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NOTES ON COMMUTATIVE POWER
JOINED SEMIGROUPS

RICHARD G. LEVIN AND TAKAYUKI TAMURA

Let S be a commutative semigroup. The main theorem
in this paper is to prove that the following two conditions
are equivalent: (1) For all α, be S there are positive integers
m, n such that am = b\ (2) For all α, b e S, a1 = ambn, br =
&8α* for some I, m, n, r, s, t. As a consequence of the
theorem, the authors prove that a commutative archimedean
semigroup S without idempotent is power joined if and only
if the structure group of S is a torsion group.

Let S be a commutative archimedean semigroup without idem-
potent. Consider the following question: "Under what condition on
the structure group (defined below) of S will S be power joined?"
Levin proved in [4] that if S is finitely generated, equivalently if
the structure group of S is finite, then S is power joined. Also he
obtained a necessary and sufficient condition for S to be power joined.
The following is Theorem 2 in [4]:

THEOREM 1. Let S be a commutative, archimedean semigroup
without idempotent. Let Ga = S/pa be the structure group of S
determined by a. Then S is power joined if and only if Ga is
periodic and the congruence class containing a modulo pa is power
joined.

If we assume that S is additionally cancellative, that is, S is
an ^-semigroup, then the answer is simple. The following is due
to Chrislock [1, 2].

THEOREM 2. An ^-semigroup S is power joined if and only
if Ga is periodic for some α e S , equivalently for all ae S.

Naturally the following question is raised: Can Theorem 1 be
improved such that Theorem 2 is extended to S in Theorem 1? The
question is affirmative. In this paper we study the problem for
more general case, i.e., for commutative archimedean semigroups.
The main theorem of this paper asserts that a commutative semi-
group S is power joined if and only if it is archimedean and its
group homomorphic images are periodic. As a corollary we can
answer the above question.

Semigroups are assumed to be commutative throughout this
paper.
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DEFINITION 1. A semigroup S is called power joined if and only
if for all a, be S, there are positive integers n, m such that

an = bm .

DEFINITION 2. A semigroup S is called archimedean if and only
if for all α, be S, there exist u, ve S and positive integers n, m
such that

an = bu and bm — av .

DEFINITION 3. Let S be an archimedean semigroup without
idempotent. We define a congruence pb on S for fixed be S as
follows. We define xpby if and only if there are positive integers
n and m such that

bnχ = bmy .

REMARK. More information on commutative, archimedean semi-
groups without idempotent can be found in [1], [6] and [7]. In
particular a proof that ρb (as defined above) is a congruence relation
and that S/pb = Gb is a group can be found in [7]. S/pb is called
the structure group of S determined by b. Also notice xy Φ y for
all x, ye S.

THEOREM 3. The following statements are equivalent.
(3.1) The semigroup S is power joined.
(3.2) The semigroup S is archimedean and its group homo-

morphic images are periodic.
(3.3) The semigroup S satisfies the conditions: for all pairs

a, be S, there are positive integers I, m, n, s, t, p such that

a1 = ambn and bs = b*ap .

Proof. We will prove: (3.1) => (3.2) => (3.3) => (3.1). Let S be a
power joined semigroup. It is trivial to show that S is archimedean.
Let G be a group homomorphic image of S with φ: S—>G the homo-
morphism. We will show that G is a periodic group. Let aeG
and let e be the identity of G. There exist x, yeS such that
φ(x) = α, <p(y) = e. Since S is power joined, there exist positive
integers n, m such that xn — ym. Then

an = [φ{x)f - φ(xn) - φ{ir) - [φ(y)]m = em = e .

We see that G is periodic and this completes the proof that (3.1) =>
(3.2).



NOTES ON COMMUTATIVE POWER JOINED SEMIGROUPS 675

We next prove that (3.2) => (3.3). Let S be an archimedean
semigroup whose group homomorphic images are periodic.

Case 1. Assume that S has an idempotent e. Then the set Se
is a group and is the homomorphic image of S (see [3] or [5]). Let
a, be S. Then ae and be are elements of Se. Since Se is a periodic
group with e as its identity element, there exist positive integers n
and m such that

(ae)n — e and (be)m = e .

That is,

(1) ane = e = bme .

Since S is archimedean, there exist positive integers k and t and
u, ve S such that

( 2) ak = ev and bι — eu .

From equations (1) and (2) we derive

or α'δ* - bmb\

or αw&* = 6r where r = m + t .

Similarly, we derive α* — α^6m for some positive integers i, /c and m.

Case 2. Assume that S does not have an idempotent. Let
a, be S. Consider the congruence pa of Definition 3. Then S/pa is
a group homomorphic image of S and, therefore, is a periodic group.
Also

S= U S;

and αeS £ , where ε is the identity of S/ρa. There is XeS/ρa such
that 6G Sλ. There exists a positive integer k such that λfc = ε. Thus,

That is, a and 6fe are ρa related. By definition of ρa, there are
positive integers n and m such that

ana = ambk ,

or a1 = ambk , where I = n + 1 .

