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CONE RELATIONSHIPS OF BIORTHOGONAL SYSTEMS

S. W. SMITH

It is shown in this paper that total biorthogonal systems
have the same cone if and only if they differ at most by re-
arrangement and by positive scalar multiplication. A connec-
tion is demonstrated between this result and work done by
R. E. Fullerton in which he characterized the existence of an
unconditional basis in terms of the existence of certain type
cones. The paper is concluded by generalizing the first result
to the situation in which two biorthogonal systems have cones
which induce order isomorphic orderings.

l Definitions and notations* In this paper we will assume that

all vector spaces considered are real and that all topological vector
spaces are Hausdorff. E' will denote the topological dual of E, and
the letter N will denote the set of natural numbers.

An ordered vector space is a vector space E equipped with a
transitive, reflexive relation ^ satisfying the following conditions:

(a) If x, y, z are elements in E and x ^ y, then x + z ^ y + z.
(b) If x, y are elements in E such that x ^ y and if a is a non-

negative scalar, then ax ^ ay.
An ordered topological vector space is a topological vector space

which is also an ordered vector space. The positive cone K of an
ordered vector space E is defined by K = {x e E: x ^ 0}. It has the
properties that K + K c K and aK c K for each nonnegative scalar
α. A subset K of any vector space E with these two properties is
called a cone. If K is a cone in the vector space E, then (E, ^ ) is
an ordered vector space where the relation <; is defined on E by
x ^ y whenever y — xeK.

If x and y are elements of E, then the order interval between x
and y is the set I(x, y) — {zeE: x ^ z ^ y). The positive cone K of
E is said to be generating if E = K — K and proper if K Π — K = {0}.
If E is an ordered topological vector space, its positive cone is said
to be normal if there exists a local base of neighborhoods of zero for
the given topology with the property that V = \J {I{x,y}: x, y εV)
for each basic neighborhood V.

In a topological vector space (E, T), a pair of indexed sets (xa,fa),
aeA, with {xa} c E and {fa} c Er is called a biorthogonal system in
E if fa(xβ) = 0 for a Φ β and fa(xa) = 1. The set K = {xeE:fa(x) ^
0, aeA} is a cone and is called the cone of the biorthogonal system

We will call a biorthogonal system (xa, fa) total provided it has the
following two properties:
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(1) The closed linear span of the xa's is E.
(2) The f«s are total, i.e., fa(x) = 0 for each aeA implies that

x = 0.
We will pay special attention to biorthogonal systems (α?Λ,/n), ne N,

which are Schauder bases and will use the term basis to mean a
Schauder basis.

2* Biorthogonal systems having the same cone* We will ap-
proach the proof of Theorem 2.6 by characterizing the extreme subsets
of the positive cone. Propositions 2.4 and 2.5 although not used in
the proof of Theorem 2.6, are of interest in themselves. An extreme
subset of a cone K is a convex set A such that the following holds:
if u, v e K, 0 < t < 1, and to + (1 — t)v € A, then u and v are elements
of A.

If x is a nonzero element of K, we will denote by 12(0, x) the ray
12(0, x) = {tx:0 <£ ί}. If 12(0, aj) is an extreme subset of K, we will
call it an extreme ray.

PROPOSITION 2.1. Let E be a vector space ordered by the cone K.
Let A be a convex subset of K. Then A is an extreme subset of K
if and only if the following two conditions are satisfied:

(a) 1(0, x) czA for each xeA.
(b) 12(0, x) c A for each xeA.

Proof. Let A be an extreme subset of K. Suppose that A Φ φ
and that A Φ {0}. Let a? be a nonzero element of A, and let a > 1.
Then (a - l)/α 0 + (1/α) (ax) = x e A. Therefore, 0, ax e A. Since
α > 1 was arbitrary and A is convex, 12(0, x) c A. Now let yel(θ,x).
Then a = (1/2) 2(x - y) + (1/2) (2y) and thus 2(α - y),2yeA. There-
fore, i/ 6 A and hence /(0, a;) c A.

