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FOCAL POINTS IN A CONTROL PROBLEM

E. Y. MlKAMI

This paper applies a few results on quadratic forms in
Hubert space and the theory of focal points from a paper by
Hestenes to a linear control problem with a constraint equa-
tion. The abnormality inherent in this problem allows focal
intervals to exist. The main results are, after assuming the
strengthened Clebsch condition, the following: (1) The signa-
ture is equal to the sum of the focal points on the open in-
terval, (2) The focal points are the discontinuous points of
rank and abnormality of the conjugate base matrix, and (3)
The dimension of a maximal linear space of broken transversal
extremal arcs is less than or equal to n — a, where a is the
abnormality of the problem.

The theory of focal points in the calculus of variations arises in
the study of the second variation. It is an accounting of the zeros
of the solutions of the Euler-Lagrange equations subject to boundary
conditions. The number of zeros is equal to the signature, i.e., the
number of negative terms in the associated quadratic form. It is
also equal to the number of negative characteristic values of the
associated boundary value problem.

The results of this paper were proved earlier by Hazard [2]
using calculus of variations methods; the author of this paper approaches
a control problem of the same sort by using Hubert space results from
a paper by Hestenes [3]. Earlier work on focal point theory can be
found in Birkhoff and Hestenes [1] and Morse [5].

Our problem is the study of the focal points of the quadratic
form

J(x) = b*Fb + \2ω(t, x, u)dt ,

where

2ω(ί, x, u) = x*P(t)x + x*Q(t)u + u*Q*(ί)£ + u*R{t)u ,

relative to a one-parameter family <^(λ) (t° ^ λ <̂  t1) of subspaces of
arcs satisfying the linear control equation

(1.1) x = Ax + Bu (t°^t^X)

a linear constraint equation

(1.2) Mx + Nu = 0 (t° ̂  t ^ λ)

and the boundary conditions

473



474 E. Y. MIKAMI

(1.3) X(t°) = Cb

(1.4) x(t) = 0, u(t) = o (λ ^ t ^ t1) .

The matrices A, P = P* and Q are square-integrable, J5, If, iV
and R = R* are essentially bounded and measurable, and C, Z) and
F = F* are constant matrices. The matrix N in addition is assumed
to have the inverse of NN* existing and essentially bounded. Stated
in another way, there exists a positive number h such that at almost
all t on ί° ^ t £ t1,

π*N(t)N*(t)π ^ hπ*π

for every π in Em (a unitary m-dimensional space). An important
assumption the strengthened Clebsch condition will be made later.

2* Preliminary remarks. Let J / be a Hubert space over the
complex or real field. A continuous linear functional L(x) on s$f is
called a linear form and a continuous Hermitian quadratic functional
Q(x) on J ^ is called a quadratic form. The associated bilinear form
will be denoted by Q(x, y). A quadratic form K(x) is said to be com-
pact on Szf if JSΓ(α?ff) —> K(x0) whenever xq converges weakly to xQ.
For any quadratic form Q(x) on Ssf, two vectors x and 2/ are said to
be Q-orthogonal whenever Q(x, y) = 0. If & is a subspace of A, then
the Q-orthogonal complement of ^ symbolically «^ρ, are the vectors
in Ssf Q-orthogonal to ^ And the space ,^ 0 = & Π ̂ ^Q is called
the Q-null space', the vectors in ^ are called Q-null vectors. If ^ 0

consists only of the null vector, then Q(x) is said to be nondegenerate
on έ%. The relative nullity of & relative to Stf, symbolically r
is defined to be the dimension of a linear subspace cέ? such that

The signature (or index) of a quadratic form Q(x) on j>A denoted
by s or s{Ssf), is the dimension of a maximal linear subspace ^ of
j%? on which Q(α ) is negative. The nullity of Q(x) on j ^ , denoted
by ^ or w(j^), is the dimension of the Q-null space of s>f. The
signature and nullity are well-defined [3]. The quadratic form J(x)
in this paper shall have finite signature and nullity because it will
be shown to be an elliptic form, i.e., a quadratic form that can be
decomposed into a difference D(x) — K(x), where D(x) is a positive
definite quadratic form and K(x) is a compact quadratic form.

