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THE LEBESGUE DECOMPOSITION, RADON-NIKODYM
DERIVATIVE, CONDITIONAL EXPECTATION, AND

MARTINGALE CONVERGENCE FOR
LATTICES OF SETS

RICHARD B. DARST

In the setting of additive set functions deίined on lattices
of sets, a Lebesguβ decomposition and a Radon-Nikodym de-
rivative are constructed and characterized. In the appropriate
case (L2), the Radon-Nikodym derivative is shown to be the
conditional expectation. Finally, a martingale convergence
theorem for Radon-Nikodym derivatives is obtained.

The origin of this paper was an interesting colloquium lecture
given by H. D. Brunk at the University of California, Riverside, in
December, 1968. Brunk's lecture dealt with a Radon-Nikodym de-
rivative for σ-additive set functions defined on a σ-lattice of sets and
applications of this Radon-Nikodym derivative to probability. An
excellent interpretation of the role of (J-lattices in probability theory
can be found in the papers of H. D. Brunk (c.f. [1], where additional
references can be found). The purpose of this paper is to extend the
underlying mathematical theory to encompass the case of additive set
functions defined on lattices of sets.

Perhaps we should remind the reader that both the closed subsets
of a metric space, M, and the open subsets of M comprise lattices of
subsets of M, so many familiar families of functions are instances of
the setting with which this paper deals. For example, the bounded
upper semi-continuous functions on the interval I = [0, 1] are the
uniform limits of simple (see paragraph two of § 3) functions which
are measurable with respect to the lattice of closed subsets of I. If
M is a Borel subset of a separable complete metric space, then the
analytic subsets of M comprise an important sigma lattice of subsets
of M.

Let 21 be an algebra of subsets of a nonempty set Ω (i.e., Ωe%
and if each of E and F is an element of SI, then each of E Π F and
Ec = Ω - E is an element of SI).

Let ^ Γ be a lattice of subsets of 21 (i.e., ^f is a subset of 21
such that ^ contains each of the empty set φ and Ω and, moreover,
E, Fe^/S imply E U F, ED Fe Λί).

Let ^~ = {4fl Bc; A, B e ^ f } , and denote by Ssf the set of finite
disjoint unions of elements of ^ 7

Let us examine Szf more closely. A finite intersection of ele-
ments of J ^ is an element of j^f. Moreover, if E{ = A{ Π B\ where
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At and 5< e ̂ T, then El = A\ U (A< Π B
t
) e Sf\ thus,

E
c
 = (U ;#*)' = Π #/ e

and J ^ is closed under complementation. Therefore, J ^ is the al-
gebra of subsets of Ω that is generated by ^ .

Notice that if each of E and F is an element of SI (or Jzf), then
E U Fe SI (or Jϊf); and if each of E and F is an element of ^ then

Let each of λ and μ be a nonnegative additive set function de-
fined on ^ Γ

It seems appropriate to consider briefly the implications of the
assumption that, say, λ be additive on ^ 7 If each of A and 5 is
an element of <^£, then

λ ( i uS) - λ(A) + λ(̂ Lc n B),

(a) X(A U B) + \(A ΠB) = λ(A) + λ(J?), and
(b) λ(0) - 0.

Results of B. J. Pettis [6] assert that a real valued function, λ,
defined on a lattice, ^ff has an additive extension to the algebra,
S^fy generated by ^€ if, and only if, λ satisfies (a) for all A, B e ^
and (b). Moreover, the following elementary example illustrates the
fact that the conditions

(a') X(A U B) - X(A) + λ(JB), 4 , ΰ e ^ f , i n 5 = 0, and
(b) λ(0) - 0

do not imply (a).
Example. Ω = {1, 2, 3},

^f = {0,{1}, {1, 2}, {1, 3}, £},
λ(0) = λ({l}) - 0,
λ({l, 2}) - λ({l, 3}) = 1, and
λ(β) = 3.

