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ISOMORPHISMS OF C0{Y) ONTO C{X)

MICHAEL CAMBERN

The well known Banach-Stone theorem states that if X
and Y are locally compact Hausdorff spaces, then the existence
of an isometry φ of C0(Y) onto C0(X) implies that X and Y
are homeomorphic. This result has been generalized by show-
ing that the same conclusion holds if the requirement that φ
be an isometry is replaced by the requirement that ψ be an
isomorphism with 11 φ \ \ \ \ φ~ι \ \ < 2. However, the author knows
of no valid examples in the literature which show that 2 is
the largest number for which this generalization is true. Here
such an example is provided, and it is shown that the reason
for the apparent scarcity of examples is not that they need
be complicated, but rather, at least in the case where X is
compact and Y noncompact, that there is essentially just one
way to construct them.

If X is a locally compact Hausdorff space, we denote by C0(X)
the Banach space of continuous, complex-valued functions vanishing
at infinity on X, provided with the usual supremum norm. If X is
actually compact, so that CQ(X) consists of all continuous complex
functions on X, we will, whenever it is convenient to do so, repre-
sent this function space by the more customary notation C(X). Now
if X and Y are two locally compact Hausdorff spaces and if there
exists a continuous isomorphism φ of CQ(Y) onto C0(X) satisfying
11 1̂1 ll^"1!! — a> w e write X~ Y. This is easily seen to be equivalent
to the existence of a norm-increasing isomorphism φ of C0(Y) onto
C0(X)—i.e., \\g\\ ^ \\φ(g)\\ f o r ge C0(Y)—satisfying \\φ\\ = a a n d

H^-1!! = 1. Employing this notation, the Banach-Stone theorem states
that if X ~ Y, then X and Y are homeomorphic.

In [1] this theorem was strengthened by showing that if X ~ Y,
where a is any real number less than 2, then X and Y are homeo-
morphic. The following example, announced in [2], displays two
locally compact Hausdorff spaces X and Y, with X compact and Y
noncompact, such that X2 ~ Y. Hence 2 is the greatest number for
which the formulation of the Banach-Stone theorem given in [1] is
valid.

EXAMPLE. Let Y = {yk: k = 0, ± 1 , ±2, •} be a sequence of
distinct points yk, where lim^+oo y_k = yQ, y0 is the only accumulation
point of Y, and the set {yk: k >̂ 1} has no accumulation point in Y.
Let X = {xk: k = 0, ± 1 , ±2, •••} be a sequence of distinct points xk,
where lim^+oo xk = limA._>+od x_k = χ0, and x0 is the only accumulation
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point of X. Define an isomorphism φ of C0(Y) onto C(X) by

) = g(vo), for ^G

Then ||9>|| - 2 and H^H = 1.

Aside from showing that the number 2 is exact for the formula-
tion of the Banach-Stone theorem cited above, the example is of
interest in that it provides a prototype of all examples which one
can construct of pairs X, Y with X compact and Y noncompact, for
which there exists a norm-increasing map φ of CQ(Y) onto C(X) with
\\φ\\ = 2. We wish to show that, provided X and Y are first count-
able spaces, in any such example which can be constructed the
isomorphism φ must behave very much as does that in the example
given in this paper.

To this end we first note that if we represent the elements of
the dual spaces C0(Y)* and C(X)* as measures via the Riesz repre-
sentation theorem, and employ the customary notation for unit point
masses, then the isomorphism φ of the example is completely de-
termined by the following equations involving the adjoint mappings:

9*~^vk = iμ*k - iVχ-k f k>0 ,

We will prove the following:

THEOREM. Let X and Y be first countable locally compact Haus-
dorff spaces with X compact, Y noncompact, and X ~ Y. Let φ be
any norm-increasing isomorphism of C0(Y) onto C(X) with \\φ\\ = 2.
Then for every e > 0, there exists a compact set Kε S Y such that
for each ye Y — Kε there are points x, x'e X and yre Y, with

φ*μx = aμy + a'μy + μ ,

where β, β', a, a' are scalars with \β\ ^ i, |/9'| > \ — e, \a\ ^ 1,

\a'\ > 1 - ε, and v({x}) = v{{x'}) = μ({y}) = μ{{y'}) = 0; hence \\v\\ < ε

and \\μ\\ < ε.

