CONCERNING THE DOMAINS OF GENERATORS OF LINEAR SEMIGROUPS

J. W. SPELLMANN

Let S denote a Banach space over the real numbers. Let A denote the infinitesimal generator of a strongly continuous semigroup T of bounded linear transformations on S. It is known that the Riemann integral $\int_a^b T(x)pdx$ is in the domain of A (denoted by D(A)) for each p in S and each nonnegative number interval [a, b]. This paper develops sufficient conditions on nonnegative continuous functions f and on elements p in S in order that the Riemann integral $\int_a^b T(f(x))pdx$ be an element of the domain of A.

2. A change of variable technique. A change of variable theorem may sometimes be used to transform

$$\int_a^b T(f(x))pdx$$
 to $\int_a^d T(x)(f^{-1})'(x)pdx$

where f^{-1} denotes the inverse of f. This motivates the first theorem.

THEOREM 1. Suppose $p \in S$, $0 \leq c < d$ and h is a real valued function which has a continuous derivative on [c, d]. Then

$$\int_{a}^{d} T(x)h(x)pdx$$

is in D(A) and

$$A\int_{\mathfrak{o}}^{d} T(x)h(x)pdx = h(d)T(d)p - h(c)T(c)p - \int_{\mathfrak{o}}^{d} T(x)h'(x)pdx.$$

Proof.

$$\begin{split} \lim_{\varepsilon \to 0} \varepsilon^{-1} [T(\varepsilon) - T(0)] \int_{\sigma}^{d} T(x) h(x) p dx \\ &= \lim_{\varepsilon \to 0} \varepsilon^{-1} \int_{\sigma+\varepsilon}^{d+\varepsilon} T(x) h(x-\varepsilon) p dx - \lim_{\varepsilon \to 0} \varepsilon^{-1} \int_{\sigma}^{d} T(x) h(x) p dx \\ &= \lim_{\varepsilon \to 0} \varepsilon^{-1} \int_{d}^{d+\varepsilon} T(x) h(x-\varepsilon) p dx - \lim_{\varepsilon \to 0} \varepsilon^{-1} \int_{\varepsilon}^{\varepsilon+\varepsilon} T(x) h(x) p dx \\ &- \lim_{\varepsilon \to 0} \varepsilon^{-1} \int_{\sigma+\varepsilon}^{d} T(x) [h(x) - h(x-\varepsilon)] p dx \\ &= h(d) T(d) p - h(c) T(c) p - \int_{\sigma}^{d} T(x) h'(x) p dx . \end{split}$$

The second theorem then follows as an immediate consequence of Theorem 1.

THEOREM 2. Suppose $p \in S$, $0 \leq a < b$, $0 \leq c < d$ and f is a continuous function from [a, b] to $[0, \infty]$ so that

(i) $(f^{-1})''$ is continuous on [c, d] and

(ii) $\int_a^b T(f(x))pdx = \pm \int_a^d T(x)(f^{-1})'(x)pdx$. Then $\int_a^b T(f(x))p$ is in D(A) and

$$egin{aligned} &A \int_a^b T(f(x)) p dx = \pm \Big[(f^{-1})'(d) T(d) p - (f^{-1})'(c) T(c) p \ &- \int_a^d T(x) (f^{-1})''(x) p dx \Big] \end{aligned}$$

EXAMPLE 1. Suppose $0 \le a < b$, *m* and *k* are real numbers so that $m \ne 0$ and $mx + k \ge 0$ for all $x \in [a, b]$. Then $\int_a^b T(mx + k)pdx$ is in D(A) and

$$A\int_a^b T(mx+k)pdx = \frac{1}{m}[T(mb+k)p - T(ma+k)p].$$

It is noted that Theorem 2 says nothing about $\int_a^b T(f(x))pdx$ being in D(A) if $\int_a^b T(f(x))pdx$ does not equal $\pm \int_a^b T(x)(f^{-1})'(x)pdx$ or if $(f^{-1})''$ is not continuous on [c, , d]. A different approach is considered in the next section which sometimes allows for such exceptions.