Recall that the norm, \\φ\\, of a bounded, real valued, additive
set function, φ, defined on an algebra, say, Ssf of subsets of Ω
satisfies

= sup φ{E) - inf φ{F)

= sup ( Σ 1^(^)1; {Ei}U a partition of ί2,
= i

Moreover, φ ^ 0 <=> φ(A) ^ <P(B), Ad B. A definition of the integral
of a simple function can be gleaned from (13).

The primary purposes of this paper are fourfold. In § 2, we will
decompose λ into a part s which is singular with respect to μ and a
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part t which is absolutely continuous with respect to μ. Section 3
is devoted to constructing and characterizing the Radon-Nikodym
derivative F — {fn} of λ with respect to μ. In § 4, it is shown that
if λ is the restriction to ^ of an element of L2(Ω, 21, μ), then F is
the conditional expectation of λ. Finally, in § 5 we shall establish an
appropriate martingale convergence theorem.

2* The Lebesgue decomposition for lattices of sets* Let us
begin this section by reviewing a few points concerning Lebesgue-
Radon-Nikodym theorems.

When it is appropriate to apply a Lebesgue decomposition theorem
to an object u with respect to an object v, u is split, uniquely, into
an absolutely continuous part ua and a singular part us. The parts ua

and us exhibit antipodal behavior with respect to v; qualitatively, the
local behavior of ua depends on the local behavior of v while us acts
separately from v. Then one seeks a Radon-Nikodym theorem which
applies to ua: one seeks to represent ua in terms of v. A Lebesgue-
Radon-Nikodym theorem asserts not only that u splits but also that
ua can be represented in an appropriate fashion.

In [4] S. Johansen gives a definition and construction of a Radon-
Nikodym derivative of a σ-additive set function with respect to a
finite σ-additive measure on a σ-lattice.

Johansen's results are based on the fact that the Hahn decom-
position remains valid in his setting. However, in the case of alge-
bras of sets it is possible to have a bounded and finitely additive set
function on a σ-algebra for which no Hahn decomposition exists, and
it is possible to have a bounded <7-additive set function on an algebra
of sets for which no Hahn decomposition exists. Nevertheless, in
dealing with additive set functions on algebras of sets, approxima-
tions to Hahn decompositions (ε-decompositions) exist and can be used
to obtain a Lebesgue-Radon-Nikodym theorem (cf. [2]).

In this section we shall show that the ε-decomposition approach
used in [2] carries over to lattices of sets and permits us to obtain
a Lebesgue decomposition. However, in § 3, by a simple example,
we illustrate the fact that it is impossible to establish a general
Radon-Nikodym theorem for lattices of sets. Our example shows that
even in the tf-additive, σ-algebra setting of Johansen's paper the
Radon-Nikodym derivative may not represent the absolutely continu-
ous part of λ. Nevertheless, in § 3 we shall refine the elementary
construction of this section and obtain a Radon-Nikodym derivative
for lattices of sets. In § 4 we show that the Radon-Nikodym deriva-
tive of λ represents the best L2 approximation to λ by ^f -measurable
functions.

Definition (ε-decomposition). Suppose that v is a finitely additive
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set function on j ^ * which is bounded above. Let ε > 0. Let Ke
^ 7 Let A e ^£ such that v{A (\K)> sup^e^ v(E Π K) - ε. Then
for each Be^f, v{K f] An Bc) = v{K n A) - v{K Π A Π B) > - ε and
v(KΠ Acf]B) = v(KΠ [A U B]) - v(KΓ\ A) < ε. We shall call Kf] A
an ε-positive set for v in K, K Π Ac an ε-negative set for v in if, and
(if Π A, K Π Ac) an ε-decomposition for v in iΓ.

In order to obtain a Lebesgue decomposition of λ with respect
to μ by splitting off the singular part of λ, we introduce the follow-
ing simple construction.

For each positive integer n, let εn — (64)~(w+1) and let ([n], [n]c)
be an ε^-decomposition for λ — nμ in Ω.

