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QUASIFIBRATION AND ADJUNCTION

K. A. HARDIE

This paper is concerned with the preservation of quasifibr-
ation under pair adjunction of Hurewicz fibrations, and the
preservation of weak homotopy equivalence under pair adjunc-
tion of identity maps.

The foundations of the theory of quasifibrations were laid by
Dold and Thorn in their paper [3] in which they proved that the
homotopy groups of the infinite symmetric product of a space X
were naturally isomorphic with the integral homology groups of X.
Another application was soon given by Dold and Lashof [2] generaliz-
ing Milnor's construction [9] of a universal principal fibre bundle
with given structure group and their results were further generalized
by Stasheff [13], Milgram [8], Steenrod [15] and Stasheff [14]. Other
applications of quasifibrations occur in [6], [5] and [1]. Since, as a
generalisation of fibration, quasifibration has a serious deficiency (it
is not preserved under pull-back) one may well ask why it has proved
to be so useful. A study of the papers referred to reveals that it
is essentially the behaviour of quasifibration with respect to adjunc-
tion which is involved. However, the relevant arguments mostly
rely on a basic lemma of [3] (lemma 2.10) and proceed ad hoc.

Let p: P—> P', t: T —> T', q:Q-+Q' be pairs (i.e., continuous maps)
and let φ = (/,/'): p—>t, Ύ = (g, gf): p—> q be pair maps and consider
the push-out diagram

t •> r

in the category of pairs. 7 is a weak homotopy equivalence of fibres
(WHEF) if, for each x e Pf, the induced map

g»: p-i(x) > q~\g'χ)

is a weak homotopy equivalence. We shall prove the following
theorem.

THEOREM 0.2. If f is a closed cofibration, if t is a fibration,
if p is the pull-back of t over /', if q is a quasifibration and if Ύ
is a WHEF then r is a quasifibration.
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In most of the constructions of quasiίibrations in the papers cited
the situation is or is equivalent to the special case of 0.2 in which
t is a trivial ίibration.

That 0.2 does not remain valid if "quasifibration" is replaced by
"Hurewicz fibration" can be seen from the example suggested by
the diagram.

Γ

P

FIGURE 1

Let 1P :P —>P denote the identity pair. Replacing p by 1P and
t by lτ we shall obtain the following analogue of 0.2 for weak ho-
motopy equivalences.

THEOREM 0.3. If f is a closed cofibration, if φ — (/, / ) : 1P—>lτ

and if q is a weak homotopy equivalence then r is a weak homotopy
equivalence.

0.3 is particularly useful when the range and domain of r are
not 1-connected for then a proof via relative homology isomorphisms
and the J.ELC. Whitehead theorem breaks down.

!• Mapping cylinders* We recall that the space R = R(f, g)
obtained by completing the push-out diagram

(1.1)

P

f

Q
I

is that obtained from the topological sum TvQ (disjoint union) of
T and Q by factoring out by the relation

fx — gx (xeP) .

We shall denote the equivalence class of ye TVQ by {y}. Let~ί0, ίx:
P —> P x I be the maps given by
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iox — (x, 0), itx = (x, 1) (x e P) .

We recall that the mapping cylinder of / is the space Zf = R(f, i^.
The projection of P x I on to P induces a retraction b:Zf—>T and
if we set i = f iQf we have b i = f and δ ix = 1Γ. The space Z(/, #) =
j?(i, #) has been called [10] the mapping cylinder of the cotriad

T<J—P-±+Q (TfPgQ). The cotriad map (b,lP,lQ):(ZfiPgQ)-+
{TfPgQ)

Ί I1
f P °—>Q

induces a map k(f, g): Z(f, g)—*R and we have:

LEMMA 1.2. // / {or g) is a cofibration then k(f, g) is a homotopy
equivalence.

Proof. If / is a cofibration then (1P, b):i—>f is a homotopy
equivalence of pairs. A proof for the reduced case but equally
valid in our situation is given in [4; pp. 17, 18]. Then 1.2 is a
consequence of the following lemma, the proof of which being straight-
forward is omitted. Let (t, p, q): (TfPgQ) -+ (T'f'P'g'Q') be a cotriad
map. Then there is an induced map

r:R(f,g)

and we remark that r completes diagram 0.1. We have

LEMMA 1.3. If (t, p, q) is a cotriad homotopy equivalence then
r is a homotopy equivalence.

REMARK 1.4. In view of [11; Satz 3], the conclusion of 1.2 re-
mains valid if / has instead the weak homotopy extension property
(WHEP).

The cotriad map (t, p, q) also induces a map rz: Z(f, g) —> Z(f, g')
and we have:

LEMMA 1.5. If t, p, q are homotopy equivalences then rz is a
homotopy equivalence. If further, f and f (or f and gr) have the
WHEP then r is a homotopy equivalence.

