SELF-ADJOINT DIFFERENTIAL OPERATORS

Arnold L. Villone

Let \mathscr{C} denote the Hilbert space of square summable analytic functions on the unit disk, and consider the formal differential operator

$$
L=\sum_{i=0}^{n} p_{i} D^{i}
$$

where the p_{i} are in \mathscr{C}. This paper is devoted to a study of symmetric operators in \mathscr{C} arising from L. A characterization of those L which give rise to symmetric operators S is obtained, and the question of when such an S is selfadjoint or admits of a self-adjoint extension is considered. If A is a self adjoint extension of S and $E(\lambda)$ the associated resolution of the identity, the projection E_{Δ} corresponding to the interval $\Delta=(a, b]$ is shown to be an integral operator whose kernel can be expressed in terms of a basis of solutions for the equation $(L-\ell) u=0$ and a spectral matrix.

Let \mathscr{A} denote the space of functions analytic on the unit disk and \mathscr{C} the subspace of square summable functions in \mathscr{A} with inner product

$$
(f, g)=\iint_{|z|<1} f(z) \overline{g(z)} d x d y
$$

Then \mathscr{C} is a Hilbert space with the reproducing property, i.e., for each z there exists a unique element K_{z} of $\mathscr{\mathscr { C }}$ such that

$$
f(z)=\left(f, K_{z}\right)
$$

Moreover, if the sequence $\left\{f_{n}\right\}$ converges to f in norm, $f_{n}(z)$ converges to $f(z)$ uniformly on compact subsets of the disk. A complete orthonormal set for \mathscr{C} is provided by the normalized powers of z,

$$
e_{n}(z)=[(n+1) / \pi]^{1 / 2} z^{n}, \quad n=0,1, \cdots .
$$

From this it follows that \mathscr{C} is identical with the space of power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ which satisfy

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} /(n+1)<\infty . \tag{1.1}
\end{equation*}
$$

Consider the formal differential operator

$$
L=p_{n} D^{n}+\cdots+p_{1} D+p_{0},
$$

where $D=d / d z$ and the p_{i} are in \mathscr{A}. For f in \mathscr{C} the element $L f$ is in \mathscr{A}, but not necessarily in \mathscr{C}. To see this we take $L=d / d z$ and $f(z)=\sum_{n=1}^{\infty} n^{-1 / 2} z^{n}$, from (1.1) it follows that f is in \mathscr{H} but $L f$ is not. In order to consider L as an operator in \mathscr{H} we must restrict the class of functions on which L acts in some suitable manner. Since our concern is with densely defined operators it is only natural to demand that powers of z be mapped into \mathscr{H}. This requires some restrictions on the coefficients of L. As an example consider the operator $L=p D$ where $p(z)=\sum_{n=0}^{\infty}(n+1) z^{n}$.

We have $L e_{k}(z)=k(k+1)^{1 / 2} \pi^{-1 / 2} \sum_{n=k-1}^{\infty}(n-k)^{1 / 2} z^{n}$, and hence $L e_{k} \notin \mathscr{C}$. A sufficient condition for the $L e_{k}$ to be in \mathscr{H} is that the coefficients p_{i} be in \mathscr{L}.

Let $L=\sum_{i=0}^{n} p_{i} D^{i}$, where the p_{i} are in $\mathscr{\mathscr { C }}$, and let \mathscr{D}_{0} denote the span of the e_{k} and \mathscr{D} the set of all f in $\mathscr{\mathscr { C }}$ for which $L f$ is in \mathscr{C}. We now define the operators T_{0} and T as follows.

$$
\begin{aligned}
T_{0} f & =L f \\
T f & =L f \quad f \in \mathscr{D}, \\
& f \in \mathscr{D} .
\end{aligned}
$$

Theorem 1.1. T_{0} and T are densely defined operators with range in $\mathscr{H}, T_{0} \subseteq T$, and T is closed.

Proof. We first show that T is closed. Let $\left\{f_{n}\right\}$ be a sequence of functions in \mathscr{D} such that $f_{n} \rightarrow f$ and $T f_{n} \rightarrow g$, hence $f_{n}(z)$ and $L f_{n}(z)$ converge uniformly on compact subsets to $f(z)$ and $g(z)$ respectively. But $L f_{n}(z)$ also converges to $L f(z)$. Hence $L f(z)=g(z)$, $|z|<1$, so $T f \in \mathscr{C}$ and $T f=g$.

Since \mathscr{D}_{0} is dense in \mathscr{H} and $T_{0} f=T f$ for $f \in \mathscr{D}_{0} \cap \mathscr{D}$ it suffices to show that the e_{j} are in \mathscr{D}. Since $L e_{j}=\sum_{i=0}^{n} p_{i} D^{i} e_{j}$ and $p_{i} D^{i} e_{j}$ is either zero or of the form $p_{i} e_{k}$ for some nonnegative integer k, it sufficies to show that $p_{i} e_{k} \in \mathscr{H}$. Let $p_{i}=\sum_{j=0}^{\infty} a_{j} e_{j}$, a simple computation yields

$$
e_{k} e_{j}=[(k+1) \pi]^{1 / 2}[(j+1) /(j+k+1)]^{1 / 2} e_{j+k}
$$

and consequently,

$$
\left\|e_{k} p_{i}\right\|^{2} \leqq[(k+1) \pi]\left\|p_{i}\right\|^{2}<\infty .
$$

T_{0} and T are respectively the minimal and maximal operators in \mathscr{H} associated with the formal operator L. We now proceed to study the class of formal differential operators for which T_{0} is symmetric.