Let sn be the restriction of λ to [n] (i.e., sΛ(2£) = λ(£TΊ [n])f

We shall establish two lemmas to show that {sn} is a Cauchy
sequence and, hence, {sj converges to a nonnegative bounded additive
function s = λs on ^ Γ The restrictions ίΛ = λ — sw then converge to
a nonnegative bounded additive function t = λα; s and £ will be shown
to comprise that Lebesgue decomposition of λ with respect to μ.

LEMMA 1. Let m > n, let M denote [m] and let N denote [n].
Then X(Mf] Nc)->0.

Proof. From the construction and the definitions follow

(λ - mμ)(Mf] Nc) > - ε m and (λ - nμ)(Mf] Nc) < εn .

Hence

mμ(M Π Ne) - εm < X(M Π Nc) < w^(M Π iVc) + εn ,

which implies

μ(MΠ Nc) < (εw + εn)/(m - n) ^ εw + ε, ,

and, in turn,

ΓC) < ^(εm + en) + εn = nεm + (n + l)en .

Next, we will use Lemma 1 and the following pertinent remarks
to show that λ(Mc Π N) -> 0.

Because λ is nonnegative and additive, it follows that

λ(G Π fl") ̂  λ(ίΓ)

if G and ίfe.JC
If {ίΓί} is a sequence of elements of ^£ and p is a positive inte-

ger, then
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κp = (κpn κ;_,) u ( κ p n κp_,n κ;_2) u u ί f i κλv\ K'λ u T, ,
\Lp^i>l J /

where

T, = Π K< .

Moreover,

κ;+ι nκp= (κ;+ι n [Kp n κu\) u
(ίΓί+1 n ifp-! n [κv n ίr;_2]) u u (κ;+1 n τ p ) ,

and

κ;+1 n τ p - (ίrp f l n τ,)c n τ , = τ;+ 1 n τp.

LEMMA 2. λ(Mc n N) -> 0.

Proof. Suppose, on the contrary, that there exists ε > 0 and an
increasing sequence {%} of positive integers such that 5π1εni < ε and
X(Kΰ

2i Π K2i^) ^ ε, where Kd = [%]. Then

n τp) - x(κ;+1 n ί:p) ~ \(κ;+1 n [£ΓP n UΓ - J )

;+ 1 n Xp) - Σ MX* n x/)

> λ(iΓ^+1 n X,) - ε/2 .

Moreover, for each positive integer p,

Hence, choosing fc large and 2k ^ p + 1, the following contradiction
is obtained, and Lemma 2 is thereby established.

I,) - e/2)

> sup X(E) .

From λ(Jlίn Nc) -> 0, λ(ilίc niV)->0, and the monotonicity of λ,
it follows that {sn} converges uniformly in n on ^ to a function s
on j^~ such that

(1) s is a nonnegative additive function on J^~,
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(2) if δ > 0, then there exists Ee^f such that μ{E) < δ and
s(Ω - E) = s(#c) - 8vpFeJr s(Ec n F) < δ. Moreover, tn = λ - sn con-
verges uniformly to a function t on t - ^ such that

(3) t is a nonnegative additive set function on ^
( 4 ) λ = s + t
(5) if ε > 0, then there exists δ > 0 such that if Ee^ and

< S, then ί(#) < ε.

Proof of (5). Choose n such that sup^e^- |(ί — tn)(E)\ < e/4 and
εn < ε/4. Then choose δ = e/2rc. If Ee^f and μ(i7) < δ, then

< ε/4 + ^(£7) - ε/4 + X(E Π [n]c) < ε/4 + nμ(E f] [n]c)

+ εn < ε/2 + WJM(J&) < ε .

Now that we have established the existence of a Lebesgue de-
composition, it remains to establish uniqueness.