Similarly, we can derive the equation

bs = δV .
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The proof that (3.2) => (3.3) is now complete.
We now prove that (3.3) ==> (3.1).

Case 1. Assume that S has an idempotent e. Let aeS. Then
there are positive integers I, m, n, s, t and p such that

(3) eι = eman and as = a*ep ,

( 4 ) or e = ean and as = aιe .

Using the equations of (4) we derive

e = e* = (eany = e«(α')" = (ea*)* - (as)n .

Thus, we have e = ar for a positive integer r.
It is now obvious that if a, be Sy there are positive integers u and
v such that au = δv. Therefore S is power joined.

Case 2. Assume that S has no idempotent. Again we have
for any pair α, b e S, positive integers I, m, n, sf t and p such that

(5 ) a1 = ambn and 6s = Va* .

We will prove that there are positive integers V and n' such that
a1' = ambn', and n'p ^ mt. Since S does not have an idempotent,
I > m in (5). Then

Now assume that for some integer k ^ 1, we have

We will prove that

Now we have

α(*+υϊ-*» = aki-kmaι _ α*ϊ-**(α»5») = (a

kι-kmam)bn

= α*ϊ-(*-D»6» = (a

mbkn)bn = amb{k+1)n .

Thus, by induction we have the relation: for every & *>

Now choose k such that fc^ip ^ mt. Set %' = ftn, V = kl — (k — ΐ)m.
We replace the equations of (5) by the equations

(6) a1' = ambn' and 6s = b*ap .
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From (6) we derive

or aι'tp =

)tp(α»)*p = φ*)nfp(ap)mt ,

= φt)ntt(bt)n'p-mt(ap)mt

Set i6 = Vtp and v = smt + ί(w'p — mi). We see that we have derived
the equation au = b\ Therefore S is power joined. This concludes
the proof that (3.3) => (3.1).

REMARK. Each of (3.1), (3.2) and (3.3) is equivalent to one of
(3.4) and (3.5) below:

(3.4) The semigroup S satisfies the following condition: there is
an element α0 of S such that for all be S there are positive integers
If m, n, s, t, p satisfying

a\ = a^bn and 6s = Val .

(3.5) The semigroup S satisfies the condition: for all pairs
α, be S there are positive integers I, m, s, t such that

a1 = (ab)m and 6s = (bo,)* .

Proof. We define a relation τ on S as follows:
aτb if and only if a1 — ambn and 6s = δ*αp for some I, m, n, s, t, p.
Then τ is an equivalence on S. Reflexivity and symmetry are obvious.
Transitivity is proved as follows: suppose a1 ~ ambn and bk = bqc\
First we have

alk __ amkbnk _ amk^nqcnv

and then

a1' = am'\amqbnq)cnv = am'+lgcnv

where

V — Ik, mr — mk — mq if k Ξ> q

y — Ik — mq — mk, m' = 0 if k < q .

Therefore (3.4) ==> (3.3) is obtained as an immediate consequence;
(3.3) -> (3.4), (3.1) -> (3.5) and (3.5) — (3.3) are obvious.

If S is a nil-semigroup, i.e., a semigroup in which some power
of every element is zero, Theorem 3 is trivial since every nil-semi-
group is power joined.

If S is an archimedean semigroup whose idempotent is not zero,
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then G = Se is the kernel, i.e., the minimal ideal and the unique
maximal subgroup. Then we have

COROLLARY 5. S is power joined if and only if the kernel G is
periodic.

The essense of Theorem 3 is in the case where S is an archimedean
semigroup without idempotent.

THEOREM 6. An archimedean semigroup without idempotent is
power joined if and only if the structure group Ga = S/pa of S is
periodic for some ae S, equivalently for all ae S.

Proof. Let S be an archimedean semigroup without idempotent.
Then the statement (3.3) is equivalent to:

S/pa is periodic for all ae S .

(3.4) is equivalent to:

S/ρa is periodic for some ae S .

The first statement is obvious. To see the second we will prove
the following:

If S/pao is periodic, then for all be S there are positive integers
I, m, n, s, t, p such that

(7) a\ = a%bn , b8 = δ'αf .

The first of (7) is immediately obtained. Since S is archimedean
there is a positive integer k and an element ce S such that

bk = aoc

w h i c h i m p l i e s bkι = a\cι. S i n c e S h a s n o i d e m p o t e n t , ϊ > m i n t h e
first o f ( 7 ) . N o w w e h a v e

= a\-wa[cι = a\~matbncι = bna\cι = bnbkι = bn+kl .

This completes the proof.
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