A quadratic form Q(x) is said to be nonsingular on a linear sub-
space & of J ^ if given a linear form L(x) on & there is a unique
vector y in ^ such that L($) = Q(a?, ?/) for all x in ^ A quasi-
nonsίngular quadratic form Q(x) on J ^ is a quadratic form non-
singular on each closed linear subspace on which it is nondegenerate.
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3* The Euler-Lagrange equations* The Hubert space έ%f of
this paper is composed of vectors of the form

x : x(t), u(t), b (ί° ^ ί ^ t1) ,

where x(t) is an w-dimensional square-integrable vector, u(t) is a q-
dimensional square-integrable vector, and b is an r-dimensional scalar
vector. The inner product is defined to be

(x, y) = c*6 + Γ fo*(ί)α*ί) +

where #: y(ί), v(t), c is also an element of
The one-parameter family ^ ( λ ) (ί° <; λ <* ί1) described above are

subspaces of έ%f and the quadratic form J(x) is defined for elements
x of ^g^ such that x(t) is absolutely continuous.

THEOREM 3.1. Let xe^f with x(t) absolutely continuous on
ί° ^ ί <* λ. Then x is J-orthogonal to ^ ( λ ) if and only if there
exist an absolutely continuous vector p(t) (t° ^ t ί£ λ) and a square-
integrable vector μ(t) (f ^ t ^ λ) ŝ 6c/̂ , that

(3.1) p + A*p + M*μ = ft),

(3.2) £*p + iV*/i = α>π (f^t^ λ)

(3.3) F6 - C*p(t°) = 0 .

For a proof see Mikami [6].

Equations (3.1), (3.2) together with (1.1), (1.2) shall be called the
Euler-Lagrange equations and equation (3.3) is the transversality
condition. An element x of Sίf that satisfies the Euler-Lagrange
equations on the subinterval t° ^ t ^ λ and the transversality condi-
tion is called a transversal extremal arc on t° <Ξ £ <̂  λ.

4* The strengthened Clebsch condition* Let the symbol ^
designate the subspace of §ίf whose elements satisfy the equations

A = Ax + Bu, Mx + Nu = 0, x(t°) = C6 .

We wish to prove that the quadratic form J(x) is elliptic on & if
and only if the strengthened Clebsch condition holds: There exist
positive numbers h0, hx such that at almost all points t on t° <£ t ^ ί1,

7r*i?(ί)τr + hju*N*(t)N(t)n ^ /^oπ*π

for all 7Γ in .E?9. This is equivalent to, as the reader can verify: There
exist positive numbers h29 h such that at almost all t on t° <* t ^ ί1,
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π*R(t)π ^ Λ,2τr*7Γ

whenever π*N*(t)N(t)π < h3π*π. If the matrices R(t) and N(t) are
continuous, then the strengthened Clebsch condition is equivalent to:
There exists a positive number &4 such that for all t on ί° ^ £ ̂  ίι,

π*R{t)π ^ Λ4π*7Γ

whenever JV(£)7Γ = 0.
Let J ^ be the subspace of Sίf whose elements satisfy the

equations

x = Ax + Bu, x(t°) = Cb .

The following lemma describes weak convergence in jzf.

L E M M A 4.1. If {xm} (m = 1,2, •••) is a sequence in Ssf converg-

ing weakly to x0 in s>f, then xm(t) —> xo(t) uniformly on t° fg t ^ t1.

The proof is an application of the well-known characterization of
weak convergence in L2(ri).

Define

S(x) = 6*6 + Γ u*Rudt (x e

Then S(x) is a positive definite quadratic form on Szf if and only if
the strengthened Legendre condition holds, i.e., there exists a posi-
tive number h5 such that π*R(t)π ^ h5π*π a.e. on t° ^ t ^ t1 for all
πeE9. For a proof see [3]. And one can easily show that

K(x) = Γ O*Pα; + £*ζh£ + u*Q*x)dt

is a compact quadratic form on Ssf. We summarize these facts as

LEMMA 4.2. The quadratic form J(x) is elliptic on J^ if and
only if the strengthened Legendre condition holds.

