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DIMENSION THEORY IN POWER SERIES RINGS

DAVID E. FIELDS

Let V be a valuation ring of finite rank n. If V is
discrete, then V [[X]] has dimension n + 1. If V is not dis-
crete, then the dimension of F[[X]] is at least n + k + 1,
where k is the number of idempotent proper prime ideals of
V.

Let R be a commutative ring with identity. If there exists a
chain Po c Px c P2 c c Pn of n + 1 prime ideals of R, where
Pn c R, but no such chain of n + 2 prime ideals, then we say that
R has dimension n and we write dimR = n [3]. In [3] and [4],
Seidenberg has investigated the dimension theory of R [Xlf X2, , Xm\
where R has finite dimension and Xlf X2, , Xm are indeterminates
over R. We investigate the dimension theory of T^[[X]] where V
is a valuation ring.

Throughout this paper, R denotes a commutative ring with
identity; o) is the set of natural numbers; ω0 is the set of non-
negative integers; and Z is the set of integers. If

f(X) = ±fiX
ieR[[X]],

we denote by Af the ideal of R generated by the coefficients of
f(X): Af = {/0, Λ, , fk, •} R. If A is an ideal of R, we let

A [[X]] = {/(X) = Σ fiX1- fι^A f°r each ie ω0}

and we define A R [[X]] to be the ideal of R [[X]] which is gener-
ated by A. Then A R [[X]] = {f(X): Af S B for some finitely
generated ideal B of R with B £ A}. It is clear that A iϋ [[X]] S
A [[X]]; equality holds if and only if each countably generated ideal
of R contained in A is contained in a finitely generated ideal of R
contained in A. In particular, if V is a valuation ring containing
an ideal A which is countably generated but not finitely generated,
then A V[[X]] c A [[X]]. Finally, we note that if A is an ideal of
i2, then R [[X]]/A [[X]] ~ (R/A) [[X]]; hence A [[X]] is a prime ideal
of R [[X]] if and only if A is a prime ideal of R.

2. Discrete valuation rings* Let V be a valuation ring of
rank k with associated valuation v and value group G; let {0} —
Go c Gi c czGk = G be the chain of isolated subgroups of G to-
gether with G. In [2], Iwasawa proves that for 1 ^ i ^ k,
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Gi/Gi^ = Hi where Hi is a subgroup of the additive group of real
numbers, this being an order-preserving isomorphism of groups. If
for 1 ^ i ^ k, Hi = Z, we shall say that V is a discrete valuation
ring of rank k. This is equivalent to the condition that V contains
no idempotent proper prime ideal.

LEMMA 2.1. Let V be a valuation ring and let P be a proper
prime ideal of V. If P is not idempotent, then in V[[X]]y

and (P[[X]]) 2SP

Proof. Let a e P, a ί P\ Then

(P[[X]]f S P2 [IX]] S (a)V[[X]] S P V[[X]] .

Hence P[[X]] S l / ( P ^[[^]]) and the reverse containment is clear.

LEMMA 2.2. Let V be a valuation ring with quotient field K
and let P be a proper prime ideal of V. Let

D=

Then Z? = (Vp[[X]])r,M.»

Proof. We first show that FP[[X]] e ΰ . Let

For each ieo)0, there exists r{ e V\P such that r» /< e V. Let
aeP\{0}; then for each ieω0, a/ri£ PVP = P £ V, implying that
afi = (a/ri) (rji) e V; that is, af(X)eV[[X]]. This implies that
f(X)e(V[[X]])VV0] - D, showing that 7 P [ [ I ] ] S Z ) .

Since D 1Ξ2 K, each nonzero element of VP is a unit in i). Thus
D Ξ2 (FpItXlDrpxio} and the reverse containment is obvious.

COROLLARY 2.3. Let V be a valuation ring and let P be a pro-
per prime ideal of V. There is a one-to-one correspondence between
prime ideals of V[[X]] which contract to (0) in V and prime ideals
of VP[[X]] which contract to (0) in VP; this correspondence preser-
ves containment.

Proof. Lemma 2.2 assures that there is a one-to-one, contain-
ment preserving correspondence between each of these classes of
prime ideals and the class of prime ideals of D.