3. A closed operator technique. In this section, the restrictions imposed on the function f in the hypothesis of Theorem 2 will be relaxed. In accomplishing this, additional restrictions will be placed on the point p mentioned in Theorem 2. The fact that the infinitesimal generator A of the semigroup T is a closed linear operator implies the next theorem.

THEOREM 3. Suppose $p \in D(A)$, $0 \leq a < b$ and f is a continuous function from [a, b] to $[0, \infty)$. Then

$$\int_{a}^{b} T(f(x)) p dx$$

is in D(A) and

$$A\int_a^b T(f(x))pdx = \int_a^b T(f(x))Apdx .$$

504

The fourth theorem follows from Example 1, properties of continuous real valued functions and the fact that the space S is complete.

THEOREM 4. Suppose $p \in S$, $0 \leq a < b$ and f is a continuous function from [a, b] to $[0, \infty)$. Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of piecewise linear functions, each from [a, b] to $[0, \infty)$, which converge uniformly to f on [a, b]. Then $\int_a^b T(f(x))pdx$ is in D(A) whenever $\{A\int_a^b T(f_n(x))pdx\}_{n=1}^{\infty}$ is a Cauchy sequence in S. In this case $A\int_a^b T(f(x))pdx = \lim_{n\to\infty} A\int_a^b T(f_n(x))pdx$.

In order to develop useful corollaries to Theorem 4, we make the following definitions.

DEFINITION 1. Suppose $K = \{x_j\}_{j=0}^n$ is a partition of [a, b] and f is a continuous real valued function defined on [a, b]. Then [f; K] denotes the piecewise linear function defined on [a, b] by the rule

$$[f; K](x) = [f(x_j) - f(x_{j-1})][(x_j - x_{j-1})^{-1}][x - x_{j-1}] + f(x_{j-1})$$

for $x \in [x_{j-1}, x_j], j = 1, 2, \dots, n$.

DEFINITION 2. Suppose $0 < \alpha \leq 1$. Then $\Delta(\alpha)$ denotes the subset of S which contains p if and only if for each positive number r, there is a positive number M(r) so that

$$||T(x)p - p|| < x^{\alpha}M(r)$$

for all $x \in [0, r]$.

It is noted that $D(A) \subseteq \Delta(\alpha)$ for each $\alpha \in [0, 1]$. However, the next example illustrates that $\Delta(1)$ may not be a subset of D(A).

EXAMPLE 2. Let S denote the Banach space of real valued functions which are bounded and uniformly continuous on $[0, \infty)$. For each $f \in S$, let

$$||f|| = \lim_{x \ge 0} |f(x)|$$
.

Let T be the strongly continuous linear semigroup defined on S by the rule

$$[T(\beta)f](x) = f(\beta + x)$$

for each pair (β, x) in $[0, \infty) \times [0, \infty)$. Then f is in D(A) if and only if f' is in S.

Let g be the function is S so that

$$g(x) = egin{cases} 1-x & ext{if } x \in [0,1] \ 0 & ext{if } x \ge 1 \end{cases}$$

Then g is in $\Delta(1)$, but g is not in D(A).

DEFINITION 3. Suppose $0 \le a < b$ and each of $P_1 = \{x_j\}_{j=0}^n$ and $P_2 = \{t_k\}_{k=0}^m$ is a partition of [a, b]. The statement the P_2 is a doubling refinement of P_1 means that

- (1) m = 2n and
- (2) $t_{2j} = x_j$ for $j = 0, 1, \dots, n$.

DEFINITION 4. Suppose $0 \leq a < b$, $\alpha \in [0, 1]$, $f: [a, b] \to [0, \infty)$ and $P = \{P_n\}_{n=1}^{\infty} = \{\{a_{nk}\}_{k=0}^{2^n}\}_{n=1}^{\infty}$ is a sequence of partitions of [a, b] so that P_{n+1} is doubling refinement of P_n for each positive integer n. The statement that f satisfies condition $S(\alpha)$ relative to P means that

- (1) $\{[f; P_n]\}_{n=1}^{\infty}$ converges uniformly to f on [a, b],
- (2) $f(a_{nk+1}) \neq f(a_{nk})$ for $n = 1, 2, \cdots$ and $k = 0, 1, \cdots, 2^n 1$,
- $(3) \quad \sum_{n=1}^{\infty} \sum_{k=0}^{2^{n-1}} |\varDelta f_{n,k} \varDelta f_{n+1,2k}||f(a_{n+1,2k+1}) f(a_{nk})|^{\alpha} \quad \text{ converges and}$