Let H(x) be a quadratic form on Jϊf defined by

H(x) = Γ (Mx + Nu)*{Mx + Nu)dt .

THEOREM 4.3. If the strengthened Clebsch condition holds, then
J(x) is elliptic on &.

Proof. By Lemma 4.2, J(x) + htH(x) is elliptic on «_£/, and since
H(x) = 0 on &, J(x) is elliptic on &.
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To prove the converse of Theorem 4.3, we begin with

LEMMA 4.4. The quadratic form H{x) is nonnegative and quasi-
nonsingular on

Proof. We will utilize a theorem from Hestenes [3, p. 555] which
states that a nonnegative quadratic form Q(x) on an arbitrary Hubert
space <& is quasi-nonsingular if and only if it is positive definite on
the orthogonal complement of the Q-null space ^ 0

Augment the matrices M and N so that

are square matrices having Z~\t) existing a.e. and essentially bounded
on t° ̂  t ^ t1. Then

D(x, y) = c*6 + [\γy + Zv)*(Yx + Zu)dt

can be shown to be an inner product on s^. We wish to show that
H(x) = D(x) on the Z)-orthogonal complement of &. For arbitrary
vectors c in Er and w(t) in L2(q — m) (if q = m, omit w(t)), there
exists a vector y in ^P* such that

My + Nv = 0, Lv = w, i/(ί0) = Cc .

Since D(x,y) = 0, we have

c*δ + Γw*L^dί = 0
J

and so 6 = 0 and Lu = 0. Thus J9(a;) = Jϊ^) on &Ό. Observe that
& is the iί-null space of Ss? and so in view of the theorem mentioned
earlier, H{x) is quasi-nonsingular on

THEOREM 4.5. If J(x) is elliptic on & then the strengthened
Clebsch condition holds.

Proof. The quadratic form H(x) is nonnegative and quasi-non-
singular on Szf and J(x) is elliptic on ̂ , the H-null space of .$$f. A
theorem of Hestenes [3, p. 531] asserts the existence of a positive
number s such that J(x) + sH(x) is elliptic on j^f. By Lemma 4.2
this is equivalent to the strengthened Clebsch condition.

Let us define a nonsingularity condition as follows: The inverse
of the matrix

_Γ* - N Ί
IN 0 J
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exists a.e. on t° ^ t fg t1 and has essentially bounded elements. We
will prove that the nonsingularity condition holds when the strength-
ened Clebsch condition is assumed.

LEMMA 4.6. If the strengthened Clebsch condition holds, then
there exists a positive number h6 such that for almost all t on t° ^
t ^ t1,

τr*(J22 + c2N*N)π ^ h6π*π

for all c ^ 1 and all π in Eq.

Proof Let 7 be a measureable set of almost all points of f^t^t1

such that if tel, then π*(R(t)π ;> h2π*π whenever

π*N*{t)N{t)π < h3π*π .

Suppose for each integer n, there exists tn e 7, πn*πn = 1, such that

πt{R\tn) + N*(tn)N(tn))πn < 1/n .

So for all n large enough,

π*N*(tΛ)N(tu)πn < hz

π*nR\tn)πn < h\ .
Thus

hi > πtR\tn)πn ^ {πtR(tn)πnf ^ h\,

a contradiction.

THEOREM 4.7. If the strengthened Clebsch condition holds, then
the nonsingularity condition holds.

Proof Let

1 ~ T ] ' c=1

We wish to show that R?RC is positive definite a.e. on t° ^ t g t1 for
some number c large enough. So let we Eq, ze Em be arbitrary
vectors. Then

[w z\*RϊRc\ ^ hΰ\w\2 - 2ck\w\\z\ + c2h\z\2

where A: is a scalar constant. By choosing c large enough, RfRc is
positive definite. The determinant of Rc is bounded away from zero
and since
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|detjβ,| = c^detJBJ ,

so is the determinant of Rt.