It is clear that the operator T_{0} associated with the formal differential operator L is symmetric if and only if

$$
\begin{equation*}
\left(L e_{n}, e_{m}\right)=\left(e_{n}, L e_{m}\right), n, m=0,1, \ldots . \tag{1.2}
\end{equation*}
$$

We shall refer to those formal operators satisfying (1.2) as formally symmetric. As an example we have the real Euler operator

$$
L=\sum_{i=0}^{n} a_{i} z^{i} D^{i},
$$

a_{i} real. Then $L e_{j}=p(j) e_{j}$ where p is the characteristic polynomial

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n} x(x-1) \cdots(x-n+1)
$$

Since $p(j)=\overline{p(j)}, L$ is formally symmetric. A characterization of formally symmetric L in terms of the coefficients p_{i} is given in the next section. We now proceed to the consideration of the adjoint operators T_{0}^{*} and T^{*}. In what follows we shall make use of the result that if L is formally symmetric of order n, then the coefficients p_{i} are polynomials of degree at most $n+i, i=0,1, \cdots, n$. A proof of this is given in Theorem 2.2.

Theorem 1.2. If T_{0} is symmetric, $T_{0}^{*}=T$ and $T^{*} \subseteq T$. The closure of T_{0}, S, is self adjoint if and only if $S=T$.

Proof. By Theorem 2.2 the coefficients p_{i} are polynomials of degree at most $n+i$. This implies that T_{0} maps \mathscr{D}_{0} into itself. In particular,

$$
\begin{align*}
L e_{m} & =\sum_{i=0}^{n+m} \alpha_{i} e_{i}, \tag{1.3}
\end{align*} \quad 0 \leqq m \leqq n, ~=e_{i=j}^{=2 n+j} \alpha_{i} e_{i}, \quad j=1,2, \cdots .
$$

Using this we show that $T_{0}^{*} \subseteq T$. Let $g=\sum_{j=0}^{\infty} a_{j} e_{j}$ and $g^{*}=\sum_{j=0}^{\infty} b_{j} e_{j}$ be in the graph of T_{0}^{*} and consider the sequence $\left\{g_{p}\right\}$ in \mathscr{D}_{0} defined as $g_{p}=\sum_{j=0}^{p} a_{j} e_{j}$. Since $g_{p} \rightarrow g$ we have $\left(T_{0} e_{k}, g_{p}\right) \rightarrow\left(T_{0} e_{k}, g\right)=\left(e_{k}, g^{*}\right)$. Hence $\left(e_{k}, T_{0} g_{p}\right) \rightarrow\left(e_{k}, g^{*}\right)$. Now $L g$ is in \mathscr{A} and $T_{0} g_{p}$ converges to $L g$ uniformly on compact subsets. Since the e_{j} are just the normalized powers of z, the power series expansion of $L g$ can be written as $\sum_{j=0}^{\infty} c_{j} e_{j}(z)$. Since $L g_{p}(z)=\sum_{j=0}^{p} a_{j} L e_{j}(z)$ converges uniformly to $\sum_{j=0}^{\infty} c_{j} e_{j}(z)$, it follows from (1.3) that $L g_{p}$ has the same coefficient of e_{m} as does $L g$ for $p>n+m+1$. Hence $\left(e_{m}, T_{0} g_{p}\right)=\bar{c}_{m}$ for $p>n+m+1$ and since $\left(e_{m}, T_{0} g_{p}\right) \rightarrow\left(e_{m}, g^{*}\right)$ we have $c_{m}=b_{m}$. Therefore $g^{*}=L g$, so that $g \in \mathscr{D}$ and $g^{*}=T g$.

To show that $T \subseteq T_{0}^{*}$ it will suffice to show that $\left(T_{0} e_{m}, g\right)=$ $\left(e_{m}, T g\right)$ for all g in \mathscr{D} and $m=0,1, \cdots$ Let $g=\sum_{j=0}^{\infty} \alpha_{j} e_{j}$ be in \mathscr{D} and g_{p} as before. Since T_{0} is symmetric and $g_{p} \rightarrow g$ we have $\left(e_{m}, T_{0} g_{p}\right)=\left(T_{0} e_{m}, g_{p}\right) \rightarrow\left(T_{0} e_{m}, g\right)$. By precisely the same argument
as before $\left(e_{m}, T_{0} g_{p}\right)=\left(e_{m}, T g\right)$ for $p>n+m+1$, from which it follows that $\left(e_{m}, T g\right)=\left(T_{0} e_{m}, g\right)$ and $T_{0}^{*}=T$. Since $T_{0} \subseteq T, T^{*} \subseteq T_{0}^{*}=T$.

The closure S of the symmetric operator T_{0} is given by $T_{0}^{* *}=$ $T^{*} \subseteq T$. Since T is closed $T^{* *}=T$, from which it follows that $S^{*}=T$. Hence $S=T$ implies $S=S^{*}$. Conversely if S is selfadjoint we have $S=T^{*}=S^{*}=T$.

A sufficient condition for T to be self-adjoint is given by the following theorem.

Theorem 1.3. For $f=\sum_{j=0}^{\infty} a_{j} e_{j}$ set $f_{m}=\sum_{j=0}^{m} a_{j} e_{j}$. If $\sup _{m}\left\|T f_{m}\right\|<\infty$ for each f in \mathscr{D}, then S is self-adjoint.

Proof. Since $T^{*} \subseteq T, T$ symmetric implies $T=T^{*}$ and hence $S=S^{*}$. We show that $(T f, g)-(f, T g)$ vanishes for all f, g in \mathscr{D}. If L is of order n we have $\left(T f_{m}, g_{p}\right)=\left(T f, g_{p}\right)$ for $m>n+p+1$. Using this fact and the symmetry of T_{0} we obtain

$$
\begin{aligned}
\left(T f, g_{k n}\right) & =\left(T f_{k n+n+1}, g_{k n}\right)=\left(f_{k n+n+1}, T g_{k n}\right) \\
& =\left(f_{k n-n-1}, T g_{k n}\right)+\left(f_{k n+n+1}-f_{k n-n-1}, T g_{k n}\right) \\
& =\left(f_{k n-n-1}, T g\right)+\left(f_{k n+n+1}-f_{k n-n-1}, T g_{k n}\right) \\
& \quad k=1,2, \cdots .
\end{aligned}
$$

Therefore,

$$
(T f, g)-(f, T g)=\lim _{k \rightarrow \infty}\left(f_{k n+n+1}-f_{k n-n-1}, T g_{k n}\right)
$$

Since the $T g_{k n}$ are bounded in norm this implies $(T f, g)-(f, T g)=0$.
Corollary. If L is a formally symmetric Euler operator, then S is self-adjoint.