The proof of the first assertion of 1.5 will also be omitted since
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it is equivalent to a special case of [10; 4.6], the proof of the dual
[10; 2.6] having been given in full. The first assertion combined
with 1.2 yields the second assertion.

Similarly the pair map (p,t):f—+f induces a diagram

p > Zf > T

(1.6)

i—Γ Γ
P ' >Zf, > T'

where c = (i, i'): p—>z,β = (6, &'): s —> * a n d β * = Φ> which in turn
yields the push-out diagram

P r >Q

\ \
z

We have

LEMMA 1.7. If t is a fibrationf if f is a cofibration, if p is
the pull-back of t over f and if Ί is a WHEF then χ is a WHEF.

Proof of 1.7. For any map m: M-* Mr and any x e M', let F{m, x)
denote the fibre of m lying above x. Let y e Z(f, gf) and let

k":F{rz,y) > F(r, k'y)

be the map induced by χ. There are three cases. If y = {x} where
xeQ' and x Φ g'xf for any x'eP' then clearly F(rt, y) and F(r, k'y)
are homeomorphic with F(q, x). Similarly if y = {x}> where xeTf

and x Φ f'x' for any xf e P ' then F(rz1 y) and F(r, k'y) are homeo-
morphic. Suppose that

y — {x, s}(x eP', se I) and let

[x] = {x'eP'\g'xf = g'x) .

Since /', being a cofibration, is injective [16], there is a push-out
diagram

p-ifc]— ί 'L-> F(gf g>x)

) >F(r,k'y) .
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Then / " is actually an equivalence: it is injective since / is injective,
and surjective since P is a pull-back. It follows that h is an equiva-
lence. If 0 ^ s < 1 then F(rz, y) F& F(p, x) and k" is equivalent to
g\F(p, x): F(p, x) —•> F(q, g'x) which is a weak homotopy equivalence.
Similarly if s = 1 then k" is an equivalence. Hence % is a WHEF.

2* Proper cofibration* A map ί: A —> X is a cofibration if for
any map / : X—> Y and any homotopy gt: A—* Y such that g0 = f i
there exists a homotopy / t: X—» F such that fo=f and ^ = f i If,
further, i(A) is a closed subset of X then i is a cίosβd cofibration.
The following lemma is [16; Th. 2].

LEMMA 2.1. i is a closed cofibration if and only if there exist
( i ) a neighborhood U of i(A) and a homotopy H: U x I—+ X

such that H(x, 0) = x, H(a, t) = α, H(x, 1) e i(A) (xeU,ae i(A), t e I);
(ii) a map u: X—+ I such that i(A) = w^O) and ux = 1 for all

xeX- U.

If U, H and u exist and satisfy the further conditions U=u~1([0,1)),
H(U x /) S U then i is a proper cofibration. If f:P-+T is any
map, we remark that the associated map i: P —> Zf is a proper cofibr-
ation, for we may set u{x, t} = t, u{y} = 1, H({x, t}, s) = {x, ts} (x e P,
yeT,8,teI)._

Let /, g,f, g be as in diagram 1.1. We have

LEMMA 2.2. If f is a proper cofibration then so is f.

Proof. Let H and u represent / as a proper cofibration and let
ΰ: R —> I be such that

ΰ{x} = ux (x e T), ΰ{y} = 0 (y e Q) .

Then ΰ is well-defined and continuous and if we let £7 = ir^flO, 1))
and let H: U x I—>R be such that

!?({&}, s) = {£Γ(a?, s)}, iϊ(M, s) = {3/}(aj e U,yeQ, se I) ,

then 5 and ?Z represent / a s a proper cofibration. We remark further
that there is a commutative diagram:

\«
( 2 3 ) (ff|Γ/ )Xl/ ff

C/ x / —> R
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Now let φ = (/, /') = p —• t be a pair map. φ is a proper cofibra-
tion if if and % (resp. if' and v!) represent / (resp. /') as a proper
cofibration and are such that the following diagram is commutative.

Ux I-

(2.4) (t\U)Xli

U' x I
H'

T'

Thus the map (f,f)ιg—>g in the situation of lemma 2.2 yields an
example of proper cofibration. It is easy to check that another ex-
ample is the pair map c: p—>z in diagram 1.6. If φ is a proper
cofibration note that, since f(P) = ur^O) and f\P') = uf~ιφ), it is
necessarily the case that f(P) is saturated with respect to t. One
may also prove that z is equivalent to a retract of t x 17, from which
it follows that φ is a cofibre map in the sense of Eckmann-Hilton
[4; P 74], As we shall not rely on these facts the details are omitted.
We shall however require the following pair analogue of 2.2 con-
cerning the push-out diagram

p

t

LEMMA 2.5. If φ is a proper cofibration then so is φ.

Proof. Let if, H\ u, uf represent φ as a proper cofibration, let
H and ΰ be defined as in the proof 2.2 and let Hr and ff be given
by analogous formulae. Then in view of 2.2 it is only necessary to
check the commutativity of

U x I
H

(2.6) (r\U) X

U' x I
H'

>
/v!