LEMMA 2.4. Let R be a quasi-local ring having maximal ideal
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M. Let /(X)e22[[X]], f(X) ί M[[X]] - say fkeR\M, k minimal.
There exists g(X), a unit of R[[X]], such that f(X)g(X) has exactly
one unit coefficient, namely {fg)k

Proof. For u{X) e R [[X]], denote by ΰ(X) the canonical image

of u(X) in (R/M)[[X]]. By choice of k,

f(X) = fkX
k + fk+ίX

k+ι + - Xk(fk + fk+1X +•••)>

where fk Φ 0. Then fk + fk+1X + ••• is a u n i t o f (R/M)[[X]], and

we can choose g(X)eR[[X]] such t h a t g(X) (fk+fk+1X+ •••) = ! .

Thus /(X) g(X) = Xk, and f(X)g(X) - Xk eM[[X]]. This implies
that only the coefficient of Xk in f(X)g(X) is not in M.

COROLLARY 2.5. Let V be a valuation ring and let P be a pro-
per prime ideal of V. If Q is an ideal of VP [[X]] and if
Q g (PVP) [[X]], then Q n V[[X]] g P[[X]].

Proof. Lemma 2.4 assures that there is a power series g(X) in
Q with g(X) having exactly one unit coefficient, gk. Since gk is a
unit of VP1 there in no loss of generality in assuming that, in fact,
gk = 1. Then for i Φ k, ^ e PVP — P g V, implying that
g(X)eQΠ V[[X]] while g(X) ϊ P[[X]].

LEMMA 2.6.x Let R be a Noetherian ring having dimension n.
Then R[[Xlf Xz, •••, Xm]] is Noetherian and has dimension n + m.

Proof. It is well known that if R is Noetherian, then
R [[Xu X2, , Xm]] is Noetherian. We shall show that the dimension
of i2[[X]] is n + 1; the lemma follows immediately by induction on
m.

Let M be a maximal ideal of 22 [[X]]. Then M = M, + (X) for
some maximal ideal Mί of 22. Since dim 22 = n, the height of Mι is
k where k ^ n. There exists an ideal A = (α:, α2, , ak) of 22 which
admits Mι as an isolated prime ideal [5; 242]. It is straightforward
to verify that M = Mx + (X) is an isolated prime ideal of A + (X) —
(αn α2, •• , αjs , X) R [[X]]. This implies that the height of M is at
most k + 1 [5; 240]; since k ^ n, the height of M is at most n + 1.
Since ikf was an arbitrary maximal ideal of 22 [[X]]9 we conclude that
dim 22 [[X]] ^ n + 1; the reverse inequality is clear.

THEOREM 2.7. Let V be a discrete valuation ring of rank n
and let (0) = Po c Px c P2 c c Pm δβ ί/te nonunit prime ideals of

1 The proof of Lemma 2.6 was pointed out to the author by William Heinzer.
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V. Then dim V[[X]] = n + 1.

Proof. We use induction on n, the case n = 1 following from
Lemma 2.6 since a rank one discrete valuation ring is Noetherian.

Assuming the result for discrete valuation rings of rank less
than n, let F be a discrete valuation ring of rank n and let
( 0 ) c Q 1 c Q 2 c c Q ί be a chain of prime ideals of F[[JSΓ]]. We
consider two cases.

Case 1. Q, Π VΦ (0). Here Q, n 7 S P 1 ( so that Q ^ P i V[[X]],
implying that Qι 2 VlP^V~\[T\\) = PJIX]], the latter equality
being a consequence of Lemma 2.1. But the depth of Px [[X]] cannot
exceed dim (F/PJ [[X]] — n; we conclude that t ^ n + 1.

Case 2. Q, n F = (0). Corollary 2.3 asserts that Q,= Q* n
where Q* is a prime ideal of FPl[[X]] and Q*ΠVPl = (0). Since
dim VPi[[X]] = 2, Q* g (P^p,) [[X]]. By Corollary 2.5, Q, g PJIX]].
Since FPl[[X]] is two-dimensional and local, each proper prime ideal
°f ^pJI^Ί] which contracts to (0) in VPl is a minimal prime ideal of

Corollary 2.3 now assures that each proper prime ideal of
which contracts to (0) in 7 is a minimal prime ideal of

V[[X]]. It follows that Q2nVΦ(0), implying that Qa 3
Since also Q2SQ, and Q^PJ^X"]], we conclude that Q2n
Thus we have a chain (0) c P1 [[X]] c f t c f t c c f t . It follows,
as in Case 1, that t ^ n + 1.