Conversely, let u, veK and 0 < t < 1 such that to + (1 — ί)ι; =
xe A. Then a? — tu = (1 — t)v e IT. Therefore, to e 1(0, x) which im-
plies that toe A by (a) and hence that ueA by (b). Similarly v is
also an element of A. Therefore, A is an extreme subset of K.

COROLLARY 2.2. Let E be a vector space ordered by a cone K, and
let x be a nonzsro ehment of K. Then the following statements are
equivalent.

(a) 12(0, x) is an extreme ray
(b) 1(0, a;) c 12(0, x)
(c) 1(0, x) = {tx: Oet^l}.

Proof. The implications a —> b and c —»a follow trivially from
Proposition 2.1. To show that b~~>c, we need only show that J(0, x)a
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{tx: 0 <̂  t <£ 1}. The reverse inclusion is clear. Thus suppose z e 7(0, x).
By (b) there exists t ^ 0 such that z = tx. But ίa? e 1(0, a?) implies
that x - tx = (1 - t)xe 1(0, a) c JS(O, x). Then 1 - ί ^ 0 and ί ^ 1.
Thus ze{tx:0 ^ ί ^ 1}.

We remark that (c) of Corollary 2.2 is well known and is sometimes
used as the definition of an extreme ray of a cone [5, p. 10].

PROPOSITION 2.3. Let E be a topological vector space ordered by
the cone K of a biorthogonal system (xa,fa), aeA, for which the fa'&
are total, and let x e E. Then R(0, x) is an extreme ray of K if and
only if there exists β e A and b > 0 such that x = bxβ.

Proof. Suppose that R(0, x) is an extreme ray for K. Since x Φ 0
and since the /α's are total, there exists βe A such that fβ(x) > 0.
Then fβ(x)xβ e 1(0, x) which is contained in R(0, x) by Corollary 2.2.
Thus R(0, xβ) = R(0, x) and there exists b > 0 such that x = bxβ.

Conversely, suppose that aeA. Consider the ray R(0, xa). If
z e 1(0, xa), then fβ(z) = 0 for β Φ a. Hence fβ(z — fa(z)xa) — 0 for each
β e A. Since the /α's are total, we conclude that z = fa{z)xa. Thus
1(0, xa) c R(0, xa) and R(0, xa) is an extreme ray, Corollary 2.2.

PROPOSITION 2.4. If E is a topological vector space ordered by the
cone K of biorthogonal system (xa, fa), then K has extreme rays if and
only if the fa's are total.

Proof. If the /α's are total, then by Proposition 2.3, each ray
jβ(0, xa) is an extreme ray of K.

Suppose, however, that the /α's are not total. Then there exists
a nonzero x in E such that fa(x) = 0 for each aeA. Thus x and
— xeK. If y Φ 0 is an element of K, then (1/2) x + (1/2) — x =
0 e R(0, y). However, either x or — x is not an element of R(0,y),
and thus R(0,y) cannot be an extreme ray of K. Since y was an
arbitrary element of K, we conclude that K has no extreme rays.

PROPOSITION 2.5. Let (E, T) be a topological vector space ordered
by the cone K of a biorthogonal system (xn, fn) which is a basis on K,
i.e., x = Σn=ifn(%)%nfor each x e K. Then A is a closed extreme sub-
set of K if and only if there exists a subset A of N such that A =
{y e K: fn(y) = 0 for n e A).

Proof. Let AaN and let A = {yeK:fn(y) = 0 for neA). It is
clear that 1(0, x) c A and R(0, x ) c i for each x e A. Therefore, by
Proposition 2.1, A is an extreme subset of K. Clearly A is closed.

Conversely, suppose that A is a closed extreme subset of K. Let
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Δ = {n e N: fn(y) = 0 for each ye A). We need only to show that A = AΔ

where AΔ = {yeK:fn(y) — 0 for neΔ}. Clearly AcAA. Thus sup-
pose zeAjy then z = Σ?=i/n(s)ίc» and /„(#) = 0 for neA. Hence z is
contained in the closure of the convex hull of the JR(0, xn), ne N — Δ.
However, for each neN — Δ there exists ye A such that fn{y) > 0.
Since fn(y)xn is an element of 7(0, y) and since A is an extreme sub-
set of K, we have that R(0yfn(y)xn)cz A by Proposition 2.1. Hence
i?(0, a?w) c A for each neN — Δ. A is also closed and convex, since
it is a closed extreme subset of K. Therefore, ze AA and we have
that A = A^.