5* Abnormality• Let the control equation x — Ax + Bu and
the constraint equation Mx + Nu = 0 be given. With respect to these
equations, there is inherent the notion of abnormality. For the moment
define the order of abnormality of a subinterval t2 <£ t <: f of ί° ^
ί ^ ί1 as the number of linearly independent solutions {p, μ}, p(t) ab-
solutely continuous and μ(t) square integrable, of

V + A*p + Λf *μ - 0

' £*p + iV*μ - o

a.e. on ί2 ^ K έ3. Because of the assumption that the inverse of
NN* exists and is essentially bounded, we can write

μ= -(NN*)~ίNB*p .

Equation (5.1) then reduce to the form

(5.2) * + A:P = °
Bΐp - 0 ,

and here we refer the reader to [4]. It follows from (5.2) that the
order of abnormality is at most n.

Later the order of abnormality will be redefined for the problem
on hand. Abnormality is important in this paper because it allows
nontrivial solutions of the Euler-Lagrange equations to have x(t) = 0,
u(t) = 0 on a subinterval of t° ^ t ^ t1.

6. Focal points* The strengthened Clebsch condition is assumed
for the rest of this paper. Hence the quadratic form J(x) is elliptic
on & and on any closed subspace of ^

Let ^ be the subspace of arcs x in & that satisfy the Euler-
Lagrange equations and the transversality condition. Such arcs shall
be called focal arcs. If a focal arc x has x(t) = 0 on a subinterval I of
f ^ t ^t1 then u(t) = 0 on I also. Now for a fixed λ, t° ^ λ ^ t1,
the space of focal arcs j ^ can be decomposed into a direct sum of
two subspaces: one that has x(X) = 0 and one that doesn't. The former
subspace can be further decomposed into a direct sum of three sub-
spaces: one that has x(t) vanishing on t° fg t ^ λ, one that has x(t)
vanishing on some subinterval λ ^ t ^ δ, λ < δ, and one that does
not have a combination of these two properties. If the last subspace
is denoted by ^{X)y then ^""(λ) is a maximal subspace in J^~ Λvhose
elements x have x(X) = 0 and x is not a linear combination of arcs y
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that have y(t) — 0 on ί° ^ t <; λ and arcs 2 that have z(t) = 0 on some
λ ^ t ^ <5, λ < δ. It is the dimension of the subspace ^~(\) that in-
terests us.

Let

£f - {xe^:x(f) = 0} .

Now a one-parameter family of subspaces <ĝ (λ) (ί° <̂  λ <J ί1), which
we shall call a resolution of ^ , has been defined earlier. Let s(λ)
and n(X) denote the signature and nullity of J(x) on ^ ( λ ) . The
signature is a monotonic nondecreasing function of λ. A result of
Hestenes [3] states that s(X) = s(X — 0) and that the dimension of
^(X) is equal to s(X + 0) — s(λ), i.e., the "jump" at a discontinuity
of s(λ). So let us define a /ocαZ point as a point λ (t° ^ λ < ί1) such
that ^"(λ) is not the null space and define the order of the focal
point λ as the dimension of J^(X). In other words λ is a focal point
if and only if there exists a focal arc x Φ 0 such that x(t) vanishes
at λ and x is not a linear sum of arcs that have y(t) = 0 on f ^
t ^ λ and arcs that have z(ί) = 0 on some λ < t <£ δ. Later we shall
refer a focal point as a focal point of the end point, for example, λ
is a focal point of t° in the above case.

In the special case where the matrix C = 0, i.e., #(£°) = 0, the
word "conjugate" is used instead of "focal".

The above facts can be summarized in the following:

THEOREM 6.1. The signature of J(x) on & is equal to the sum
of the order of the focal points λ, t° < λ < ί1.

Theorem 6.1 was proved by Birkhofϊ and Hestenes [1] for the case
* = u and by Hazard [2] for the case x = u, Mx + Nu = 0. Hazard
used focal intervals, i.e., intervals on which a focal arc vanishes.
Our focal point is the right endpoint of Hazard's focal interval.