Thus dim F[[X]] ^ n + 1 and the reverse inequality is clear.

3* Rank one nondiscrete valuation rings* We note that if V
is a rank one valuation ring, then the value group of v is Archi-
median.

Lemma 3.1. Let V be a valuation ring and let B be an ideal
of V. If B is not finitely generated, then the following conditions
are equivalent:

(a) f(X)eB V[[X]].
(b) Af S (b) for some beB.
(c) f(X) = bg(X) for some beB, g(X) e V[[X]].
(d) A, c B.

Proof. We establish that (a) -> (b) -> (c) -> (a) and that (b) — (d).
(a) —(b): Let f(X)eB- V[[X]]; then we can write

f(X) = bdgw(X)] + hW2)(X)] + . . . + bt[gw(X)]
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where for 1 ^ i ^ ί, δ4 e B and <?(i)(X) - Σ~=o 9a Xj e F[[X]]. Thus
/(X) = Σϊ-ofiX* where /< = Σ U &*£«. In F, (6X, 62, , 6,) = (6.)
for some s, 1 ^ s ^ ί. Now for i e ω0, f{ = ΣUi &*£*» e (&.), implying
that Af £ (6β) where δ8 e 5.

(b)—>(c): We assume that Af £ (6); then for ίeωo> /* = δ0*
where ^ e F. Let #(X) = Σf=o 0ίX'; it then is clear that /(X) =

MX).
(c)—>(a): This is obvious.
(b)—> (d): This is immediate from the assumption that B is not

finitely generated.
(d)->(b): Assuming that Af<zB, let b e B, b$Af. Then

(6) $£ -4/ so Af <Ξ (6) since F is a valuation ring.

THEOREM 3.2. Lei V he a rank one nondiscrete valuation ring
having maximal ideal M. Then M F[[X]] = V(M

Proo/. Let / (X) e l/(M V [[X]]) - say [/ (X)]k eM V[[X]];
we then can write [f(X)]k = rg(X) where reM and flr(X) e F[[X]].
There exists an element s of M with 0 < v(s) ^ v(r)/k; then r = sfc£
where ίe F, implying that [f(X)]k = rg(X) = sktg(X), so that

[f(X)]k/sk = [f(X)/s]k = tg(X) e

Therefore f(X)js is a root of Zk - tg(X)e V[[X]] [Z], whereby
f(X)/s is integral over F[[X]]. Also f(X)/s clearly is in the
quotient field of F[[X]]. But F is completely integrally closed,
implying that F[[X]] is completely integrally closed, hence is inte-
grally closed [1; 150]. Thus f(X)/s = h{X)e F[[X]] and f(X) -
sh(X)eM- V[[X]] since seM. Hence l/(M F[[X]]) QM- V[[X]], so
that equality holds.

THEOREM 3.3. Let R be a quasi-local ring having maximal ideal
M and let Q be a prime ideal of R [[X]]. If Q a M R [[X]], then
either Q 3 M[[X]] or Q £ M[[X]\.

Proof. We assume that Q g Λf[[X]] and show that C
Let /(X) = ΣΓ=o/ίX

ίeQ, /(X)e ΛΓ [[X]]. Let t be the smallest
integer k for which /Λ is a unit of i?. Let g(X) = Σto/iX^ if
t > 0; let flr(X) = 0 if ί = 0. Then <?(X) e If B[[X]] £ Q, implying
that /(X) - flr(X) G Q. If f(X) - g(X) has order zero, then g(X) = 0,
so that /0 is a unit of i2, implying that f(X) is a unit of iϋ[[X]],
whence Q - R[[X]] 2 Λf [[X]]. If /(X) - g(X) has positive order n,
then [/(X) - flf(X)]Λ is a unit of Λ and f(X) - g(X) = Xnh(X)
where h0 = [/(X) — g(X)]n is a unit of R, implying that h(X) is a
unit of iί[[X]].
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Since f(X) - g{X) = Xnh{X) e Q and Q is a prime ideal of R[[X]],
either XneQ or h(X)eQ. If XneQ, then XeQ, implying that
Q SM-R[[X]] + (X) 3 M[[X]]. If Λ(JSΓ)eQ, then Q - R[[X]] 2
ikf[[X]]. Hence if Q g M[[X]J, then Q 3 ikf [[X]].

