ON THE NUMBER OF FINITELY GENERATED 0-GROUPS

DOUGLAS B. SMITH

Let K be a class of relational systems of a fixed similarity type, n an infinite cardinal. A system \mathfrak{A} of cardinality n is (\mathfrak{n}, K) -weakly universal if each system in K of cardinality at most n is isomorphically embeddable in A. The object of this note is to construct 2^{\aleph_0} nonisomorphic finitely generated 0-groups and hence answer in the negative the following problem attributed to B. H. Neumann. Is there a group which is (\aleph_0, K_1) -weakly universal, where K_1 is the class of 0-groups ?

If \mathfrak{A} is (\mathfrak{n}, K) -weakly universal and also a member of K, then \mathfrak{A} is (\mathfrak{n}, K) -universal. It is known that (\mathfrak{n}, K) -universal systems exist for many classes K and cardinals \mathfrak{n} . In particular, Morley and Vaught established a useful condition for the existence of (\mathfrak{n}, K) -universal systems for K an elementary class, \mathfrak{n} an appropriate cardinal (see [7]). However there are no theorems of wide applicability concerning the existence of (\mathfrak{N}_0, K) -universal systems; here the structure of the systems in K must be carefully analyzed. To illustrate this, consider the classes K_1 of 0-groups; K_2 of abelian 0-groups (i.e., torsion free abelian groups); K_3 of ordered groups (i.e., groups of type $\langle H, \cdot, \leq \rangle$ where $\langle H, \cdot \rangle$ is an 0-group linearly ordered by \leq); K_4 of abelian ordered groups. By applying the results in [7], (assuming the generalized continuum hypothesis), it is easily seen that there exists an (\mathfrak{n}, K_i) -universal system for all $\mathfrak{n} > \mathfrak{N}_0$ and i = 1, 2, 3, or 4.

The situation for $n = \aleph_0$ is more complicated. There is an (\aleph_0, K_2) -universal group (see [1, p. 64]). However, there is no ordered group which is (\aleph_0, K_4) -weakly universal and hence there is no (\aleph_0, K_3) -universal group. This follows readily from the fact that the free abelian group on two generators has 2^{\aleph_0} nonisomorphic orders (see [2, p. 50]). Theorem 2, which establishes the nonexistence of a group which is (\aleph_0, K_4) -weakly universal, solves a problem of B. H. Neumann (see [2, p. 211, Problem 17]).

1. Definitions. An 0-group is a group G for which there exists a linear ordering relation \leq on G satisfying the following condition:

 $a \leq b$ implies $c a d \leq c b d$ for all $a, b, c, d \in G$. For a group G the commutator of x and y in G is denoted $[x, y] = x^{-1} y^{-1} xy$; for subsets A and B of G, [A, B] is the subgroup of G generated by $\{[a, b] : a \in A, b \in B\}$; G' = [G, G]; G'' = [G', G']. Let F be the free

group generated by a set X; a set R of equations of the form $w_1 = w_2$, where w_1 and w_2 are words in F, is a set of relations in X. A group G generated by the set X is given by a set R of defining relations if the following conditions are satisfied.

(i) R is a set of relations in X.

(ii) Let φ_{g} be the unique homomorphism from F onto G which extends the identity map on X. Then the kernel of φ_{g} is the normal subgroup of F generated by $\{w_{1}w_{2}^{-1}: w_{1} = w_{2} \in R\}$.

2. Finitely generated O-groups. In [4], P. Hall constructs 2^{\aleph_0} nonisomorphic finitely generated groups H each having torsion-free center and satisfying the condition [H'', H] = 1. We will show that these groups are also 0-groups.

LEMMA 1. (B. H. Neumann). Let G be an 0-group generated by a set X and given by a set R of defining relations; let H be a group generated by the set $\{a\} \cup X$ where $a \notin X$, with the relations R and $[a^{-n} b a^n, b'] = 1$ for all $b, b' \in X, n = 1, 2, 3, \cdots$ as a set of defining relations. Then H is an 0-group.

Proof. See [6, pp. 10-11].

The next lemma is a slight variant of von Dyck's Theorem (see [5, p. 130]).

LEMMA 2. Let G be a group generated by a set X, given by a set R of defining relations; let H be a group generated by X, given by the set $R \cup S$ of defining relations. Then H is isomorpic to G/Nwhere N is the normal subgroup of G generated by

$$\{arphi_{_{G}}(w_{_{1}}w_{_{2}}^{-1})\colon \ w_{_{1}}=\ w_{_{2}}\!\in S\}$$
 .

