AN APPROXIMATION THEOREM FOR SUBALGEBRAS OF $H \approx$

ARNE STRAY

Let E be a closed subset of the unitcircle $T=\{z:|z|=1\}$ and denote by B_E the algebra of all functions which are bounded and continuous on the set $X=\{z:|z|\leq 1 \& z\notin E\}$ and analytic in $D=\{z:|z|<1\}$.

The main result of this paper (Theorem 1) is that there exist an open set V_E containing X such that every $f \in B_E$ can be approximated uniformly on X by functions being analytic in V_E .

The algebra B_E was introduced in [4] by E. A. Heard and J. H. Wells.

In [4] they characterize the interpolationsets for B_E . At the end of their paper they remark that the question of whether D is dense in the maximal ideal space $M(B_E)$ of B_E is open in case E is a proper nonempty subset of T. As a corollary of Theorem 1 we prove that D is dense in $M(B_E)$. (In proving the corollary we of course use the Carleson corona-theorem [1]).

This corollary has also been proved recently by Jaqueline Detraz in [3] where it follows from the very interesting fact that the restriction map from $M(H\infty)$ (the maximal ideal space of $H\infty(D)$) to $M(B_E)$ is onto. This is the main theorem of [3, Th. 2]. [3] contains also other results about B_E that we do not prove her. However, Theorem 2 of [3] can also be proved by using the main result of this paper together with the Carleson corona-theorem since Theorem 2 of [3] is equivalent with the fact that D is dense in $M(B_E)$. But the proof of Theorem 2 in [3] is more direct and do not involve the Carleson corona theorem.

Through the whole paper $r_0 > 1$ will be a fixed real number.

Define an open set
$$V_{\scriptscriptstyle E}$$
 by $V_{\scriptscriptstyle E} = X \cup \{z \colon 1 \leqq |\, z\,| < r_{\scriptscriptstyle 0} \ \& \ \frac{z}{|z|} \not\in \mathit{V}\}$

Theorem 1. For every $f \in B_{\scriptscriptstyle E}$ and every $\varepsilon > 0$ there exist a function g analytic in $V_{\scriptscriptstyle E}$ such that $||f-g||_{\scriptscriptstyle X} < \varepsilon$.

LEMMA 1. Suppose $f \in B_E$ and e is a continuously differensiable function on T with compact support contained in $C \setminus E$.

If f=u+iv and we define $u_{\scriptscriptstyle \rm I}(\theta)=u(\theta)e(\theta)$ $(\theta\in(-\pi,\pi]),$ then the function

$$f_{\scriptscriptstyle 1}(z) = rac{1}{2\pi} \int_{\pi}^{\pi} rac{e^{i heta} + z}{e^{i heta} - z} \, u_{\scriptscriptstyle 1}(heta) d heta = u_{\scriptscriptstyle 1}(z) \, + \, v_{\scriptscriptstyle 1}(z)$$

is in the disc-algebra A(D) consisting of all continuous functions on \bar{D} being analytic in D.

Proof. Let $\theta \in (-\pi, \pi]$. Then the

integral

$$I(\theta) = \frac{-1}{2\pi} \int_{\pi}^{\pi} \frac{u_1(\theta+t) - u_1(\theta-t)}{2 \tan \frac{t}{2}} dt$$

exists because it equals the sum

$$I_1(\theta) + I_2(\theta) + I_3(\theta)$$

where

$$I_{\text{I}}(\theta) = \frac{-1}{2\pi} \int_{\pi}^{\pi} \frac{(u(\theta+t) - u(\theta-t))e(\theta)}{2 \tan \frac{t}{2}} dt$$

$$I_{\scriptscriptstyle 2}(heta) = rac{-1}{2\pi} \int_{\pi}^{\pi} rac{u(heta+t) \left(e(heta+t)-e(heta)
ight)}{2 anrac{t}{2}} \; dt$$

and

$$I_{\mathfrak{z}}(heta) = rac{-1}{2\pi} \int_{\pi}^{\pi} rac{u(heta-t) \left(e(heta)-e(heta-t)
ight)}{2 anrac{t}{2}} \; dt \; .$$

It is well-known that the existence if $I(\theta)$ is equivalent with the existence of $v_1^*(\theta)^{\text{def}} \lim_{r\to 1} v_1(\text{re}^{i\theta})$ and that $I(\theta) = v_1^*(\theta)$ if $I(\theta)$ or $v_1^*(\theta)$ exists. (See [5] at pages 78 and 79).