Proof. For $f=\sum_{j=0}^{\infty} b_{j} e_{j}$ in $\mathscr{D}, T f$ and $T f_{m}$ are given by $\sum_{j=0}^{\infty} p(j) b_{j} e_{j}$ and $\sum_{j=0}^{m} p(j) b_{j} e^{j}$ respectively, where $p(x)$ is the characteristic polynomial for L. Hence

$$
\left\|T f_{m}\right\|^{2}=\sum_{j=0}^{m} p(j)^{2}\left|b_{j}\right|^{2} \leqq\|T f\|^{2}
$$

and the result follows.
2. Formal considerations. The formal operator $L=\sum_{i=0}^{n} p_{i} D^{i}$ is formally symmetric if

$$
\left(L e_{n}, e_{m}\right)=\left(e_{n}, L e_{m}\right), n, m=0,1, \cdots
$$

To obtain a characterization of the formally symmetric operators
in terms of their coefficients we first determine the action of L on e_{k}.

Lemma 2.1. Let $L=\sum_{i=0}^{n} p_{i} D^{i}$ where $p_{i}(z)=\sum_{k=0}^{\infty} a_{k}(i) z^{k}$. Then $L e_{i}=\sum_{j=0}^{\infty} c_{i j} e_{j}$ where

$$
\begin{align*}
c_{i j} & =A(i, j) \sum_{k=0}^{n} B(i, k) a_{j-i+k}(k), \quad i, j=0,1 \cdots, \\
A(i, j) & =[(i+1) /(j+1)]^{1 / 2} \\
B(i, k) & =i!/(i-k)!\quad i \geqq k \tag{2.1}\\
& =0 \quad i<k .
\end{align*}
$$

Proof. Consider the elementary operators $L_{p q}=z^{p} D^{q}, p, q=$ $0,1, \cdots$ A simple calculation yields

$$
L_{p q} e_{m}=B(m, q) A(m, m+p-q) e_{m+p-q}
$$

Now consider $L e_{m}$ (as an element of \mathscr{A}),

$$
\begin{aligned}
L e_{m}(z) & =\sum_{i=0}^{n} \sum_{k=0}^{\infty} a_{k}(i) L_{k i} e_{m}(z) \\
& =\sum_{z=0}^{n} \sum_{k=0}^{\infty} a_{k-m+i}(i) B(m, i) A(m, k) e_{k}(z) \\
& =\sum_{k=0}^{\infty} c_{m k} e_{k}(z) \quad|z|<1
\end{aligned}
$$

But $e_{k}(z)$ is just a multiple of z^{k}, therefore it follows from the uniqueness of power series representation of elements of \mathscr{A}, that $\sum_{k=0}^{\infty} c_{m k} e_{k}$ converges to $T e_{m}$ in \mathscr{H}.

It follows that L is formally symmetric if and only if the coefficients $a_{k}(\ell)$, $\ell, k=0,1, \cdots$, satisfy the linear system

$$
\begin{equation*}
c_{i j}=\overline{c_{j i}}, \quad i, j=0,1, \ldots \tag{2.2}
\end{equation*}
$$

The following provides a simplification of the system (2.2).
Theorem 2.2. If $L=\sum_{i=0}^{n} p_{i} D^{i}$ is formally symmetric the p_{i} are polynomials of degree at most $n+i$.

Proof. Consider $c_{n+p, 0}$ for $p \geqq$. Since $j-n-p<0$ for $p \geqq 1$ and $j=0, \cdots, n, a_{j-n-p}(j)=0$. Consequently $c_{n+p, 0}=\bar{c}_{0, n+p}$ reduces to $A(0, n+p) \alpha_{n+p}(0)=0, p \geqq 1$, and p_{0} is of degree at most n. We now proceed inductively. Consider

$$
\begin{equation*}
c_{n+p, k+1}=\bar{c}_{k+1, n+p}, \quad p \geqq k+2 . \tag{2.3}
\end{equation*}
$$

Since $k+1+j-n-p<0$ for $p \geqq k+2$ and $j=0, \cdots, n$, reduces to

$$
A(k+1, n+p) \sum_{j=0}^{k-1} B(k+1, j) a_{n+p+j-k-1}(j)=0, \quad p \geqq k+2
$$

Since $n+p+j-k-1 \geqq n+j+1$, it follows from the inductive hypothesis that $a_{n+p+j-k-1}(j)=0$ for $j=0, \cdots, k$, and hence

$$
A(k+1, n+p)(k+1)!a_{n+p}(k+1)=0, \quad p \geqq k+2
$$

Therefore degree $p_{k+1} \leqq n+k+1$.
This result allows a considerable simplification of the system (2.2). For each nonnegative integer p consider the subsystem S_{p} of (2.2)

$$
c_{i, i+p}=\bar{c}_{i+p, i}, \quad i=0,1, \cdots .
$$

Since the equation $c_{i j}=\bar{c}_{j i}$ appears only in $S_{|i-j|}$ we have a partition of (2.2). Since the p_{i} are polynomial of degree at most $n+i$,

$$
a_{\ell+p}(\zeta)=0 \quad p>n, \quad \iota=0, \cdots, n,
$$

from which it follows that S_{p} is trivial for $p>n$. From (2.1) we see that $\alpha_{\ell}(i)$ appears only in $S_{|\ell-i|}$. Hence (2.2) is equivalent to the $n+1$ systems,

$$
S_{p}: c_{i, i+p}=\bar{c}_{i+p, i}, \quad i=0,1, \cdots,
$$

where the $a_{j+p}(j)$ appear only in S_{p}. Using (2.1) this becomes

$$
\begin{equation*}
S_{p}: \sum_{k=0}^{n} a_{p+k}(k) B(i, k)=\sum_{k=p}^{n} \bar{a}_{k-p}(k) B(i+p, k) A^{2}(i+p, i) . \tag{2.4}
\end{equation*}
$$