THEOREM 2.6. Leί (#α, / α ), ae A, be a total biorthogonal system and
(yβ, hβ)9 β eB, a biorthogonal system with cones Kt and K2 respectively
in a topological vector space E. Then Kγ = K2 if and only if there
exists a one-to-one mapping F of A onto B and a collection of positive
scalars {λα}, ae A, such that yF{a) = Xaxa and hF(a) = (l/λα)/β.

Proof. If there exists a mapping F and positive scalars {λα}, ae A
as in the theorem statement, it is clear from the definitions of Kx

and K2 that they must be equal.
Conversely, suppose that Kx — K2. By Proposition 2.3, the collec-

tion of extreme rays of Kx is the set {R(Q, xa): ae A}. However,
Kx Π — Kx = {0} since the /α's are total. Thus, because Kt is also the
cone of (yβ, hβ), we must have the hβ'a are also total. Applying
Proposition 2.3 again, we have that the collection of extreme rays of
Kγ is the set {#(0, yβ): β e B}. Thus, {R(0, xa): a e A} = {R(0, yβ): β e B}.
Define F mapping A into B in the following way: a maps to F(a)
provided i?(0, xa) = i2(0, yFla)). It is a simple matter to verify that
F is a well-defined, one-to-one mapping of A onto B. Therefore, for
each ae A there exists Xa > 0 such that yF(α) = Xaxa. Furthermore,
since the closed linear span of the xa's is E, hF{a) — (l/λα)/α, [3, Pro-
position 1],

COROLLARY 2.7. Let (E, T) be a topological vector space ordered
by the cone K of basis (xn,fn). If (yaf ha)f ae A, is any biorthogonal
system whose cone is also K, then A = N and there exists a permu-
tation τ of N such that (yτ{n), hτ{n)) is also a basis.

Proof. By Theorem 2.6, there exists a one-to-one mapping of N
onto A and positive scalars {bn: neN} such that yr(n) = bnxn and
hτin) = (l/bn)fn. Since (xn,fn) is a basis, (bnxn, (l/bn)fn) = (yτ{n), hr(n)) is
also a basis.

COROLLARY 2.8. If (E, T) is a topological vector space ordered by
the cone K of an unconditional basis (xn,fn) and if (yaf ha), ae A, is
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any bίorthogonal system having the same cone K, then A — N and
(Vnt hn) is also an unconditional basis (E, T).

3* Remarks* We next point out a connection between the above
work and some work done by Fullerton [4]. To do this let us notice
that if (xn,fn) is a basis in a locally convex topological vector space
(E, T), then the rays {22(0, xn): ne N} satisfy the following conditions.

(a) \J{R(0, xn): neN} generates a linear space dense in E.
(b) For each ne N, the closed linear subspace Ln generated by

the set {22(0, xό):j Φ n) is a hyperplane.

(c) Γi{Ln:neN} = {0}.
Furthermore, if Hn is the closed half-space bounded by Ln and

containing 22(0, xn), then K= Γ[{Hn: ne N} is a cone and in fact is
the cone of the basis (a?n,/w).

If (xn, fn) is an unconditional basis and (E, T) is sequentially com-
plete, it is true that the cone K generated by the rays {22(0, xn): ne N}
satisfies two additional conditions.

(d) K Π x — K is compact for each x e K.
(e) K-K= E.

Statement (d) is equivalent to unconditional convergence of the series
Σjn=ifn(x)Xn for each xeK [9, p. 16]. Statement (e) is well known
and follows from the fact that in a sequentially complete space un-
conditional convergence is equivalent to sub-series convergence [8,
p. 17].

REMARK. In a complete locally convex topological vector space,
the existence of an unconditional basis is equivalent to the existence
of a cone K defined by a collection of rays {22(0, xn): ne N} satisfy-
ing conditions (a) through (e). Furthermore, it can be shown that
K is the cone of that basis.