Using the results mentioned in [5] we get that $I_1(\theta) = v(\theta) \cdot e(\theta)$. A change of variable in $I_3(\theta)$ shows that $I_3(\theta) = I_2(\theta)$ and $I_2(\theta)$ exists since $e \in C_0^1(T)$ and u is bounded.

Since $v_1^*(\theta)$ exists for all θ , Lemma 1 is proved if we can show that v_1^* is continuous on T. For then f_1 has the continuous boundary values $f_1(\theta) = u_1(\theta) + i v_1^*(\theta)$ and

$$\int_{\scriptscriptstyle T} e^{in heta} \, f_{\scriptscriptstyle 1}(heta) d heta = 0 \qquad \qquad ext{for } n=1,\,2,\,\cdots$$
 .

By the remarks above it is sufficient to show that $I_2(\theta)$ is continuous on T.

The proof of this depends on the fact that $e \in C^1_{\circ}(T)$ and that for a fixed $f \in L^1(T)$ the map $x \to f_x(\text{where } f_x(y) = f(yx^{-1})$ when $x, y \in T)$ from T to $L^1(T)$ is uniformly continuous. We omit the details.

Proof of Theorem 1. Let T $E = \bigcup_{k=1}^{\infty} I_k$ where each I_k is an open interval (arc) and $I_k \cap I_j = \emptyset$ if $k \neq j$.

Consider a fixed I_k . Construct open intervals $\{K_{kn}\}_{n=1}^{\infty}$ such that $I_k = \bigcup_{n=1}^{\infty} K_{kn}$. We also require that each $z \in I_k$ is not contained in more than two such intervals and that $K \cap \overline{K}_{kn} \neq \emptyset$ only for finitely many n if K is a compact subset of I_k . We choose nonnegative functions $e_{kn} \in C_0^1(T)$ with the support of e_{kn} contained in K_{kn} and such that $\sum_{n=1}^{\infty} e_{kn}(z) = 1$ if $z \in I_k$.

Having carried out this construction for $k=1,2,3\cdots$ we renumerate the double-sequence $\{e_{kn}\}$ to a sequence $\{a_j\}$ by defining $\alpha_1=e_{11}, \alpha_2=e_{12}, \alpha_3=e_{21}, \alpha_4=e_{31}, \alpha_5=e_{22}$ and so on.

The sequence $\{K_{kn}\}$ is renumerated in the same manner to a sequence $\{K_j\}$ so that support $a_j \subset K_j$ for $j=1,2,\cdots$

For each N we let S_N denote the union of the supports of the functions α_j for $j \ge N$.

By W_j we mean the compact set of all points in $\{z: |z| \leq r_0\}$ except those z such that |z| > 1 and such that the linesegment from the origin to z intersects K_i .

The construction of the sets K_j guarantees that for each compact subset K of V_E there exists a number N such that $K \subset W_j$ for $j \geq N$.

Let now $f \in B_{\mathbb{F}}$. We can without loss of generality assume f = u + iv where v(0) = 0. Define $u_j(\theta) = u(\theta) \cdot \alpha_j(\theta)$ $j = 1, 2, \cdots$ $\theta \in (-\pi, \pi]$.

Now let

$$f_{j}(z) = \frac{1}{2\pi} \int_{\pi}^{\pi} H(\theta, z) u_{j}(\theta) d\theta$$

where

$$H(heta,z)=rac{e^{i heta}+z}{e^{i heta}-z}$$
 .

The function f_j is analytic outside the support of u_j , but by Lemma 1 we can view f_j as a function continuous on \overline{D} and analytic in D.

But then it is easy to see that we in fact have that f_i is continuous on W_i and analytic in the interior of W_i .

Let $\varepsilon > 0$ be given. Choose polynomials p_j such that

$$\|f_j-p_j\|_{_{W_j}}<rac{arepsilon}{2j} \qquad \qquad ext{for } j=1,2,\cdots$$

Define now $f_E(z)=1/2\pi\int_E H(\theta,z)u(\theta)d\theta$ for $z\in \mathbb{C}\setminus E$. f_E is analytic but not necessarily bounded in $\mathbb{C}\setminus E$.