Theorem 2.3. The system S_{p} is satisfied if and only if

$$
\begin{equation*}
j!a_{j+p}(j)=R_{0}^{j} \quad j=0,1, \cdots, n \tag{2.5}
\end{equation*}
$$

where $R_{i}^{n}=\sum_{k=p}^{n} \bar{a}_{k-p}(k) B(i+p, k) A^{2}(i+p, i)$, and the R_{i}^{i} are obtained recursively by

$$
\begin{equation*}
R_{i}^{i}=R_{i+1}^{j-1}-R_{i}^{j-1} . \tag{2.6}
\end{equation*}
$$

Proof. For fixed p denote the left and right hand sides of the i th member of S_{p} by L_{i}^{0} and R_{i}^{0} respectively. We now employ a reduction scheme. Form the sequence of systems $\left\{L_{i}^{1}=R_{i}^{i}\right\},\left\{L_{i}^{2}=R_{i}^{2}\right\}, \cdots$, where

$$
\begin{array}{ll}
L_{i}^{j+1}=L_{i+1}^{j}-L_{i}^{j} & \\
R_{i}^{j+1}=R_{i+1}^{j}-R_{i}^{j} & i, j=0,1, \cdots
\end{array}
$$

By induction on j it can be shown that

$$
L_{i}^{j}=\sum_{k=0}^{n} a_{k+p}(k) B(i, k-j) P_{j}(k)
$$

where $P_{j}(k)=k(k-1) \cdots(k-j+1)$. Consequently, $L_{0}^{j}=j!a_{j+p}(j)$ and the necessity follows.

For the sufficiency we use the fact that for a given system of linear equations, $L^{j}=R^{j}, j=0 \cdots, n$, there exists a unique set of linear systems $\left\{\hat{L}_{i}^{0}=\hat{R}_{i}^{0}\right\}, \cdots,\left\{\hat{L}_{i}^{n}=\hat{R}_{i}^{n}\right\}$ which have the properties P1 thru P3.

$$
\begin{array}{rr}
P 1 \hat{L}_{i}^{j}=\hat{L}_{i+1}^{j-1}-\hat{L}_{i}^{j-1} & \\
\hat{R}_{i}^{j}=\hat{R}_{i+1}^{j-1}-\hat{R}_{i}^{j-1} & \begin{array}{l}
j=1, \cdots, n \\
P 2 \hat{L}_{0}^{j}=L^{j}, \hat{R}_{0}^{j}=R^{j}
\end{array} \\
P 3 \hat{L}_{i}^{n}=L^{n}, \hat{R}_{i}^{n}=R^{n} & i=0, \cdots, n \\
\end{array}
$$

This set is constructed in the following manner.
The system $\left\{\hat{L}_{i}^{n}=\hat{R}_{i}^{n}\right\}$ is defined by $P 3$. To satisfy $P 1$ and $P 2$ we define the system $\left\{\hat{L}_{i}^{n-1}=\widehat{R}_{i}^{n-1}\right\}$ inductively by $\hat{L}_{0}^{n-1}=L^{n-1}, \hat{R}_{0}^{n-1}=$ R^{n-1}, $\hat{L}_{i+1}^{n-1}=\hat{L}_{i}^{n-1}+L^{n}$, and $\hat{R}_{i+1}^{n-1}=\hat{R}_{i}^{n-1}+R^{n}$. Similarly we define the system $\left\{\hat{L}_{i}^{n-2}=\widehat{R}_{i}^{n-2}\right\}$ through $\left\{\hat{L}_{i}^{0}=\hat{R}_{i}^{0}\right\}$ by means of the equations

$$
\begin{aligned}
& \hat{L}_{i}^{n-2}=L^{n-2}, \hat{R}_{0}^{n-2}=R^{n-2} \\
& \hat{L}_{i+1}^{n-2}=\hat{L}_{i}^{n-2}+\hat{L}_{i}^{n-1}, \hat{R}_{i+1}^{n-2}=\hat{R}_{i}^{n-2}+\hat{R}_{i}^{n-1} \\
& \hat{L}_{0}^{0}=L^{0}, \hat{R}_{0}^{0}=R^{0} \\
& \hat{L}_{i+1}^{0}=\hat{L}_{i}^{0}+\widehat{L}_{i}^{1}, \hat{R}_{i+1}^{0}=\hat{R}_{i}^{0}+\hat{R}_{i}^{1} .
\end{aligned}
$$

From the method of construction the systems $\left\{\hat{L}_{i}^{0}=\hat{R}_{i}^{3}\right\}$ thru $\left\{\hat{L}_{i}^{n}=\hat{R}_{i}^{n}\right\}$ are the unique systems satisfying $P 1$ thru $P 3$.

Since $P_{j}(k)$ vanishes for $0 \leqq k \leqq j-1$ it follows that $L_{i}^{j}=0$ for $j>n$ and all i. Moreover, for $j=n$ we have $L_{i}^{n}=n!a_{n+p}(n)$, a constant independent of i. From (2.4) we see that $R_{i}^{0}=$ $\sum_{k=p}^{n} \bar{a}_{k-p}(k) C_{k}(i)$, where the $C_{k}(i)$ are polynomials in i of degree k. Hence $R_{i}^{1}=R_{i+1}^{0}-R_{i}^{0}$ can be written in the form $\sum_{k=p}^{n} \bar{a}_{k-p}(k) C_{k}^{1}(i)$, where the $C_{k i}^{1}(i)$ are of degree $k-1$. Continuing in this manner we obtain

$$
\begin{array}{ll}
R_{i}^{j}=0 & j>n \\
R_{i}^{n}=R_{0}^{n} & i=0,1, \cdots, \\
& i=0,1, \cdots
\end{array}
$$

Hence the systems $\left\{L_{i}^{j}=R_{i}^{j}\right\} j=0, \cdots, n$ satisfy $P 1$ thru $P 3$ where $L_{0}^{j}=R_{0}^{j}$ corresponds to the $L^{j}=R^{j}$ and the system $\left\{\hat{L}_{i}^{0}=\hat{R}_{i}^{0}\right\}$ corresponds to the system S_{p}. This yields the sufficiency.