THEOREM 3.4. Let V be a rank one nondiscrete valuation ring
having maximal ideal M.

(a) There is a prime ideal P of V[[X]] satisfying M V[[X]] S

PaM[[X]].
(b) dim V[[X]] ^ 3.

Proof. Theorem 3.2 asserts that

- Λf F[[X]] c

Hence there is a prime ideal P of F[[X]] satisfying P a Λf
P^ikf[[X]]. Theorem 3.3 then asserts that P c M [ [ I ] ] ; hence (a)
holds.

We now have a chain ( 0 ) c P c I [ [ I ] ] c I V[[X]] + (X) of
prime ideals of F[[X]], implying (6).

4* Valuation rings of finite rank*

LEMMA 4.1. Let V be a valuation ring and let P be a proper
prime ideal of V. Then PVP — P; hence P is idempotent if and
only if PVP is idempotent.

The proof of Lemma 4.1 is straightforward and will therefore be
omitted.

LEMMA 4.2. Let V be a volution ring and let P be an idem-
potent proper prime ideal of V. Then P-V[[X]\ = (PVP)

Proof. Let f(X) e (PVP) . VP [[X]] - say f(X) = rh(X) where
rePVP and h(X) e VP[[X]]. Since P = PVP is idempotent, we can
write r = st where s, t e P = PVP; then for ί e α>0, there exists α̂  e V\P
such that aihi e V. Since a{ e V\P and teP, we have that (t) S (α )̂
so that ί/α< e V for each i e ωQ, implying that tht = (ί/α<) ( α ^ ) e F for
each ieω0 — that is, tt(I)eF[[IJ], Since s e P , we conclude that
f(X) = rh(X) = s(th(X))eP- V[[X]], establishing that

(PVP) 7

The reverse containment is obvious.
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THEOREM 4.3. Let V be a valuation ring and let P be a proper
prime ideal of V. If Q is a prime ideal of V[[X]] and if Q 3 P
V[[X]], then either Q a P[[X]] or Q s P[[X]\.

Proof Assuming that Q g P[[X]], we first establish that either
Xeζ> or Q contains h{X), where h(X)eV[[X]] and hQ$P. Let
f(X) ^ΣZofX'eQ, f(X)<£P[[X]]. Let t be the smallest integer
k for which fk$P. If t = 0, then we let h(X) = f(X). If t > 0,
then we let g(X) = Σί=ί /<-**. Then g(X) e P V[[X]] s Q, imply-
ing that / ( X ) - # ( X ) e Q . Further, /(X) - g(X) = X*h(X) where
ho=ftίP. Since Q is prime, either XeQ or h(X)eQ. Hence if
QgP[[-3Γ]], then either I G Q or Q contains /̂ (X) where ^(X) e
V[[X]] and Λo ί P.

If XeQ, then Q 2 P[[I]]; hence we consider the case where
h(X)eQ with ho$P. Observe now that h(X)e VP[[X]] and that hQ

is a unit of VP, implying that 'h(X) is a unit of FP[[X]] — that is
l/h(X)e VP[[X]]. Now let r(X)eP[[X]\; then

r(X)[l/h(X)]eP[[X]] FP[[X]] S P[[X]]

- in particular, r(X)[l/h(X)]e V[[X]]. Since h(X)eQ, we see that
r(X) = h(X)[r(X)/h(X)] e Q. Hence Q a

LEMMA 4.4. Lβ£ F δβ α valuation ring having a minimal prime
ideal P. If P is idempotent, thenP-V[[X\] = V{P F[[X]]).

Proo/. Let f(X) e V{P F[[X]]). Then in

FP[[X]], /(X) 6

by Lemma 4.2. Since F P is a rank one nondiscrete valuation ring,
Theorem 3.2 asserts that V((PVP) FP[[X]]) = (PVP) FP[[X]]. Hence
f(X)e(PVP)-VP[[X]] = P V[[X]], the latter equality following
from Lemma 4.2.

THEOREM 4.5. Let V be a valuation ring and let P be a proper
prime ideal of V. If P is idempotent, then

Proof. We shall say that P is branched provided there exists a
P-primary ideal distinct from P[l ; 173]. We consider two cases.

