z, w, /) = {R{s)Kz, Kw) = {Ks1 R{/)KW) - K(w, z,

Hence K{z, w, /) is analytic in z for fixed w and /. It follows from
the analyticity of R{/) for Im {/) Φ 0 that K(z, w, /) - (R(s)Kw, Kz)
is analytic in / for fixed z and w on any region for which Im (/) Φ 0.
Since analyticity in each of the variables separately implies joint
analyticity it only remains to verify (3.6). This follows from the
fact that K(w, z, /) = K{z, w, 7) = R{/)Kz(w).

We now split the kernel K(z, w, /) into two parts one of which
satisfies the homogeneous equation (L — /)u = Q. Since the coefficients
of L are polynomials, pn has at most a finite number of zeros in
the unit disk. Introducing radial branchcuts at these zeros, we
obtain the region D, simply connected relative to D, in which pn

never vanishes. Let z0 e D, it follows from standard theorems that
there exists a basis of solutions for the equation (L — /)φ — 0 such
that:

( i ) φi(s), i = 1, •••, n, are single-valued analytic functions
on D

(ii) φlj-1](zQ, /) = δijf i, j = 1, , n ,
(iii) φi{w,s), i = 1, •••, n, is entire in / for each weD.

THEOREM 3.3. The kernel K(z, w, /) has the representation

(3.7) K(z, w,s) = Σ* 1ru(s)Φi(z, AΦikΨ* A + G(z> w> A >

where G(z, w, /) is entire in /for fixed z and w.

Proof. For fixed zeD and Im (/) Φ 0 it follows from (3.6) that
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(3.8) K(w, Z, 7) = Σ Ψj(«. •)&(«>, ?) + fl(2, w, 7) ,
1

where Ω(z, w, 7) is the particular solution furnished by the variation
of parameters method and is entire in 7 for fixed z, w. Moreover,

(3.9) J^Ω{z, 30, 7) = 0 , i = 1, , n .

Now consider the differential equation (Lz — s)K{z, w, /) — Kw(z),
where Lz denotes the fact that L is applied with respect to z.
Differentiating with respect to w and making use of the symmetry
of K we obtain

(L, - A-ξ^Kiw, z, 7) - J^Lκw(z) , j - 1, ..., n .
dw3'1 dw3"1

dw

Using (3.8), (3.9) and the relationships

we obtain

(L. -

Variation of parameters yields

(3.10) φd(z, /) = Σ ΨioiAΦiiZi s) + βy(z> ^) f j = 1, * ,n

where the Ωs(z, /) are entire in / for fixed z and satisfy

(3.11) gj θgo, /) = 0 , i,j = l,...,n

dz%~1

It follows from (3.8) and (3.10) that (3.7) holds where

G(z, w, /) = Ω(z, w,

is entire in / for each z, weD.
Concerning the matrix ψ = (^y) we have the following.

THEOREM 3.4. The matrix ψ is analytic for Im(/) Φ 0, <f*{s) =
Im ir(/)jlm{/) ^ 0,

Proof. It follows from (3.9) and (3.10) that
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(3.12) ψis(/) = f ^ ~ \ K(z0, z o , s ) , i , j = 1 , ••-,%,

and hence ^ is analytic for Im (/) Φ 0. Using (3.12) and the symmetry
of K we obtain ^ ( Z ) = ψdi(s).

In order to demonstrate the positivity of Im ̂ (/)/Im {/) Ξ> 0 we
consider the functionals 4 defined by

4(/) - /(*-υ(Zo) > /e Sίf, Λ = 1, , n .

Since convergence in gί? implies uniform convergence on compact
subsets, the 4 are bounded linear functional on Sίf. Consequently
there exist functions K19 -- ,Kn in έ%f for which

/(fc-1}fe) - (/, κk),
all / in Sίf. Let ίlf •••,?» be any set of w complex numbers and
consider the function / = Σ?=i £*-&*• The inner product {R(s)f, f) =
Σ?,y=Afr(g(^)gi> ^ Now Λ ^ ) ^ ^ ) = (Zi, iΓz^), where
if(a;, te;, ̂ ) = K(w, z, /). Consequently,

o, Z, /) ,

and

{R{/)K{, Kj) = . , K(z0, zQ, /) = fji(s) .
d^wdz3"1

Using the resolvent equation it is not hard to see that

Im (R(/)f, /)/Im {/) = \\ R(/)f ||2 ^ 0

and hence

This completes the proof.