The above remark is essentially the work of Fullerton [4]; however,
it can also be obtained using a theorem of McArthur [9, p. 16].

We would like to point out here that even though Fullerton did
not include condition (e) when claiming the above remark to be true,
it is necessary. This can be seen by the following example. Let
(E, T) = C[0,1] with the sup-norm topology. Let (xn,fn) be the usual
Schauder basis given for C[0,1], [2, p. 69]. It is well known that
the cone K of this basis is normal. Thus by theorems of McArthur
[10, pp. 6 and 16], we have that K ΓΊ x — K is compact for each
x e K. Consequently, the rays 22(0, xn) of this basis satisfy conditions
(a) through (d) and the cone K would be called an absolute basis cone
by Fullerton [4]. Hence, by Fullerton's statement of the above remark,
the existence of the cone K is equivalent to the existence of an un-
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conditional basis system (ya, ha), ae A, having K as its cone. It is
well known that the basis (xn,fn) above is a conditional basis [7].
Furthermore by Theorem 2.6, if (ya, ha), aeA, is any arbitrary bior-
thogonal system having K for a cone, then A — N and there exists
a permutation τ of N and a collection {Xn: n e N) of positive scalars
such that yn = λna?r(n). Since (xn,fn) is a conditional basis, (λn#r(w),
(l/λn)/r(n)) must also be a conditional basis if indeed it is a basis at
all. Thus we have that K satisfied conditions (a) through (d), but
no unconditional basis system exists which has K for its cone. We
note that K is not generating since it is the cone of a conditional
basis and is normal [9, p. 20]. Hence, condition (e) is indeed neces-
sary in order that the above remark be true.

Note that Corollary 2.8 states that unconditional basis cones are
unique among biorthogonal system cones in any topological vector
space. Therefore, it seems likely [that the above remark could be
generalized to general topological vector spaces. Corollary 2.7 indi-
cates that some type of a similar remark should be true for condi-
tional bases.

4* Biorthogonal systems giving order isomorphic orderings* In
this section we will prove a type of analogue to Theorem 2.6. For
this work one might think of two cones as being the same if they
give order isomorphic orderings.

If (Elf T19 K^ and (E2, T2, K2) are ordered topological vector spaces
with positive cones Kγ and K2 respectively, then Eι and E2 are said
to be order isomorphic to each other if there exist a linear isomor-
phism T mapping E, onto E2 such that T(JQ = K2. If T and T~]

are also continuous, E1 and E2 are topologically order isomorphic.
Let (xa,fa) be a biorthogonal system in a topological vector space

Ex and (ya, ha) a biorthogonal system in a topological vector space E2.
We say that (xa, fa) and (ya, ha) are equivalent systems if for each
x e E1 and y e E2 there exists a corresponding yf e E2 and x' e Et such
that fa(x) = ha(y') and fa(x') = ha(y) for each a. If (xn, fn) and (yn, hn)
are Schauder bases for Eγ and E2 respectively, we say that (xn, fn) and
(2/n> h») a r e equivalent bases provided {(an): Σ*=i M » converges in J57J =
{(bn)'Σin=iKVn converges in E2).

THEOREM 4.1. Let (E19 i Q and (E2, K2) be topological vector spaces
ordered respectively by the cones Kλ and K2 of total biorthogonal sys-
tems (xa, fa) and (ya, ha), ae A. The following statements can be proved.

(a) If (Et, Kλ) and (E2, K2) are topologically order isomorphic, there
exists a permutation z of A and positive scalars {λα: aeA} such that
{ttaifa) and (KVt(a)y (VK)KM) are equivalent systems.

(b) If (xa, fa) and (ya, ha) are equivalent, then (Et, K^j and (Et, K2)
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are order isomorphic vector spaces.