Case 1. P is branched. Then there is a prime ideal Q of V
with Q c P and such that there are no prime ideals of V properly
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between Q and P [1; 173]. Then P/Q is a minimal prime ideal of
V/Q and P/Q is idempotent. Lemma 4.4 assures that

(P/Q) . (V/Q)[[X]] = V((P/Q)

By considering the natural homomorphism from F[[X]] to (F/Q)[[X]],
we conclude that P F[[X]] = τ/(P V[[X]]).

Case 2. P is not branched. Then P = \Jλ Mλ where {Mλ}XeΛ is
the collection of prime ideals of F properly contained in P[ l ; 173].
Let f(X) e V(P V[[X]]) - say f{Xf e P V[[X]]. Then f(X)k =
rg(X) where g(X) e V[[X]] and reP, implying that r e Mh for some
λx e Λ. Thus f{X)k = rg(X) e Mh[[X]], implying that f(X) e Mh[[X]].
There exists λ2 e A such that Mλl c Mχ2. Let s 6 Mλi, s £ MXι; then
(s) 2 M ; i B Af, so that /(X) = sh(X) where k ( ί ) € F[[X]]. Since
s G M,2, s e P; hence /(X) = sλ(JSΓ) e P

COROLLARY 4.6. Lei V be a valuation ring having a proper
prime ideal P. // P is idempotent, then there is a prime ideal Q of
V[[X]] satisfying P V[[X]] S Q a P[[X]].

Proof Theorem 4.5 assures that

Hence there is a prime ideal Q of F[[X]] satisfying Q 3 P
Q 2 P[[-XΊ] Theorem 4.3 then asserts that QaP[[X]].

THEOREM 4.7. Let V be a valuation ring of rank n having k dis-
tinct idempotent proper prime ideals. Then dim F[[X]] Ξ> n + k + 1.

Proof. We use induction on n, the case n = 1 following from
Theorem 2.7 and Theorem 3.4.

Assuming the result for valuation rings of rank t, let V be a
valuation ring of rank t + 1 having fc distinct idempotent proper
prime ideals and let (0) c Pγ c P2 c c P ί + 1 be the chain of nonunit
prime ideals of V. We consider two cases.

Case 1. Px is not idempotent. Here F/Pj. is a valuation ring of
rank t which has k distinct idempotent proper prime ideals. By the
induction hypothesis, dim (V/P,) [[X]] ^t + k + 1. Since (V/P,) [[X]] ~
F[[X]]/PJ[X]], this implies that the depth of P, [[X]] is at least
t + k + 1. Since PJ[X]] Φ (0), dim V[[X]] ^ t + k + 2.

Case 2. Pi is idempotent. Here F/Pj. is a valuation ring of rank
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t which has k — 1 distinct idempotent proper prime ideals. By the
induction hypothesis, dim (V/PJ [[X]] ^t + (k — 1) + 1 = t + k; hence
the depth of PJ[X]] is at least t + k. Since Pι is idempotent,
Corollary 4.6 asserts that there is a prime ideal Q of F[[X]] satisfy-
ing P, V[[X]] S Q c Pι[[X]] - in particular, ( O ) c Q c PJ[X]] . Since
the depth of PJ[X]] is at least t + k, we see that dim V[[X]] ^
t + k + 2.

LEMMA 4.8. Lei V be valuation ring and let P be a proper
prime ideal of V.

(a) If Q' is a prime ideal of VP[[X]] which satisfies (PVP) as
VP[[X]]SQ'a(PVP)[[X]], then Q' is a prime ideal of V[[X]]
which satisfies P V[[X]] S Q'cP[[-X]].

(b) Conversely, if Q is a prime ideal of V[[X]] which satisfies
P V[[X]] g Q c P P l ] , then Q is a prime ideal of VP[[X]] ivhich
satisfies (PVP) VP[[X]\ SQa(PVP)[[X]].

Proof. To establish (a), we observe that Qf C (PVP) [[X]] =

P[[X]] S V[[X]], whereby Q' n V[[X]] = Q'.