Proof of uniqueness. Suppose that y and z are bounded, additive
functions on j^~ such that

( i ) λ = y + z,
(ii) if δ > 0, then there exists Eζ^fέ such that μ(2£) < δ and

r |2/CEβΠB)| <<5, and
(iii) if ε > 0, then there exists δ > 0 such that if Ez^J? and

< S, then |z(S)| < ε.
Look at s — y = z — t. Let ε > 0. Let δ be a positive number

less than ε such that if E e ^ and μ(E) < 2δ then ί(JS7) < ε and
\z(E) I < ε. Let E and F e ^f such that //(J&) < δ, s(Ec) < δ, ^(ί7) <
δ, and sup^e^ |τ/(i^c Π B)\ <δ. Let K = E U F. Then μ(iθ < 2δ,
s(Kc) < δ, and

sup \y(Kc f]B)\ = supτ/(Fc Π Ec Π B) ^ sup |̂ /(i^c Π A)| < δ .

Let Ae^f. Then

- y)(A)\ = |(8 - i/)(A Π iίc) + (z - ί)(A Π JBΓ)|
^ s(A ΓΊ iΓc) + \y(A Π i^c)I + \z(A f)K)\ + t(Af] K)
< 4 ε .

Recall that if ω is an additive function on ^ then A, Be ^J? imply
ω(A Π Bc) - ω(A) - ω(A Π B) and, hence,

sup|α>(C)| ^ 2sup|ω(C)| .

Thus, sup<?6Ĵ  \(s — 2/)(C) I ̂  8ε which implies that s — y and t = z.

3. The Radon-Nikodym derivative* In this section, we shall
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construct a Radon-Nikodym derivative of λ with respect to μ. In
order to describe what we shall construct, it is necessary to introduce
the following notation.

A (real valued) function / on Ω is said to be ^Γ-measurable if
(/ > r) — {x;f(x) > r}e ^/f whenever reR, the set of real numbers.
If / is a ^f-measurable function on Ω and the range of / is a finite
subset of R, then / is said to be a simple .^-measurable function.

Suppose that S^ is an algebra of subsets of Ω, and that p is a non-
negative additive set function on S^. Let LP(Ω, S^, p), p ̂  1, denote
the space of functions / on Ω such that if ε > 0, then there exists an
^-measurable function g and an ^-measurable function h such that

( i ) \\g\pdp<°o,

( ϋ ) \f- g\ ύh, and

(iii)

The spaces LP(Ω, S^, p) are not, in general, complete unless £f is a
σ-algebra of subsets of Ω and p is countably additive on £f. The
completions VP(Ω, 6^, p) of LP{Ω, S^, p) are spaces of additive set func-
tions on £f. These additive set functions can be identified with sequ-
ences {gn} of simple ^-measurable functions such that

( i ) \\ΰn\pdμ < oo and

(ϋ) \\9m - 9n\
pdμ-+0 ,

and we shall often identify the elements of the "l̂ -spaces that we
will encounter with appropriate Cauchy sequences of simple functions.
Primary sources of information about such Lp and Vp spaces are [3],
[41, and [7].

If ^ were an algebra of subsets of Ω, then it would follow
from [2] that there would exist a sequence {/J of simple ^^-measura-
ble functions such that

\\t- [fndμl
II J ll

The following example shows that even if ^€ is a σ-lattice of sub-
sets of Ω and each of λ and μ is σ-additive on ̂ ~, then it may not
be possible to uniformly approximate t by integrals of simple ^€-
measurable functions.

EXAMPLE. Let Φ be the union of two one element sets a and 6.
Let ^/S be comprised of <p, a, and Ω. Then ^ c = {<p, 6, Ω) and
j?r — {φy aj j), Ω). Let λ and μ be defined on ̂  by \{φ) — μ(φ) = 0,
λ(α) = 2, λ(6) = 4, X(Ω) = 6, μ{a) = ̂ (6) = 1, μ{Ω) - 2. A function /
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on Ω is .^-measurable if, and only if, f(a) ^/(δ) . Hence if / is a
function on Ω, and F is defined on ^ by

F(E) =\ fdμ,

then F(ά) Ξ> Fφ). Thus, λ cannot be uniformly approximated by in-
tegrating ^'-measurable functions with respect to μ. But, λ is
absolutely continuous with respect to μ.