Proof. Let T: Eγ —> E2 be a topological order isomorphism mapping
Eι onto E2. Then (T(xa), faT~ι) is a biorthogonal system in £72. Let
Kz denote the cone of {T{xa),faT~ι). Then iΓ2 = Ks. Therefore by
Theorem 2.6, there exists a permutation of A and positive scalars
{λα: aeA} such that T(o?a) = Xayτ{a) and /«T - 1 = (l/λα)AΓ(α). Further-
more (xa,fa) and (KVτ(a)f (VK)K(a)) are equivalent systems.

Suppose now that (xa,fa) and (ya, ha) are equivalent. If xeE19 let
T($) denote that element # of E2 for which /α(α?) = ha(y) for each
6τe4. Then T is a linear isomorphism of E1 onto 2£2 and T(Kj) = K2.

COROLLARY 4.2. Let (E, T) be a sequentially complete topological
vector space ordered by the cone Kx of an unconditional basis (xn,fn).
Let {bn: neN} be any sequence of nonzero scalars, zn = bnxn, and hn =
(l/bn)fn. Then if K2 is the cone of (zn, hn), we have that (E, Kt) and
(E, K2) are order isomorphic as vector spaces.

Proof. We begin by showing that (xn, fn) and (anxn, anfn) are equi-
valent bases where an = sgn bn. In a sequentially complete space,
Σ ^ i / n O ^ n converges unconditionally to x if and only if ^n=1dnfn(x)xn

converges to x for every sequence {dn: dn = ±1}, [8, p. 17]. Using this
fact again we have that Σ?=i dvfn(x)xn converges unconditionally to x
for each such sequence and for each xe E. Thus Σ ϊ U & A converges
if and only if Σ£=iδ»(αn&») converges, i.e., (xn,fn) and (anxn, anfn) are
equivalent bases. Thus by (b) of Theorem 4.1, we have that (E, 1Q
and (E, K3) are order isomorphic vector spaces where K3 is the cone
of the basis (anxn, ajn). However, K2 = iΓ3, thus (E, K^ and (E, K2)
are order isomorphic vector spaces.

PROPOSITION 4.3. Let E1 and E2 be complete metric linear spaces
ordered by the cones Kγ and K2 respectively of the total biorthogonal
systems (xa,fa) and (ya, ha), ae A. Then (E19 Kλ) and (E2, K2) are
topologically order isomorphic if and only if there exists positive
scalars {λα: aeA} and a permutation τ of A such that the systems
(xa,fa), aeA, and (Xayτ{a)1 (1/Xa)hτ{a)) are equivalent.

Proof. If (.EΊ, Ky) and (E2, K2) are order isomorphic topological vec-
tor spaces, we get the desired result by applying (a) of Theorem 4.1.

Conversely, we can assume without loss of generality that (xa,fa)
and (ya, ha) are equivalent. Then by the isomorphism theorem of
Arsove and Edwards [1], there exists an isomorphism T of E1 onto
E2 such that T(xa) = ya. Furthermore T is defined as in the proof
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of (b) of Theorem 2.6. Hence T{K^ = K2, i.e., T is a topological
order isomorphism.

PROPOSITION 4.4. Let (Eίf TO and (E2y T2) be barrelled spaces or-
dered by the cones Kt and K2 of Schauder bases (xn, fn) and (yn, hn)
respectively. Then (E19 Tί9 i Q and (E2J Γ2, K2) are topologically order
isomorphic if and only if there exists a permutation τ of N and
positive scalars {Xn:neN} such that (&»,/*) and (Xnyτ{n), (l/K)Kin))
are equivalent bases.

Proof. Suppose that (E19 Tί9 1Q and (Eif T2, K2) are topologically
order isomorphic. Let T: Ex —> E2 be the defining order homeomor-
phism. As in the proof of Theorem 4.1, there exists a permutation
r of N and positive scalars {Xn: ne N} such that T(xn) = Xnyτ{n). Thus
(α?w,/n) and (Xnyz{n)f (l/λn)Λr(w)) are equivalent bases [6, p. 678],

Conversely, we can assume without loss of generality that (xn, fn)
and (yn, hn) are equivalent bases. Then FiE.—^Ez defined by F(x) =
Σin=ifΛx)Vn is a linear homeomorphism [6, p. 678] and clearly

= K2.
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