We have described the notion of abnormality, relating it to the
existence of focal intervals. For example, if the problem were normal,
i.e., the order of abnormality equals zero for all subintervals of t° ^
t ^ t1, then the focal intervals collapse into points. In fact if the
order of abnormality is the same for all subintervals, then again the
focal intervals collapse into points.

7* Conjugate bases* In a simple variational problem, for ex-
ample, one in which the arcs satisfy

x =z u, b = 0, x(t°) = 0, x{tι) = 0 ,

and the strengthened Legendre condition holds, it is well-known that
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t h e r e exists a conjugate base of t h e left end point ί°, xa(t) {a =
1, •••, n), such t h a t the zeros of the determinant of the matr ix

(7.1) (&<(*)) (t° < ί < t1; i, α = 1, , n)

are the conjugate points of t° and that the order of a conjugate point
λ, t° < λ < ί1, is equal to % minus the rank (#«(λ)). In our control
problem the determinant of the matrix (7.1) would be zero on focal
intervals and even possibly identically zero. In short the determinant
does not always give the focal points; however, the rank and the
abnormality together provide the location of the focal points.

Let us begin by assuming that the matrix [F, C*] has full rank
r. And let us define a focal extremal (relative to ί°) to be a system
of vectors

x: x(t), u(t), 6, p(t), μ(t) (ί° ^ t ^ t1)

satisfying the Euler-Lagrange equations, the end condition (1.3), and
the transversality condition. It follows easily that if x and y are
focal extremals then

A(p y - x*q) = 0 .
dt

So we say that two focal extremals are conjugate to each other if

P*(t)y(t) - x*(t)q(t) = 0 (f^t^t1) .

THEOREM 7.1. There exists a linearly independent set of mutu-
ally conjugate focal extremals, xa (a = 1, , ri), such that every focal
extremal can be written as a finite linear combination of the xa.

The proof is a simple exercise in differential equation theory.
The set described in Theorem 7.1 shall be called a conjugate base

(of ί°).

THEOREM 7.2. Let

%a: α?α(ί), ua(t), ba, pa(t), μa(t) (ί° ^ t ^ t1; a = 1, . . . , n)

be a set of linearly independent mutually conjugate vectors satisfying
the Euler-Lagrange equations and having aaxa(t°) = 0 (summed over
a) whenever aaba = 0 (aa are scalars). Then there exist matrices C
and F such that F = F*f rank [F, C*] = r, xa(t°) = Cba, and

Fba - C*Pa(t°) = 0 .

Proof. Without loss of generality assume
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δ 1 = [lO O]*

•
δr = [0 010 0]* (1 in 7-th position)

br+i = = δΛ = 0 .

Let the matrix C be the columns of [x^f), , xr(t°), 0, , 0]. Then
xa(t°) = Cba (a = 1 , . . . , * & ) .

Let F be the matrix

Tfl

0

Then F = F* because the xa are mutually conjugate. The remaining
relations are easily verified.

Let t° < λ < ί1. The order of abnormality α(λ) of this problem
is defined to be the number of linearly independent solutions {p, μ, b}
of the equations

p + A*p + M*μ = 0

B*p + N*μ = 0 (ί° ^ ί g λ)

C6 = 0, Fb - C*p(ί°) =: 0

By referring back to § 5 we see that the order of abnormality α(λ)
is a nonincreasing function of λ and continuous from the left. It is
at most n.

THEOREM 7.3. If xa (a — 1, , n) is a conjugate base and if
d(t) is the rank of the matrix xι

a(t) (t° ^ t ^ t1; i, a = 1, , n), then
the focal points of f are the points λ, t° < λ < t1 at which

(7.2) d(X + 0) + α(λ + 0) - d(X) - α(λ) > 0 .

Moreover if λ is sπcfe α /ocαϊ point, then the order of the focal point
equals the left-hand side of (7.2). The nullity of J{x) on ^ is equal
to n

The proof follows from the definitions of a focal point and ab-
normality.