(4) $\sum_{k=0}^{\infty} |\Delta f_{n,k} - \Delta f_{n+1,2k+1}| |f(a_{n,k+1}) - f(a_{n+1,2k+1})|^{\alpha}$ converges where $\Delta f_{n,k} = [a_{n,k+1} - a_{n,k}][f(a_{n,k+1}) - f(a_{n,k})]^{-1}$ for *n* a positive integer, *k* an integer in the number interval $[0, 2^n - 1]$.

The next theorem is a useful corollary to Theorem 4.

THEOREM 5. Suppose $0 \le a < b$, $0 < \alpha \le 1$, $P = \{P_n\}_{n=1}^{\infty} = \{\{a_{nk}\}_{k=0}^{2^n-1}\}_{n=1}^{\infty}$

a sequence of partitions of [a, b] so that P_{n+1} is a doubling refinement of P_n for each positive integer n. Suppose $f: [a, b] \rightarrow [0, \infty)$ is continuous and satisfies condition $S(\alpha)$ relative to P. Then if

$$p \in \varDelta(\alpha), \int_a^b T(f(x))pdx$$

is in D(A) and

$$A\int_a^b T(f(x))pdx = \lim_{n\to\infty} A\int_a^b T([f; P_n](x))pdx .$$

Proof. The proof of Theorem 5 follows from Example 1 and Theorem 4.

The next theorem relaxes conditions on the function f mentioned

506

in Theorem 2. The conditions imposed on point p, however, will be more restrictive.

THEOREM 6. Suppose $0 \leq a < b, p \in \Delta(1), f: [a, b] \rightarrow [0, \infty)$ so that (1) f' is continuous on [a, b](2) |f'(x)| > 0 for all $x \in [a, b]$ (3) f'' is bounded on [a, b]. Then $\int_{a}^{b} T(f(x))pdx$ is in D(A).

Proof. Let $P = \{P_n\}_{n=1}^{\infty} = \{\{a_{nk}\}_{k=0}^{2^n}\}_{n=1}^{\infty}$ be a sequence of partitions of [a, b] so that $a_{n,k} = a + (k2^{-2})(b - a)$. Then P_{n+1} is a doubling refinement of P_n for each positive integer n and $\{[f; P_n]\}_{n=1}^{\infty}$ converges uniformly to f on [a, b]. The mean value theorem and the hypothesis on f imply f satisfies conditive S(1) relative to P. An application of Theorem 4 completes the proof.

It is noted that the same sequence P of partitions used in the proof of Theorem 6 may be used to show that $\int_a^b T(f(x))pdx$ is D(A) whenever $p \in \Delta(1)$ and f is a nonconstant and nonnegative polynomial whose coefficients are either all positive or all negative.

The next example shows that hypothesis (i) of Theorem 2 is not a necessary condition for $\int_a^b T(f(x))pdx$ to be in D(A).

EXAMPLE 3. Suppose 0 < b, $\beta > 0$, *m* is a positive integer, $1 - 1/m < \alpha \leq 1$ and $p \in \Delta(\alpha)$. Let $f(x) = \beta x^m$ for $x \geq 0$. Then $(f^{-1})''$ is not continuous at 0. However, using the same sequence *P* as in the proof of Theorem 6, $\int_a^b T(f(x))pdx$ may be shown to be in D(A).

The fourth example will indicate that hypothesis (ii) of Theorem 2 is not necessary for $\int_{a}^{b} T(f(x))pdx$ to be in D(A).

EXAMPLE 4. Let C denote Cantor's ternary set (see p. 329 of [3]). For each x in the interval [0, 1], let

$$C_x = \operatorname{lub} (C \cap [0, x])$$
.

Let w be the function defined on [0, 1] by the rule

$$w(x) = {}_{\scriptscriptstyle 2}(C_x \cdot 2^{-1})$$

where $_{2}(C_{x} \cdot 2^{-1})$ denotes the binary form of $(C_{x} \cdot 2^{-1})$. Hille and Tamarkin, in [2], have shown w to be continuous, nondecreasing and to have a zero derivative almost everywhere on [0, 1]. Let f be the function so that

$$f(x) = x + w(x)$$
 for $x \in [0, 1]$.