This theorem provides an algorithm for determining all formally
symmetric operators of a given order. As an application we give the general formally symmetric first order operator. Use of 2.5 for $p=0$ and 1 yields

$$
L=\left(c z^{2}+a z+\bar{c}\right) d / d z+(2 c z+b),
$$

where a and b are real.
3. Self-adjoint extensions. The operator S has another characterization which will be of use in the study of self-adjoint extensions. For f and g in \mathscr{D} consider the bilinear form

$$
\begin{equation*}
\langle f g\rangle=(L f, g)-(f, L g), \tag{3.1}
\end{equation*}
$$

and let $\tilde{\mathscr{D}}$ be the set of those f in \mathscr{D} for which $\langle f g\rangle=0$ for all g in \mathscr{D}. Since $S=T^{*}$ and $\mathscr{\mathscr { D }}\left(T^{*}\right)=\tilde{\mathscr{D}}, S$ has domain $\tilde{\mathscr{D}}$.

Let \mathscr{D}^{+}and \mathscr{D}^{-}denote the set of all solutions of the equations $L u=i u$ and $L u=-i u$ respectively, which are in \mathscr{H}. It is known from the general theory of Hilbert space [3, p. 1227-1230] that

$$
\begin{equation*}
\mathscr{D}=\tilde{\mathscr{D}}+\mathscr{D}^{+}+\mathscr{D}^{-}, \tag{3.2}
\end{equation*}
$$

and every $f \in \mathscr{O}$ has the unique representation

$$
f=\tilde{f}+f^{+}+f^{-},\left(\tilde{f} \in \tilde{\mathscr{D}}, f^{+} \in \mathscr{D}^{+}, f^{-} \in \mathscr{D}^{-}\right) .
$$

Let the dimensions of \mathscr{D}^{+}and \mathscr{D}^{-}be m^{+}and m^{-}respectively. Clearly, m^{+}and m^{-}cannot exceed the order of L. These integers are referred to as the deficiency indices of S, and S has self-adjoint extensions if and only if $m^{+}=m^{-}$. Moreover S is itself self-adjoint if and only if $m^{+}=m^{-}=0$.

We assume that $m^{+}=m^{-}=m$ and seek to characterize all selfadjoint extensions of S. Von Neumann has shown that the selfadjoint extensions of S are in a one-to-one correspondence with the unitary operators U of \mathscr{D}^{+}onto \mathscr{D}^{-}. Corresponding to any such U there exists a self-adjoint extension A of S whose domain is the set of all $f \in \mathscr{D}$ which are of the form

$$
f=\tilde{f}+(I-U) f^{+}, \quad\left(f \in \tilde{\mathscr{D}}, f^{+} \in \mathscr{D}^{+}\right),
$$

where I is the identity operator on \mathscr{D}^{+}. Conversly every such A has a domain of this type.

We now introduce the notion of abstract boundary conditions and indicate how the domain of any self-adjoint extension of S can be obtained. A boundary condition is a condition on $f \in \mathscr{D}$ of the form

$$
\langle f h\rangle=0,
$$

where h is a fixed function in \mathscr{D}. The conditions

$$
\left\langle f h_{j}\right\rangle=0, \quad j=1, \cdots, n
$$

are said to be linearly independent if the only set of complex numbers $\alpha_{1}, \cdots, \alpha_{n}$ for which

$$
\sum_{j=1}^{n} \alpha_{j}\left\langle f h_{j}\right\rangle=0
$$

identically in $f \in \mathscr{D}$ is $\alpha_{1}=\cdots=\alpha_{n}=0$. A set of n linearly independent boundary conditions $\left\langle f h_{j}\right\rangle=0, j=1, \cdots, n$, is said to be self-adjoint if $\left\langle h_{j} h_{k}\right\rangle=0, j, k=1, \cdots, n$.

The following theorem follows directly from the proof of Theorem 3 in the paper of Coddington [1].

Theorem 3.1. If A is a self-adjoint extension of S with domain \mathscr{D}_{A}, then there exists a set of m self-adjoint boundary conditions,

$$
\begin{equation*}
\left\langle f h_{j}\right\rangle=0 \quad j=1, \cdots, m \tag{3.3}
\end{equation*}
$$

such that \mathscr{D}_{A} is the set of all $f \in \mathscr{D}$ satisfying these conditions. Conversly, if (3.3) is a set of m self-adjoint boundary conditions, there exists a self-adjoint extension A of S whose domain is the set of all $f \in \mathscr{D}$ satisfying (3.3)

Let $\dot{\phi}_{1}, \cdots, \phi_{m}$ and $\psi_{1}, \cdots, \psi_{m}$ be orthonormal sets for \mathscr{D}^{+}and \mathscr{D}^{-}respectively and $\left(u_{j k}\right)$ a unitary matrix representing U, then the h_{j} are given by

$$
\begin{equation*}
h_{j}=\phi_{j}-\sum_{k=1}^{m} u_{j k} \psi_{k}, \quad j=1, \cdots, m \tag{3.4}
\end{equation*}
$$

Let A be a self-adjoint operator associated with L and $E(\lambda)$ the corresponding resolution of the identity. We shall show the projection E_{Δ} corrresponding to $\Delta=(a, b]$ can be expressed as an integral operator with a kernel given in terms of a basis of solutions for $L u-\lambda u=0$ and a certain spectral matrix. Our work was inspired by the treatment of E. A. Coddington [2] of the case when A arises from a formal differential operator in the space $L_{2}(I), I$ an open interval. We begin by showing that the resolvent operator of A,

$$
R(\nearrow)=(A-\ell)^{-1}, \quad \operatorname{Im}(\measuredangle) \neq 0
$$

is an integral operator with a nice kernel.