8* Separated end conditions* This section deals with a subspace
having separated end conditions. The control parameter b is composed
of two component vectors

b: 6?, δί (σ = 1, , r: τ = 1, . . , s) .
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Let 3r denote the vectors x in Sίf that satisfy

x = Ax + Bu, Mx + Nu = 0

x(f) = C060,

Let

9f (λ) = {α? e ^ : δL = 0, x(t) = 0, w(ί) = 0 on λ ^ ί ^ ί1}

j^r(λ) = {x e 2f\ b0 = 0, α(ί) = 0, w(ί) = 0 on t° ^ t ^ λ}

(t° ^ λ ^ ί1)

be resolutions of ^{tι) and ^ ( ί 0 ) , respectively. The quadratic form
J(x) is written

J(x) - 6O*FO6O + bfFA + (' 2ω(ίf α?f u)dt ,

where i^0 = F? and 2^ = Ff. Again assume

rank [Fo, Co*] = r, rank [ί\, C*] =

Let ί° < λ < ί1. For convenience let

)^ n

(/-orthogonality relative to 3f)m An arc sc is in g"(λ) if and only if
x is a transversal extremal arc on t ^ t <̂  λ and a transversal ex-
tremal arc on X <^ t tί t1. If the vector p(ί) has a discontinuity at λ,
then we say that x is a broken transversal extremal arc. A result
of [3, p. 565] is

(8.1.) *{0) = s[^(λ)] + β[^(λ)I + k(\)

where

The number k(X) is the dimension of a maximal linear space of broken
transversal extremal arcs having J(x) ^ 0. Note that k(X) is constant
except at focal points of ί° or t1 by virtue of (8.1).

In normal problems it is known that k(X) <̂  n. This is also true
for problems with the order of abnormality not equal to zero. Let
a be the maximal number of linearly independent solutions {p, μ, b0,
δi} of the equations

/ o x V + A*p + M*μ = 0
(8.2) r (t° <t <f)

B*p + N*μ = 0 V " ~ J

FA + c*pφ) = o
(8.3) FQb0 - C*p(t°) = 0

CA = 0, CA = 0 .
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We call the number a the order of abnormality of the problem.

THEOREM 8.1.

(8.4) 0 ^ k(X) ^n - a (t° < X < t1)

(8.5) %{3f) = s(^r(t0)) + k(t° + 0)

(8.6) 8(&) = si^it1)) + k(f - 0)

Proof. Let {pa, μa, 60α, bιa] {a = 1, , a) be linearly independent
solutions of (8.2)-(8.3). Fix t° < X < t1 and abbreviate

e =

Then there exist /-null vectors xβ of ^ ( λ ) + £^(λ) and vectors pβ

(β = 1, •••, e) such that ^(λ) = 0 and the set of vectors

- 0) - ^ ( λ + 0) (a = 1, , a; β = 1, , e)

are linearly independent. If not, then there would exist a vector x
equal to a finite linear combination of the xβ and a vector p con-
tinuous at λ, a contradiction. Since the vectors xβ are J-orthogonal
to g'(λ) it can be verified by computation that

= 0 ( α = 1, . . . , α )

[pβ(X - 0) - ^ ( λ + 0)]*?/(λ) = 0 (β = 1, , e)

for each 7/ in g^(λ). This means there are n — a — e linearly inde-
pendent y(X) and therefore the number of linearly independent vectors
in i?(λ) whose linear combinations do not vanish at X is less than
or equal to n — a — e. Since the vectors in i?(λ) that have y(X) = 0
have J{y) = 0, we conclude that s[^(X)] ^ n — a — e. Finally k(X) ^
(n — a — e) + e = n — a.

To prove (8.5) choose X in (8.1) near t° so that no focal point of
t° or t1 is in £° < t ^ λ. Equation (8.5) follows readily.

COROLLARY 8.2. If sQ and s1 respectively denote the number of
focal points of t° and t1 on a given interval J, then the following
relations hold:

s0 - 8l = k(t° + 0) - kit1 - 0) if I = (t°, tι)

8ι-81 = k(t° + 0) - k(t' + 0) if I - (ί°, t1]

sQ - 8l = kit0 - 0) - kit1 - 0) if I = [ί°, ί1)

s0 - 8l = W - 0) = fcίί1 + 0) if I = [ί°, ί2] .

case | s0 — s1 \ ̂  n — a.
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