We now establish (b); we begin by proving that Q is an ideal of
FP[[X]]. Let /(X)eQand g(X) e VP[[X]]; we show that f(X) as
flr(X) G Q. Choose A(-Y) e P[[X\], h{X) g Q. For each i, i € ω0> gt e VP

and Λ,. G P, implying that f̂cy e PVP = P. Hence g(X)h(X) eP[[X]]Q
V[[X]]> implying that f(X) [g(X)h(X)\ e Q. Since f(X) e Q S P[[JSΓ]]f

each / < e P ; hence f(X)g(X) e P[[X]] Q V[[X]]. Since [/(IMI)]
M X ) G Q where f(X)g(X)e V[[X]]> h(X)e V[[X]], and MX)gQ, we
conclude that f(X)g(X)eQ. Hence Q is an ideal of FP[[X]].

We now prove that Q is a prime ideal of FP[[X]]. Let S =
V[[X]]\Q; then S is a multiplicative system in F[[-3Γ]], hence also
in FP[[X]], and S clearly does not meet the ideal Q of VP[[X]]. Hence
there is a prime ideal Q* of FP[[X]] which satisfies Q £ Q * , Q * i i S = 0 .
Since Q g ^ , Q g Q * f l V[[X]]; since Q * . n S = 0 , Q* Π F[[X]] S Q.
Thus Q* n F[[X]] = Q. Observe now that Q* 3 Q a P H O T =
(PF P ) FP[[X]]. By Theorem 4.3, Q* compares with (PVP)[[X]] =
P[[X]]. Since Q* lies over Q we must have that Q* c P[[X]] S ^ [ [ ^ ] ] .
implying that Q* = Q. Hence Q is a prime ideal of FP[[X]].

That (PVP) VP[[X]] S Q c (PF P ) [[X]] is clear.

THEOREM 4.9. ΓAβ following conditions are equivalent:
(a) / / V is a rank one nondiscrete valuation ring, then V[[X\]

has finite dimension.
(b) If V is a valuation ring having finite rank n, then V[[X}]

has finite dimension.
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Proof. It is clear that (b) —> (a). We prove that (a) —> (b) using
induction on n, the case n — 1 being a consequence of (a) and
Theorem 2.7.

We now assume that if W is a valuation ring of rank k, then
T7[[X]] has finite dimension. Let V be a valuation ring of rank
k + 1 which has minimal prime P lβ Let (0) c QL c Q2 c c Qt be a
chain of prime ideals of F[[X]]. Let d = dim FPl[[X]]. Corollary 2.3
assures that there are at most d proper prime ideals in this chain
which contract to (0) in F. Choose m so that QmC) V = (0) and
Qm+1 n V Φ (0); then m ^ d. For r ^ m + 1, QrΠ V^P,; Theorem
4.3 assures that for r ^ m + 1, (?r compares with PJ[X]]. Lemma
4.8 assures that at most d of the ideals Qm+1, Qm+2, > Qt are con-
tained in PJ[X]], whereby Qm+d+1 D PJ[X]]. Since m ̂  d, we have
that Q 2 , + 1 3 Q m + , + 1 D P J [ I ] ] .

By the induction hypothesis, (F/PJQX]] has finite dimension. The
depth of PJ[X]] is at most (dim (F/PJffX]] - 1). It follows that the
depth of Q2d+1 is at most (dim(V/P1)[[-X']] - 1), whereby

l) + (dim (V/Pdl[X]] - 1) = 2d + dim

We conclude that dim F[[X]] ^ 2d + dim (F/PJIfX]], whereby F[[X]]
has finite dimension.

THEOREM 4.10. The following conditions are equivalent:
(a) If V is a rank one nondiscrete valuation ring, then the

ascending chain condition for prime ideals holds in V[[X]],
(b) If V is a valuation ring having finite rank n, then the

ascending chain condition for prime ideals holds in V[[X]].

The proof of Theorem 4.10 is analogous to the proof of Theorem
4.9 and will therefore be omitted.

Added in proof Jimmy T. Arnold has recently conveyed to me
a paper of his, On Krull Dimension in Power Series Rings, in which
he has established the following result.

Let R be a commutative ring with identity. If there exists a
prime ideal P of R such that V(P-R[[X]]) Φ P[[X]], then R[[X]]
has infinite dimension.

It follows immediately that if F is a valuation ring which is not
discrete, then F[[X]] has infinite dimension.
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