However this follows easily from the commutativity of diagram 2.4
and the relevant definitions.

Our chief reason for introducing the concept of proper cofibration
is the following lemma.

LEMMA 2.7. If t is a fibration, if q is a quasifibration, if φ:
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p—>tisa proper cofibration, if φ is a WHEF and if Ύ is a WHEF
then r is a quasifibration.

Proof. Since φ is a proper cofibration, / and / ' are cofibrations
and hence injective maps. Moreover f(Q) is saturated with respect
to r and since q is a quasifibration it follows that f'(Q') — ΰ'~ι{ϋ) = B'
(say) is distinguished in the sense of Dold-Thom [3]. We claim that
U' is also distinguished, for Hand H' define homotopies Ds\ U—>U,
ds: tΓ_-> Ό' with A - 1, D^U) S/(Q) = E' (say), DS{E') Q Er, d0 =
1, dW) S B', ds{Bf) s B'. In view of [3; 2.10] it will be sufficient
to prove, for each xeUf and i ^ 0, that

(2.8) Du: πάFir, x)) « 7Γ4(F(r, d^)) .

2.8 is certainly satisfied if a; e 5' . Suppose that x e Όr - f'(Q'). Then
x — {̂/} where yeU' — f'{Pf) and Ϋ induces a homeomorphism <f':
F(ί, y)->F(r, x). Let fcβ: C7-̂  U and &;: Z7'-> Z7' be the homotopies
associated with H and Hr respectively. Then commutativity in 2.4
yields t k8 = k'8 t so that if yf = AJj/ we have a map

Commutativity in 2.3' yields i/' λ ί = d8 g', hence ^V = dλx and we
have an induced map

(g I F(ί, I/O): ̂ (ί, 1/0 > ^(

Further, commutativity in 2.3 yields ^ A:S = D8 g so that we have
commutativity in

But t is a fibration, hence ku: π{(F(t, y) ^ π^Fit, y')), by [12; 2.8.13].
Since g" is a homeomorphism it will be sufficient to prove g*:
πi(F(t, yf)) ?** Ki{F{r, d.xj). Since d,x = g'y' e B', there exists %' e P'
such that f'xr = i/f and hence we have an induced diagram

F(p, x') > F(q, g'x')

\f\F(q,g'xf)I
Since / is injective and f(Q) is saturated with respect to r, f\F(q, g'x')
is a homeomorphism and the remaining arrows induce homotopy
isomorphisms since 7 and φ are both WHEF. To complete the proof
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of 2.7 we may observe that Ή! — Br is open, for / ' is a closed
cofibration. Moreover R' — Br is distinguished since (gy g') induces
an equivalence of a restriction of t with r\τ~1(Rf — Br). Similarly
U'f)(R' - Bf) is distinguished and hence 2.7 follows from [3; Satz
2.2].

We may also complete the proof of 0.2, for it follows from 2.7
that rz is a quasifibration. By 1.2, k and kr are homotopy equivalences
and, by 1.7, χ is a WHEF. A standard argument using the 5-lemma
now shows that r is a quasifibration.

Michael McCord has shown [7] that many of the proofs of [3]
can be modified so as to apply to weak homotopy equivalences. Let
p: E —> B be a map and let U be a subset of B. Then U is distin-
guished in the sense of McCord if plp^iU): p~\U) —• U is a weak
homotopy equivalence. We shall need the following simple analogue
of [3; 2.10].

LEMMA 2.9. Let p:E—*B be a continuous map onto B. Let
B' be distinguished and let E' = p~ι{Bf). If there exist homotopies
Dt:E-+E,dt:B->B with Do = 1E, Dt(Er) £ £", D^E) S E',d* = 1B9

dt{Br) £ B', d^B) £ J3' <zm£ wΐ£fe p Dι = d^p, ί/̂ ê  β itself is distin-
guished.

Proof. For any a e ΰ and any y e p-1(α;) we have a commutative
diagram

/) ?±-> πάE', DlV)

P*\ \(P\E')*
d

πi(B, x) —> π^B', d,x) .

Since three of the arrows are isomorphisms, the fourth is also.

A weak homotopy equivalence analogue of 2.7 is as follows.

LEMMA 2.10. Iff: P-> T is a proper cofibration, ifφ = (/, / ) :
lp—• lτ, if q is a weak homotopy equivalence and if 7:1P—> q is any
map then r is a weak homotopy equivalence.

Proof, φ is certainly a proper cofibration. As in the proof of
2.7, but this time using 2.9, we may show that Uf is distinguished.
Again as in the proof of 2.7, R' - Br and U' Π {Rr - B') are distin-
guished. Thus 2.10 follows from [7; Th. 6].

Proof of 0.3. 2.10 implies that rz is a weak homotopy equivalence.
Thus 0.3 follows by two applications of 1.2.
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