It is shown in [2] that Theorem 3.4 implies the existence of a
spectral matrix p for the resolvent R.

THEOREM 3.5. The matrix p defined by

1 Γ;

ρ{\) = lim — I Im (v + iέ)dv
e^+0 7Γ JO

exists, is nondecreasing, and is of bounded variation on any finite
interval.
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We now consider the projections EΔ corresponding to the interval
Δ = (a, b]. It follows from the proof of Theorem 3.2, that EΔ is an
integral operator with kernel eΔ(z, w) = EΔKz(w). The following
theorem shows how eΔ(z, w) can be described in terms of the basis
Φi> **'yφn &nd the spectral matrix given by Theorem 3.5.

THEOREM 3.6. If a and b are continuity points of E then

(3.13) eά(z, w) = \ Σ Φfa v)Φs(w> WPuV) ,
JΔ t, j = l

where p = (ρ{j) is the spectal matrix given by Theorem 3.5.

Proof. The idea is to use the inversion formula

(EJ, g) = lim -L_ f ((R(v + ie)f, g) - (R(v - iε)f, g))dv ,

for all / and g in Sίf, a and b continuity points of Eλ. Since EΔ is
self-adjoint eΔ{z, w) — (EΔKW, Kz) and hence

ej(z, w) = lim J ^ - ( {(R(v + iε)Kw, Kz) - (R(v - iε)Kw,
ε-*+0 27Γ^ JΔ

= lim \ K(z, w, v + is) — K(z9 w, v — ie)dv .
ε^+o 2πi JΔ

For z, weD, this becomes

1 Γ n

lim -—-I Σ t ϋ ^ + is)&(s» ^ + te)Φj(w, v - iε)

- Ψij(v - iε)Φi(z, v - ie)φ3 (w, v + iε)dv

+ Km _ I G(z, w, v + is) - G(z, w, v — ie)dv .
e-+o 2πι JΔ

Since G(«, w, /) is entire in ^ the later integral tends to zero as
ε-> + 0.

We now rewrite the first integrand as

n .

Σ Ψij(v ~ iε)[Φi(Zt v)Φ3 (w> y ) — Φi(z> v — iε)Φj(Wj v + iε)] f
i,j = l

and denote the three sums by J^v, ε), /2(i;, ε), and I3(v, ε) respectively.
Consider I^v, ε),
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-4 Λ ~i Γ n

lim — — l I^v, e)dv = lim — I Σ Im ψtAv + ie)φi(z1 v)Φ5{w, v)dv ,
ε-*+0 2m JΔ e+0 7Γ J4*, i=l

Now

p(X) = lim — I Im ψ(v + ie)dv
ε-+0 7Γ JΔ

and it follows from a theorem of Helly that

(3.14) lim — ^ ί Uv, έ)dv = ( Σ φfa v)φj{w1 v)dpij{v) .

As is shown in [2] we have the following estimate

(3.15) ± \ I ψiS(v ± is) I dv - of log - ) (ε - + 0) .

Since the φt(zf /) are entire in s for fixed « there exists a constant
Λf > 0 such that for ε sufficiently small

(3.16) I φfc, v + ie)φj(wf v - is) - φ,{z, v)Φά(w, v)\<Ms

for all ve A.
Combining (3.15) and (3.16) we see that

-ί ( I2(v, έ)dv = Ofε log l ) (ε -* +0) ,
π U V ε /

which tends to zero as ε—> +0. A similar result holds for

1 \ Iz(v, ε)dv .
π U

Consequently we have

(3.13) eά(z, w) = \ Σ Φi% vWw^dPifo) .

The author wishes to express his gratitude to Professor Earl
Coddington for his encouragement and guidance in this work.
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