Theorem 3.2. $R(c)$ is an integral operator with kernel K,

$$
\begin{equation*}
R(\iota) f(z)=\iint_{|w|<1} K(z, w, \iota) f(w) d u d v, \quad f \in \mathscr{C} \tag{3.5}
\end{equation*}
$$

K is jointly analytic in z, \bar{w}, and ℓ on the region $|z|<1,|w|<1$, $\operatorname{Im}(\iota) \neq 0$.

Moreover, $K(z, w, \iota)=\overline{K(w, z, \bar{\zeta})}$ and

$$
\begin{equation*}
(L-\measuredangle) K(w, z, \ell)=K_{z}(w), \text { for fixed } z \text { and } \ell \tag{3.6}
\end{equation*}
$$

Proof. Since $R(\zeta) f(z)=\left(R(\zeta) f, K_{z}\right)$ and $R^{*}(\iota)=R(\bar{\zeta})$, it follows that (3.1) holds with $K(z, w, \iota)=\overline{R(\bar{\zeta}) K_{z}(w)}$. Hence K is analytic in \bar{w} for fixed z and ℓ. That $K(z, w, \iota)=\overline{K(w, z, \bar{\iota})}$ can be seen from the following computations,

$$
K(z, w, \iota)=\overline{\left(R(\bar{\zeta}) K_{z}, K_{w}\right)}=\overline{\left(\overline{K_{z}, R(\iota) K_{w}}\right)}=\overline{K(w, z, \bar{\iota})} .
$$

Hence $K(z, w, \ell)$ is analytic in z for fixed w and ℓ. It follows from the analyticity of $R(\measuredangle)$ for $\operatorname{Im}(\iota) \neq 0$ that $K(z, w, \iota)=\left(R(\iota) K_{w}, K_{z}\right)$ is analytic in ℓ for fixed z and w on any region for which $\operatorname{Im}(\iota) \neq 0$. Since analyticity in each of the variables separately implies joint analyticity it only remains to verify (3.6). This follows from the fact that $K(w, z, \zeta)=\overline{K(z, w, \bar{\zeta})}=R(\iota) K_{\varepsilon}(w)$.

We now split the kernel $K(z, w, \ell)$ into two parts one of which satisfies the homogeneous equation $(L-\ell) u=0$. Since the coefficients of L are polynomials, p_{n} has at most a finite number of zeros in the unit disk. Introducing radial branchcuts at these zeros, we obtain the region \widetilde{D}, simply connected relative to D, in which p_{n} never vanishes. Let $z_{0} \in \widetilde{D}$, it follows from standard theorems that there exists a basis of solutions for the equation $(L-\ell) \phi=0$ such that:
(i) $\phi_{i}(\ell), i=1, \cdots, n$, are single-valued analytic functions on \widetilde{D}
(ii) $\dot{\phi}_{i}^{(j-1)}\left(z_{0}, \ell\right)=\delta_{i j}, \quad i, j=1, \cdots, n$,
(iii) $\dot{\phi}_{i}(w, \iota), \quad i=1, \cdots, n$, is entire in ℓ for each $w \in \widetilde{D}$.

Theorem 3.3. The kernel $K(z, w, \ell)$ has the representation

$$
\begin{equation*}
K(z, w, \ell)=\sum_{i, j=1}^{n} \psi_{i j}(\ell) \dot{\phi}_{i}(z, \zeta) \overline{\dot{\phi}_{j}(w, \bar{\ell})}+G(z, w, \ell) \tag{3.7}
\end{equation*}
$$

where $G(z, w, \ell)$ is entire in ℓ for fixed z and w.
Proof. For fixed $z \in \widetilde{D}$ and $\operatorname{Im}(\epsilon) \neq 0$ it follows from (3.6) that

$$
\begin{equation*}
K(w, z, \bar{\nearrow})=\sum_{j=1}^{n} \psi_{j}(z, \nearrow) \dot{\phi}_{j}(w, \bar{\nearrow})+\Omega(z, w, \bar{\zeta}), \tag{3.8}
\end{equation*}
$$

where $\Omega(z, w, \bar{\nearrow})$ is the particular solution furnished by the variation of parameters method and is entire in $\bar{\ell}$ for fixed z, w. Moreover,

$$
\begin{equation*}
\frac{\partial^{i-1}}{\partial w^{i-1}} \Omega\left(z, z_{0}, \bar{z}\right)=0, \quad i=1, \cdots, n \tag{3.9}
\end{equation*}
$$

Now consider the differential equation $\left(L_{z}-\iota\right) K(z, w, \iota)=K_{w}(z)$, where L_{z} denotes the fact that L is applied with respect to z. Differentiating with respect to \bar{w} and making use of the symmetry of K we obtain

$$
\left(L_{z}-\ell\right) \frac{\partial^{j-1}}{\partial \bar{w}^{j-1}} \overline{K(w, z, \bar{\zeta})}=\frac{\partial^{j-1}}{\partial \bar{w}^{j-1}} K_{w}(z), \quad j=1, \cdots, n .
$$

Using (3.8), (3.9) and the relationships

$$
\phi_{i}^{(j-1)}\left(z_{0}, \ell\right)=\delta_{i j}
$$

we obtain

$$
\left(L _ { z } - \zeta \longdiv { \psi _ { j } (z , \zeta) } = \frac { \partial ^ { j - 1 } } { \partial \overline { w } ^ { j - 1 } } K _ { z _ { 0 } } (z) .\right.
$$

Variation of parameters yields

$$
\begin{equation*}
\psi_{j}(z, \nearrow)=\sum_{i=1}^{n} \bar{\psi}_{i j}(\iota) \overline{\phi_{i}(z, \nearrow)}+\overline{\Omega_{j}(z, \nearrow)}, \quad j=1, \cdots, n, \tag{3.10}
\end{equation*}
$$

where the $\Omega_{j}(z, \leftharpoonup)$ are entire in $/$ for fixed z and satisfy

$$
\begin{equation*}
\frac{\partial^{i-1}}{\partial z^{i-1}} \Omega_{j}\left(z_{0}, \ell\right)=0, \quad i, j=1, \cdots, n \tag{3.11}
\end{equation*}
$$