Before beginning the proof of the theorem, we establish some
conventions regarding notation. If ye Y, we will say that a se-
quence {gy>n:n = l,2, •} S CQ(Y) is regularly associated with the point



ISOMORPHISMS OF CΌ<T) ONTO C(X) 309

V if \\9v,n\\ = QyΛv) = 1 f° r aU ̂ > a n d Λe support of gy,n is contained
in Z7n, where {Un: n — 1, 2, •} is some neighborhood base at # with
Un+1 g Z7W for all w. We write {#„,„} —»7/ to denote that {#„,„} is
regularly associated with 2/. The definition of sequences {fx,n} S C(X)
regularly associated with a point a; e X is analogous, and we use the
corresponding notation: {fx,n}«-» x.

If 2/6Γ, and {gyj *-+ y, then

lim (φ(gy,n))(x) = lim \^(^,«)^ s = l i m U ^ φ * ^ )
w » J n J

exists for all xeX, and is equal to <p*μx({y}). Thus for fixed xeX,

(1) lim (φ[gy,n))(x) = a<=> <p*μx = aμy + μ ,
n

where μe CQ(Y)* and μ{{y}) = 0. The scalar a is unchanged if the
sequence {gy,n} is replaced by any other sequence regularly associated
with y. Similarly, if {fx>n} ^ x e X, then for fixed y e Y",

(2 ) lim {φ-\f
it

where ve C(X)* and v({x}) = 0.

Proof of the Theorem. We may suppose that ε < 1/6. Denote
by 1 that function which is identically equal to 1 on X and let
K. = {ye Y: \{φ~\l)){y)\ ̂  e/8} Suppose that ye Y- Kε. Then the
conclusion of the theorem will follow if we establish the validity of
the following statements (I)-(IV):

( I ) If x e Xis such that | φ*μx({y}) \ > 1/(1 + e), then | φ*-ιμy{{x}) \ >
i - ε .

( I I ) There exists a t least one xeX such t h a t \<p*μx({y})\ ̂  1,
and this point x can be chosen so t h a t \φ*~ιμy({%})\ ^ i

(III) There exists a second point x' e X, xr Φ x, such that
\φ*-γμy{{x'})\>h-e.

(IV) If x is a point associated with y by (II), there exists a
second point yf e Y such t h a t \φ*μx({y'})\ > 1 — e.

Now if {gy,n}*-*y then, by (1), a point xeX will be such t h a t

( 3 ) φ*μ9 = aμy + μ, \a\ > 1/(1 + ε) , μ({y}) = 0 ,

if and only if x belongs to the set

{x e X: I lim (φ(gy,n))(x) \ > 1/(1 + e)} .
n

This set is nonvoid. For (using the fact that H^*"1!! = 11?"1! I = 1)
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we have

1 = lim \gy,ndμy = (Aim φ(gytS)d{<P*-ιμy)

^ svp\lim(φ(gy,n))(x)\ .
xe X n

We next note that for all xe X, we have

(5) ±

For if not, we could find a point x' e X and an integer m such that
\{φ(gy,m)){ttr)\ > 1 + s/4, and such that the support of gy>n is contained
in {yr e Y: | (φ-ι{l))(yr) I < s/8}. Define a scalar λ by | λ | = 1, and arg λ =
— BXg (φ(gVtm))(xe). Then ^ ( l ) + *>gy,m is an element of C0(Y) with
norm less than 1 + ε/8, while

Wφiφ-'Q.) + λ ^ , w ) | | ^ 1 + X(φ(gVtm))(x') > 2 + 4 ,
4

contradicting the fact that \\φ\\ = 2.

Now suppose that α; is any point of X which satisfies (3). We
then write φ*~ιμy — βμx + v, where v({x}) = 0, and claim that \β\>
i - e. For if {gy>n} <-• ?/, we have

= lim \gy,ndμy = lim

|
x' e l n

Now if we suppose that \β\ ̂  J — ε, the previous inequality gives

ll»ll>i.
Next from (3), and the fact that ||£>*|| = 2, we obtain μ =

φ*μx - aμy1 and | | ^ | | ^ 2 - | α | . Thus φ*^μ = (1 - aβ)μx - av, and
since φ*~ι is norm-decreasing, it follows that

(6) 2 - \a\ ̂  \\φ^μ\\ ^ 1 - \a\\β\ + | α | | |v | | ,

a quantity which, since \β\ < -| — ε and | |v| | > J, is strictly greater
than 1 + e\a\. But this implies that 1/(1 + ε) > \a\, contradicting
our choice of the point x. This proves (I).

