ON THE NUMBER OF FINITELY GENERATED 0 -GROUPS

Douglas B. Smith

Abstract

Let K be a class of relational systems of a fixed similarity type, \mathfrak{n} an infinite cardinal. A system \mathfrak{H} of cardinality \mathfrak{n} is (\mathfrak{n}, K)-weakly universal if each system in K of cardinality at most \mathfrak{n} is isomorphically embeddable in A. The object of this note is to construct $2^{\aleph_{0}}$ nonisomorphic finitely generated 0 -groups and hence answer in the negative the following problem attributed to B. H. Neumann. Is there a group which is $\left(\boldsymbol{K}_{0}, K_{1}\right)$-weakly universal, where K_{1} is the class of o-groups?

If \mathfrak{N} is (\mathfrak{n}, K)-weakly universal and also a member of K, then \mathfrak{H} is (\mathfrak{n}, K)-universal. It is known that (\mathfrak{n}, K)-universal systems exist for many classes K and cardinals \mathfrak{n}. In particular, Morley and Vaught established a useful condition for the existence of (n, K)universal systems for K an elementary class, \mathfrak{n} an appropriate cardinal (see [7]). However there are no theorems of wide applicability concerning the existence of $\left(\boldsymbol{K}_{0}, K\right)$-universal systems; here the structure of the systems in K must be carefully analyzed. To illustrate this, consider the classes K_{1} of 0 -groups; K_{2} of abelian 0 -groups (i.e., torsion free abelian groups) ; K_{3} of ordered groups (i.e., groups of type $\langle H, \cdot, \leqq\rangle$ where $\langle H, \cdot\rangle$ is an 0 -group linearly ordered by \leqq); K_{4} of abelian ordered groups. By applying the results in [7], (assuming the generalized continuum hypothesis), it is easily seen that there exists an (\mathfrak{n}, K_{i})-universal system for all $\mathfrak{n}>\boldsymbol{K}_{0}$ and $i=1,2,3$, or 4.

The situation for $\mathfrak{n}=\mathcal{S}_{0}$ is more complicated. There is an (\mathcal{N}_{0}, K_{2})-universal group (see [1, p. 64]). However, there is no ordered group which is $\left(\boldsymbol{N}_{0}, K_{4}\right)$-weakly universal and hence there is no (\boldsymbol{N}_{0}, K_{3}-universal group. This follows readily from the fact that the free abelian group on two generators has $2^{\aleph_{0}}$ nonisomorphic orders (see [2, p. 50]). Theorem 2, which establishes the nonexistence of a group which is $\left(\mathbf{N}_{0}, K_{1}\right)$-weakly universal, solves a problem of B. H. Neumann (see [2, p. 211, Problem 17]).

1. Definitions. An 0-group is a group G for which there exists a linear ordering relation \leqq on G satisfying the following condition :
$a \leqq b$ implies $c a d \leqq c b d$ for all $a, b, c, d \in G$. For a group G the commutator of x and y in G is denoted $[x, y]=x^{-1} y^{-1} x y$; for subsets A and B of $G,[A, B]$ is the subgroup of G generated by $\{[a, b]: a \in A, b \in B\} ; G^{\prime}=[G, G] ; G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right]$. Let F be the free
group generated by a set X; a set R of equations of the form $w_{1}=w_{2}$, where w_{1} and w_{2} are words in F, is a set of relations in X. A group G generated by the set X is given by a set R of defining relations if the following conditions are satisfied.
(i) R is a set of relations in X.
(ii) Let φ_{G} be the unique homomorphism from F onto G which extends the identity map on X. Then the kernel of φ_{G} is the normal subgroup of F generated by $\left\{w_{1} w_{2}^{-1}: w_{1}=w_{2} \in R\right\}$.
2. Finitely generated 0 -groups. In [4], P. Hall constructs $2^{N_{0}}$ nonisomorphic finitely generated groups H each having torsion-free center and satisfying the condition $\left[H^{\prime \prime}, H\right]=1$. We will show that Fthese groups are also 0-groups.

Lemma 1. (B. H. Neumann). Let G be an 0-group generated by a set X and given by a set R of defining relations; let H be a group generated by the set $\{a\} \cup X$ where $a \notin X$, with the relations R and $\left[a^{-n} b a^{n}, b^{\prime}\right]=1$ for all $b, b^{\prime} \in X, n=1,2,3, \cdots$ as a set of defining relations. Then H is an 0-group.

Proof. See [6, pp. 10-11].
The next lemma is a slight variant of von Dyck's Theorem (see [5, p. 130]).