It follows from (3.8) and (3.10) that (3.7) holds where

$$
G(z, w, \nearrow)=\overline{\Omega(z, w, \bar{\zeta})}+\sum_{j=1}^{n} \Omega_{j}\left(z, \zeta \overline{\left.\overline{\phi_{j}(w, \bar{\ell}}\right)}\right.
$$

is entire in ℓ for each $z, w \in \widetilde{D}$.
Concerning the matrix $\psi=\left(\psi_{i j}\right)$ we have the following.
Theorem 3.4. The matrix ψ is analytic for $\operatorname{Im}(\varsigma) \neq 0, \psi^{*}(\varsigma)=$ $\psi(\bar{\zeta})$, and $\operatorname{Im} \psi(\kappa) / \operatorname{Im}(\epsilon) \geqq 0$, where $\operatorname{Im} \psi=\left(\psi-\psi^{*}\right) / 2 i$.

Proof. It follows from (3.9) and (3.10) that

$$
\begin{equation*}
\psi_{i j}(\zeta)=\frac{\partial^{i+j-2}}{\partial z^{i-1} \partial w^{j-1}} K\left(z_{0}, z_{0}, \ell\right), \quad i, j=1, \cdots, n \tag{3.12}
\end{equation*}
$$

and hence ψ is analytic for $\operatorname{Im}(\ell) \neq 0$. Using (3.12) and the symmetry of K we obtain $\psi_{i j}(\zeta)=\overline{\psi_{j i}(\zeta)}$.

In order to demonstrate the positivity of $\operatorname{Im} \psi(\zeta) / \operatorname{Im}(\zeta) \geqq 0$ we consider the functionals ℓ_{k} defined by

$$
\ell_{k}(f)=f^{(k-1)}\left(z_{0}\right), \quad f \in \mathscr{C}, k=1, \cdots, n
$$

Since convergence in \mathscr{H} implies uniform convergence on compact subsets, the ℓ_{k} are bounded linear functional on \mathscr{H}. Consequently there exist functions K_{1}, \cdots, K_{n} in \mathscr{C} for which

$$
f^{(k-1)}\left(z_{0}\right)=\left(f, K_{k}\right),
$$

all f in \mathscr{H}. Let ξ_{1}, \cdots, ξ_{n} be any set of n complex numbers and consider the function $f=\sum_{k=1}^{n} \xi_{k} K_{k}$. The inner product $(R(\ell) f, f)=$ $\sum_{i, j=1}^{n} \xi_{i} \xi_{j}\left(R(\zeta) K_{i}, K_{j}\right)$. Now $R(\zeta) K_{i}(z)=\left(K_{i}, K_{z \iota}\right)$, where $K_{z \iota}(w)=$ $\bar{K}(z, w, \nearrow)=K(w, z, \bar{\iota})$. Consequently,

$$
R(\iota) K_{i}(z)=\overline{\frac{\partial^{i-1}}{\partial w^{i-1}} K\left(z_{0}, z, \bar{\iota}\right)}
$$

and

$$
\left(R(\iota) K_{i}, K_{j}\right)=\frac{\partial^{i+j-2}}{\partial^{i-1} \bar{w} \partial z^{j-1}} K\left(z_{0}, z_{0}, \iota\right)=\psi_{j i}(\iota)
$$

Using the resolvent equation it is not hard to see that

$$
\operatorname{Im}(R(\zeta) f, f) / \operatorname{Im}(\zeta)=\|R(\zeta) f\|^{2} \geqq 0
$$

and hence

$$
\sum_{i, j=1}^{n} \frac{\operatorname{Im} \psi_{j i}(\zeta)^{\operatorname{Im}(\zeta)}}{\xi_{i} \bar{\xi}_{j} \geqq 0 .}
$$

This completes the proof.
It is shown in [2] that Theorem 3.4 implies the existence of a spectral matrix ρ for the resolvent R.

Theorem 3.5. The matrix ρ defined by

$$
\rho(\lambda)=\lim _{\varepsilon \rightarrow+0} \frac{1}{\pi} \int_{0}^{\lambda} \operatorname{Im}(\nu+i \varepsilon) d \nu
$$

exists, is nondecreasing, and is of bounded variation on any finite interval.

We now consider the projections E_{Δ} corresponding to the interval $\Delta=(a, b]$. It follows from the proof of Theorem 3.2, that E_{Δ} is an integral operator with kernel $e_{\Delta}(z, w)=\overline{E_{\Delta} K_{z}(w)}$. The following theorem shows how $e_{\Delta}(z, w)$ can be described in terms of the basis $\phi_{1}, \cdots, \phi_{n}$ and the spectral matrix given by Theorem 3.5.

Theorem 3.6. If a and b are continuity points of E then

$$
\begin{equation*}
e_{\Delta}(z, w)=\int \sum_{\Delta i, j=1}^{n} \phi_{i}(z, \nu) \overline{\phi_{j}(w, \nu)} d \rho_{i j}(\nu) \tag{3.13}
\end{equation*}
$$

where $\rho=\left(\rho_{i j}\right)$ is the spectal matrix given by Theorem 3.5.
Proof. The idea is to use the inversion formula

$$
\left(E_{\Delta} f, g\right)=\lim _{\varepsilon \rightarrow+0} \frac{1}{2 \pi i} \int_{\Delta}((R(\nu+i \varepsilon) f, g)-(R(\nu-i \varepsilon) f, g)) d \nu
$$

for all f and g in \mathscr{C}, a and b continuity points of E_{λ}. Since E_{Δ} is self-adjoint $e_{\Delta}(z, w)=\left(E_{\Delta} K_{w}, K_{z}\right)$ and hence

$$
\begin{aligned}
e_{\Delta}(z, w) & =\lim _{\varepsilon \rightarrow+0} \frac{1}{2 \pi i} \int_{\Delta}\left\{\left(R(\nu+i \varepsilon) K_{w}, K_{z}\right)-\left(R(\nu-i \varepsilon) K_{w}, K_{z}\right)\right\} d \nu \\
& =\lim _{\varepsilon \rightarrow+0} \frac{1}{2 \pi i} \int_{\Delta} K(z, w, \nu+i \varepsilon)-K(z, w, \nu-i \varepsilon) d \nu
\end{aligned}
$$