THEOREM 1. There exist 2^{\aleph_0} nonisomorphic finitely generated 0-groups.

Proof. In his construction, P. Hall used a group G satisfying the following conditions :

(1) G is generated by the set $\{a, b\}$. For notational convenience we will write $b = b_0$ and

$$b_i=a^{-i}\,\,ba^i \qquad \qquad i=0,\,\pm 1,\,\pm 2,\,\cdots$$
 .

G is given by the defining relations

$$[[b_i, b_j], b_k] = 1$$
 $i, j, k = 0, \pm 1, \pm 2, \cdots$

 $[b_j, b_i] = [b_{j+k}, b_{i+k}]$ $i, j, k = 0, \pm 1, \pm 2, \cdots$

and i < j.

(2) the center Z of G is free abelian with generators

 $\{[b_i, b]: i = 1, 2, 3, \cdots \}$.

Let C be a denumerable torsion-free abelian group. Appealing to [4] (p. 433), we find that there is a set $\{H_{\iota} : \iota < 2^{\aleph_0}\}$ of nonisomorphic groups satisfying the following conditions:

(3) the center C_{ι} of H_{ι} is isomorphic to C and H_{ι}/C_{ι} is isomorphic to G/Z;

(4) $[H''_i, H_i] = 1$ and each H_i is generated by two elements.

As is known (see [3, p. 94]), a group H is an 0-group if both its center C and the factor group H/C are 0-groups. But by (3), each C_i is an 0-group and H_i/C_i is isomorphic to G/Z. Hence, to verify that each H_i is an 0-group it suffices to show that G/Z is an 0-group.

Let B be a group generated by the set $\{a, b\}$ and given by the defining relations occurring in (1) and the relations

(5)
$$[b_k, b_0] = 1$$
 for $k = 1, 2, 3, \cdots$.

By Lemma 2, B is isomorphic to G/N, where N is the normal subgroup of G generated by

$$\{ \varphi_G[b_k, b_0] : k = 1, 2, 3, \dots \} = \{ [b_k, b_0] \in G : k = 1, 2, 3, \dots \}$$
.

Applying (2), we have N = Z and B is isomorphic to G/Z. Furthermore, B is given by the defining relations (5) alone. For if we assume j > 0 and use (5), then we have:

$$egin{aligned} (a^{j}ba^{-j})b &= (a^{j}ba^{-j}) \ b(a^{j}a^{-j}) \ &= a^{j}(b(a^{-j}ba^{j})a^{-j}) \ &= a^{j}((a^{-j}ba^{j})ba^{-j}) \ &= b(a^{j}ba^{-j}) \ . \end{aligned}$$

Thus,

$$[b_k, b_0] = 1$$
 for $k = 0, \pm 1, \pm 2, \cdots$.

A similar computation yields

$$[b_i, b_j] = 1$$
 for $i, j = 0, \pm 1, \pm 2 \cdots$.

Hence the relations in (1) hold trivially.

Since the free group with generating set $\{b\}$ is an 0-group, we can infer from Lemma 1 that the group B which is generated by

DOUGLAS B. SMITH

 $\{a, b\}$ and given by the defining relations (5) is an 0-group; i.e. G/Z is an 0-group.

Since a countable group has only countably many finitely generated subgroups, we obtain our conclusion:

THEOREM 2. There does not exist a group which is (\aleph_0, K_1) -weakly universal.

BIBLIOGRAPHY

1. L. Fuchs, Abelian Groups, 3rd ed., Pergamon Press, Oxford, 1960.

2. ____, Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963.

3. _____, On ordered groups, Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ. Canberra (1965), 89-98.

4. P. Hall, Finiteness conditions for soluble groups, J. Lond. Math. Soc. (3) 4 (1954), 419-436.

5. A. G. Kurosh, *The Theory of Groups*, Vol. 1, 2nd ed., Chelsea Publishing Co., New York, 1960.

6. B. H. Neumann, On ordered groups, Amer. J. Math. 71 (1949), 1-18.

7. M. Morley and R. Vaught, *Homogeneous universal models*, Math. Scand. **11** (1962), 37-57.

Received December 4, 1969. This paper is part of a thesis, written under the direction of Professor Anne C. Morel, to be submitted to the University of Washington.

UNIVERSITY OF WASHINGTON

502