Let K be a compact subset of V_E . Then there exists a number N_1 such that $K \subset W_j$ if $j \geq N_1$. We can choose a number $N_2 \geq N_1$ such that the distance from S_{N_2} to K is positive.

Then we have that

$$(*): ||\sum_{M}^{M} f_{j}||_{K} \rightarrow 0$$

as $M \ge N \ge N_2$ and $N \to \infty$ because $\sup |H(\theta,z)| < \infty$ $z \in K$, $\theta \in S_{N_2}$ and the Lebesgue measure of S_N tends to zero as $N \to \infty$.

Define $P_{\scriptscriptstyle N}(z)=\sum_{\scriptscriptstyle i}^{\scriptscriptstyle N}f_{\scriptscriptstyle j}(z)$ for all z and let $F_{\scriptscriptstyle N}(z)=\sum_{\scriptscriptstyle i}^{\scriptscriptstyle N}f_{\scriptscriptstyle j}(z)$ if $z\in X$. From (*) and the fact that $||p_j-f_j||_{W_j}<\varepsilon/2j$ it follows that $P_{\scriptscriptstyle N}$ is a uniform Cauchy-sequence on compact subsets of $V_{\scriptscriptstyle E}$.

Thus

$$P(z) = \lim_{N \to \infty} P_N(z) \qquad (z \in V_E)$$

is analytic in V_E . In the same way that the formula (*) was proved we get that on compact subsets K of X we have that

$$||f_E + F_N - f||_{\kappa} \longrightarrow 0$$

as $N \rightarrow \infty$.

Let now $z \in X$. Then we have that

$$|f_{E}(z) + P(z) - f(z)|$$

$$\leq |P - P_{N}(z)| + |P_{N}(z) - F_{N}(z)| + |f_{E}(z) + F_{N}(z) - f(z)|.$$

Let now $N \rightarrow \infty$. Then we get that

$$|f_{\scriptscriptstyle E}(z)+P(z)-f(z)| \leq \sum\limits_{\scriptscriptstyle j=1}^{\infty} rac{arepsilon}{2^j} = arepsilon$$
 .

Since $f_E + P$ is analytic in V_E and $z \in X$ was arbitrary the theorem is proved.

Corollary. D is dense in the maximal ideal space $M(B_{\scriptscriptstyle E})$ of $B_{\scriptscriptstyle E}.$

Proof. If the corollary is not true then there exists $m \in M(B_E)$ and functions $f_1, \dots, f_n \in B_E$ such that $m(f_i) = 0$ $i = 1, 2, \dots, n$ and such that $\sum_{i=1}^{n} |f_i| \geq \delta$ in D for some $\delta > 0$. It is not difficult by Theorem 1 to see that we can assume f_1, \dots, f_n to be analytic in V_E .

Then we can construct an open simply connected set $V \subset V_E$ containing X such that $f_1 \cdots f_n$ are bounded in V and $\sum_{i=1}^{n} |f_i| \geq \delta/2$ in V. By the Carleson corona theorem we can find bounded analytic functions $g_1, \cdots g_n$ in V such that $f_1g_1 + \cdots + f_ng_n \equiv 1$ in V. Since

 $g_{\scriptscriptstyle 1},\, \cdots g_{\scriptscriptstyle n}$ restricted to X are in $B_{\scriptscriptstyle E}$ we have the contradiction

$$1 = m(1) = \sum_{i=1}^{n} m(f_i) \cdot m(g_i) = 0$$
.

REFERENCES

- 1. L. Carleseon, Ann. of Math. 76 (1962), 547-559.
- 2. Jaqueline Detraz, Comptes Rendus Acad. Sci. Paris 269 688-691.
- 3. ——, Comptes Rendus Acad. Sci. Paris 269, 833-835.
- 4. E. A. Heard and J. H. Wells, Pacific. J. Math. 28 (1969), 543-553.
- 5. K. Hoffman, Banach Spaces of Analytic functions, Prentice Hall, Englewood Clif-
- fs, N. J., 1962.

Received December 30, 1969.

UNIVERSITY OF OSLO OSLO NORWAY