Then f is a strictly increasing function which fails to be absolutely continuous on [0, 1]. Thus, one would not expect the second condition of the hypothesis of Theorem 2 to hold. However, $\int_0^1 T(f(x))p$ is in D(A) whenever p is in $\Delta(1)$. This is seen by using Theorem 4 and proper choice of partitions of [0, 1]. Let

For each integer $m \ge 2$, let

$$egin{aligned} M_m &= \{_3.a_1\,\cdots\,a_{m-1}022\,\cdots\}\ N_m &= \{_3.a_1\,\cdots\,a_{m-1}200\,\cdots\}\ Q_m &= \{_3.a_1\,\cdots\,a_{m-1}111\,\cdots\} \end{aligned}$$

where $a_i \in \{0, 2\}$ for $i = 1, 2, \dots, m - 1$.

For each nonnegative integer n, let P_{2n} and P_{2n+1} denote the following partitions of [0, 1].

$$P_{2n} = \left\{igcup_{k=0}^n \left[M_k \cup N_k
ight]
ight\} \cup \left\{igcup_{k=0}^n Q_k
ight\}
onumber \ P_{2n+1} = P_{2n} \cup Q_{n+1} \; .$$

Then if $p \in \mathcal{A}(1)$, it may be shown that

$$(1) \quad \left\| A \int_{0}^{1} T([f; P_{2n}](x)) p dx - A \int_{0}^{1} T([f; P_{2n+1}](x)) p dx \right\| = 0$$

(2)
$$\left\| A \int_{0}^{1} T([f; P_{2n+1}](x)) p dx - A \int_{0}^{1} T([f; P_{2n+2}](x) p dx \right\| \leq \frac{M^{2} 2^{n+1}}{2^{n} + 3^{n}}$$

Where M is a number so that

$$\begin{array}{ll} (3) & Mx \geq || \ T(x)p - p || & x \in [0, \, 2] \ \text{and} \\ (4) & M \geq || \ T(x)p || & x \in [0, \, 2]. \end{array}$$

Thus $\left\{A\int_{0}^{1}T([f; P_{n}](x))pdx\right\}_{n=1}^{\infty}$ is a Cauchy sequence in S. Theorem 4 implies $\int_{0}^{1}T(f(x))pdx$ is in D(A) since $\{[f; P_{n}]\}_{n=1}^{\infty}$ converges uniformly to f on [a, b].

REMARK ON EXAMPLE 4. If $t \in ([0, 1] - C) \cup (\bigcup_{n=0}^{\infty} P_n)$, the above technique may be used to show that $\int_0^t T(f(x))pdx$ is in D(A). This is done by defining the following partitions P'_n of [0, t]. Let

 $[\]frac{1}{(3.0222\cdots)}$ denotes the triadic respresentation of 1/3, etc.

$$P'_{n} = (P_{n} \cap [0, t]) \cup \{t\}$$

for each nonnegative integer *n*. If $t \in (C - \bigcup_{n=0}^{\infty} P_n)$ the following theorem may be used to show that $\int_{0}^{t} T(f(x))pdx$ is in D(A).

THEOREM 7. Suppose $0 \leq a < b$, $p \in \Delta(1)$ and f is a continuous, nonnegative, strictly monotone real valued function defined on [a, b]. Then there is a number M so that

$$\left\|A\int_{c}^{d}T([f; P](x))pdx\right\| \leq (d-c)M$$

for each partition P of each subinterval [c, d] of [a, b].

Proof. The proof of Theorem 7 follows from Example 1, the fact that T(x)p is a continuous function of x, on $(0, \infty)$ and the fact that the infinitesimal generator A is linear.

References

1. E. Hille and J. D. Tamarkin, Remarks on a known example of monotone continuous function, Amer. Math. Monthly 36 (1929), 255-64.

2. E. C. Titchmarsh, *The Theory of Functions*, 2nd edition, Oxford University Press, Amen House, London, 1939.

Received Feburary 26, 1970.

TEXAS A & M UNIVERSITY