We next note that if {gy,n} <-> y, then by what has been proven^
{xeX:\ lim. (φ(gy,M%) I > V(l + *)} ̂ {xeX:\ φ*~ιμy({x}) | > i - ε}, a
finite set. It thus follows that the function \\imnφ(gy>n)\ has a
maximum on X. And since we may now replace "sup" by "max" in
(4), this maximum is necessarily greater than or equal to one. Thus
if we choose a point a e l a t which the function attains its supremum,
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then by (1) we have φ*μx = aμy + μ, where \a\ ^ 1 and μ({y}) = 0.
For this point sc write φ*~ιμy — βμx + y, where β is a scalar

and v({x}) = 0. We then have

1 — lim \gy,ndμy — lim

Hence

{7) lim
n

We thus have

\a\\\v\\ = max\\im(φ(gy,Mx')\\\v\\^

= aβ + lim \
J

lim \φ{gy>n)dv
n j

^ 1 — !

so t h a t

( 8 ) \v\\^{l-\a\\β\)l\a\.

Combining (6) and (8) we obtain 2 — \a\^2 — 2\a\\β\, which gives
1/91 ^ ί and completes the proof of (II).

Now let a; be a fixed point of X whose existence is guaranteed
by (II)—i.e., φ*μx = aμy + μ, where \a\ ^ 1 and μ({y}) = 0, and
φ*~ιμy = βμ β + v, where |/3| ^ ί and v({#}) = 0. If {^,J <-* #, then
by (1) a — \\mn (φ(gy,n))(%)> so (5) provides an upper bound for \a\:
\a\ < (4 + ε)/4 .

We wish to find an upper bound for \β\.
To this end note t h a t

J-> \(φ-ι(i))(y)\ -

Combining this with 1 ^ l
Now using (7) we obtain

^ 1/51 -

= \β\ + | |v | | gives |/2| < (8 + ε)/16.

( 9 )
sup \lim(φ(gytn))(x') im\φ(gy,n)dv

n J

^ 1 - \a\\β\ > (32 - 12ε - ε2)/64 .

But we have

(10) (32 - 12ε - ε2)/64 > 1/(2 + ε) > 1/2(1 + ε) ,

t h e first inequality holding since 0 < ε < 1/6, while the second is
valid for all positive values of ε. Thus since 1 ^ \β\ + \\v\\ and
\β\^i imply together t h a t \\v\\ ^ £, it follows from (9) and (10)
t h a t there exists a point x' e X — {x} such t h a t \limn (φ(gVιn))(x')\ >
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1/(1 + ε). Hence by (I) we must have φ*~xμy = β'μ%> + u', where
|/S'| > i - ε and i/({α'}) - 0. Thus (III) is proved.

Next, for this point xeX, if {/*,»}«-* α then (2), and a computa-
tion exactly analogous to that preceding (7), (with the fXyn replacing
the gy,n and μx replacing μy), yield

lim \φ~ι(fx,n)dμ = 1 - aβ .
n J

Thus, noting that \\μ\\ = H ^ μ J I — \cc\ 5j 1, an argument paralleling
that of (9), and an application of the first inequality in (10) provide
the existence of a point yf e Y — {y} such that

Hence by (2), we have

(11) φ*~ιμy, =Ύμx + v, \Ύ\> 1/(2 + ε), v({χ}) = 0 .

Now write <p*μx = α^ y + a'μy, + /2, where μ({y}) = β({y'}) = 0.
We show that | α ' | > 1 — ε. First note that v — φ*~ιμy, — yμx, so
that <p*v = (1 — a'Ί)μy, — Ί{aμy + μ). Next observing that

and that (by (11)) | |C| | ^ 1 — | τ | , we obtain

2 - 2 | τ | ^ ||9>*P|| ^ 1 - |

This is equivalent to | α ' | | τ | ^ 3 |τ | — 1 which, together with (11),
gives \ar\ > 1 — ε. This completes the proof of (IV).
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