For $z, w \in \widetilde{D}$, this becomes

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow+0} \frac{1}{2 \pi i} \int_{\Delta} \sum_{i, j=1}^{n} \psi_{i j}(\nu+i \varepsilon) \phi_{i}(z, \nu+i \varepsilon) \overline{\phi_{j}(w, \nu-i \varepsilon)} \\
& \quad-\psi_{i j}(\nu-i \varepsilon) \phi_{i}(z, \nu-i \varepsilon) \overline{\phi_{j}(w, \nu+i \varepsilon)} d \nu \\
& \quad+\lim _{\varepsilon \rightarrow+0} \frac{1}{2 \pi i} \int_{\Delta} G(z, w, \nu+i \varepsilon)-G(z, w, \nu-i \varepsilon) d \nu
\end{aligned}
$$

Since $G(z, w, \ell)$ is entire in ℓ the later integral tends to zero as $\varepsilon \rightarrow+0$.

We now rewrite the first integrand as

$$
\begin{aligned}
& \sum_{i, j=1}^{n}\left[\psi_{i j}(\nu+i \varepsilon)-\psi_{i j}(\nu-i \varepsilon)\right] \phi_{i}(z, \nu) \overline{\phi_{j}(w, \nu)}+ \\
& \left.\left.\sum_{i, j=1}^{n} \psi_{i j}(\nu+i \varepsilon)\left[\phi_{i}(z, \nu+i \varepsilon) \overline{\phi_{j}(w, \nu-i \varepsilon}\right)-\phi_{i}(z, \nu) \overline{\phi_{j}(w, \nu}\right)\right]+ \\
& \sum_{i, j=1}^{n} \psi_{i j}(\nu-i \varepsilon)\left[\phi_{i}(z, \nu) \overline{\phi_{j}(w, \nu)}-\phi_{i}(z, \nu-i \varepsilon) \overline{\phi_{j}(w, \nu+i \varepsilon)}\right]
\end{aligned}
$$

and denote the three sums by $I_{1}(\nu, \varepsilon), I_{2}(\nu, \varepsilon)$, and $I_{3}(\nu, \varepsilon)$ respectively.
Consider $I_{1}(\nu, \varepsilon)$,

$$
\lim _{\varepsilon \rightarrow+0} \frac{1}{2 \pi i} \int_{\Lambda} I_{1}(\nu, \varepsilon) d \nu=\lim _{\varepsilon+0} \frac{1}{\pi} \int_{\Delta} \sum_{i, j=1}^{n} \operatorname{Im} \psi_{i j}(\nu+i \varepsilon) \phi_{i}(z, \nu) \overline{\phi_{j}(w, \nu)} d \nu
$$

Now

$$
\rho(\lambda)=\lim _{\varepsilon \rightarrow+0} \frac{1}{\pi} \int_{\Delta} \operatorname{Im} \psi(\nu+i \varepsilon) d \nu
$$

and it follows from a theorem of Helly that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow+0} \frac{1}{2 \pi i} \int_{\Delta} I_{1}(\nu, \varepsilon) d \nu=\int_{\Delta i, j=1}^{n} \phi_{i}(z, \nu) \overline{\phi_{j}(w, \nu)} d \rho_{i j}(\nu) . \tag{3.14}
\end{equation*}
$$

As is shown in [2] we have the following estimate

$$
\begin{equation*}
\sum_{i, j=1}^{n} \int_{A}\left|\psi_{i j}(\nu \pm i \varepsilon)\right| d \nu=O\left(\log \frac{1}{\varepsilon}\right) \quad(\varepsilon \rightarrow+0) \tag{3.15}
\end{equation*}
$$

Since the $\phi_{i}(z, \ell)$ are entire in ℓ for fixed z there exists a constant $M>0$ such that for ε sufficiently small

$$
\begin{equation*}
\left|\phi_{i}(z, \nu+i \varepsilon) \overline{\phi_{j}(w, \nu-i \varepsilon)}-\phi_{i}(z, \nu) \overline{\phi_{j}(w, \nu)}\right|<M \varepsilon \tag{3.16}
\end{equation*}
$$

for all $\nu \in \Delta$.
Combining (3.15) and (3.16) we see that

$$
\frac{1}{\pi} \int_{A} I_{2}(\nu, \varepsilon) d \nu=O\left(\varepsilon \log \frac{1}{\varepsilon}\right) \quad(\varepsilon \rightarrow+0)
$$

which tends to zero as $\varepsilon \rightarrow+0$. A similar result holds for

$$
\frac{1}{\pi} \int_{\Delta} I_{3}(\nu, \varepsilon) d \nu
$$

Consequently we have

$$
\begin{equation*}
\left.e_{\Delta}(z, w)=\int_{\Delta} \sum_{i, j=1}^{n} \phi_{i}(z, \nu) \overline{\phi_{j}(w, \nu}\right) d \rho_{i j}(\nu) \tag{3.13}
\end{equation*}
$$

The author wishes to express his gratitude to Professor Earl Coddington for his encouragement and guidance in this work.

Bibliography

1. E. A. Coddington, The spectral representation of ordinary self-adjoint differential operators, Ann. of Math. 60 (1954), 192-211.
2. -, Generalized resolutions of the identity for symmetric ordinary differential operators, Ann. of Math. 68 (1958), 378-392.
3. N. Dunford and J. Schwartz, Linear Operators, Part II, Interscience Publishers, 1963.

Received February 20, 1970. This work is part of a doctoral dissertation written at the University of California at Los Angeles under Professor Earl Coddington and supported in part by NSF Grant GP-3594.

University of California, Los Angeles
AND
San Diego State College