Lemma 2. Let G be a group generated by a set X, given by a set R of defining relations; let H be a group generated by X, given by the set $R \cup S$ of defining relations. Then H is isomorpic to G / N where N is the normal subgroup of G generated by

$$
\left\{\varphi_{G}\left(w_{1} w_{2}^{-1}\right): w_{1}=w_{2} \in S\right\}
$$

Theorem 1. There exist $2^{\mathbf{\aleph}_{0}}$ nonisomorphic finitely generated 0-groups.

Proof. In his construction, P. Hall used a group G satisfying the following conditions:
(1) G is generated by the set $\{a, b\}$. For notational convenience we will write $b=b_{0}$ and

$$
b_{i}=a^{-i} b a^{i} \quad i=0, \pm 1, \pm 2, \cdots
$$

G is given by the defining relations

$$
\left[\left[b_{i}, b_{j}\right], b_{k}\right]=1 \quad i, j, k=0, \pm 1, \pm 2, \cdots
$$

$$
\left[b_{i}, b_{i}\right]=\left[b_{j+k}, b_{i+k}\right] \quad i, j, k=0, \pm 1, \pm 2, \ldots
$$

and $i<j$.
(2) the center Z of G is free abelian with generators

$$
\left\{\left[b_{i}, b\right]: i=1,2,3, \cdots\right\} .
$$

Let C be a denumerable torsion-free abelian group. Appealing to [4] (p. 433), we find that there is a set $\left\{H_{\iota}: \iota<2^{\mathbb{N}_{0}}\right\}$ of nonisomorphic groups satisfying the following conditions:
(3) the center C_{t} of H_{t} is isomorphic to C and $H_{c} / C_{九}$ is isomorphic to G / Z;
(4) $\left[H_{t}^{\prime \prime}, H_{t}\right]=1$ and each H_{t} is generated by two elements.

As is known (see [3, p. 94]), a group H is an 0 -group if both its center C and the factor group H / C are 0 -groups. But by (3), each C_{t} is an 0 -group and H_{t} / C_{c} is isomorphic to G / Z. Hence, to verify that each H_{c} is an 0 -group it suffices to show that G / Z is an 0 -group.

Let B be a group generated by the set $\{a, b\}$ and given by the defining relations occurring in (1) and the relations
(5)

$$
\left[b_{k}, b_{0}\right]=1 \quad \text { for } k=1,2,3, \cdots
$$

By Lemma $2, B$ is isomorphic to G / N, where N is the normal subgroup of G generated by

$$
\left\{\varphi_{G}\left[b_{k}, b_{0}\right]: k=1,2,3, \cdots\right\}=\left\{\left[b_{k}, b_{0}\right] \in G: k=1,2,3, \cdots\right\} .
$$

Applying (2), we have $N=Z$ and B is isomorphic to G / Z. Furthermore, B is given by the defining relations (5) alone. For if we assume $j>0$ and use (5), then we have:

$$
\begin{aligned}
\left(a^{j} b a^{-j}\right) b & =\left(a^{j} b a^{-j}\right) b\left(a^{j} a^{-j}\right) \\
& =a^{j}\left(b\left(a^{-j} b a^{j}\right) a^{-j}\right) \\
& =a^{j}\left(\left(a^{-j} b a^{j}\right) b a^{-j}\right) \\
& =b\left(a^{j} b a^{-j}\right) .
\end{aligned}
$$

Thus,

$$
\left[b_{k}, b_{0}\right]=1 \quad \text { for } k=0, \pm 1, \pm 2, \cdots .
$$

A similar computation yields

$$
\left[b_{i}, b_{j}\right]=1 \quad \text { for } i, j=0, \pm 1, \pm 2 \cdots .
$$

Hence the relations in (1) hold trivially.
Since the free group with generating set $\{b\}$ is an 0 -group, we can infer from Lemma 1 that the group B which is generated by
$\{a, b\}$ and given by the defining relations (5) is an 0-group; i.e. G / Z is an 0 -group.

Since a countable group has only countably many finitely generated subgroups, we obtain our conclusion:

Theorem 2. There does not exist a group which is ($\left.\boldsymbol{K}_{0}, K_{1}\right)$ weakly universal.

Bibliography

1. L. Fuchs, Abelian Groups, 3rd ed., Pergamon Press, Oxford, 1960.
2. ——, Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963.
3. On ordered groups, Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ. Canberra (1965), 89-98.
4. P. Hall, Finiteness conditions for soluble groups, J. Lond. Math. Soc. (3) 4 (1954), 419-436.
5. A. G. Kurosh, The Theory of Groups, Vol. 1, 2nd ed., Chelsea Publishing Co., New York, 1960.
6. B. H. Neumann, On ordered groups, Amer. J. Math. 71 (1949), 1-18.
7. M. Morley and R. Vaught, Homogeneous universal models, Math. Scand. 11 (1962), 37-57.

Received December 4, 1969. This paper is part of a thesis, written under the direction of Professor Anne C. Morel, to be submitted to the University of Washington.

University of Washington