The Radon-Nikodym derivative of λ with respect to μ will be a
LrCauchy sequence {/J of simple .^-measurable functions with pro-
perties that will be discussed. The Radon-Nikodym derivative F =
{fn} of λ is then absolutely continuous with respect to μ, and it is
reasonable to ask whether F is the Radon-Nikodym derivative of the
absolutely continuous part t of X. The answer to this latter question
is yes (see (14) and the definition of ί).

The construction of the sequence {/J is fairly straightforward;
but, a direct proof that it is a Cauchy sequence appears to involve
a dreadful computation which we shall avoid by complicated but
conceptually reasonable means.

To simplify the notation, we often denote (x/y)μ by x/yμ when
each of x and y is a real number. For example, nμ = n2n/2nμ.

CONSTRUCTION. Let n be a positive integer. We wish to refine
the construction that we used to establish a Lebesgue decomposition.
Recall that en = (64)~(w+1) and that Nn2n = N = [n] is an expositive set
for (λ - nμ) = (λ - n2n/2nμ) in Ω. For n2n > ί ^ 1, let N ^ ^ such
that Nif] (n»2»ai>« -Ni) is an expositive set for (λ - i/2nμ) in n*2»fc/>i N%
Notice that we can assume that

φ = Nn2n+1 c Nnzn c czNi c c JVΊ C NO = Ω

let us call such a sequence an επ-decomposition sequence for n.

It will greatly simplify the typography to introduce the follow-
ing notation.

(6) Let L, - Nc

i+ί Π Ni.

The following are immediate consequences of the construction.

( 7) (λ - i/2*μ)(Li Π Bc) > -en , Be ^f,

( 8) — e» + iβnμ{Li Π Bc) < λ(L4 Π Bc) , Be ^ ^ ,

( 9 ) (λ - il2nμ){N? f)A)<εn, Ae.

(10) λ(JV/ Π A) < i/2nμ(N? n A) + e, , A e ,
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The following consequence of (9) will be applied several times in
the paper; since (λ - i/2nμ)(Nf+1 n [N{ Π A)) = (λ - i/2Tμ)(Li Π A),

(11) (λ - i/2?μ)(Lt Π A ) < 2-^(Li n A) + e, .

Let /„ be the simple ^'-measurable function defined by

(12) / . = 2-" Σ Lvf = Σ */2-χi4, where α, = «2B .

Let JPΛ be the nonnegative additive function defined by

Fn(E) = \ fjμ
JE

(13) = Σ il&μiLiΓiE)

= 2 - Σ j"(tf* n .£/).

Recall that (λ - nμ){NΠ Ac) > - e n , 4 e X and that

(λ - m//)(Λf Π Ac) > - ε m ,

Hence nμ(N 0 Mc) < λ(iV Γ) Mc) + εΛ. Moreover, mμ(M) < X(M) + εm

which implies that nμ(M) < n/m(X(M) + εm). Thus,

- n(μ(Nf] Mc) + ̂ (iVΠ Λf))

< X(Nf] M°) + εn + n/m(X(Ω) + 1) .

Hence, choosing m to be large and applying Lemma 2, we obtain

(14) nμ{N) -> 0 .

Recall that tn{E) = \(E Π Nc) - Σ o ^ ^ α . λ ^ Π E); hence

(15) tn(E)-Fn(E)= Σ (X-il2rμ)(LiΓlE)-nμ(NΓίE).

Then (7) implies

(16) tn(Bc) - ^ ( B c ) > - anen - nμ(N n E) ,

Moreover, applying (11) to (15) yields

(17) tn(A) - Fn{A) < anεn + 2~nμ(Nc Π A) ,

We wish to show that i ^ converges uniformly to a nonnegative
additive function F on ^ 7 We know from (14), (16), and (17) that
Fn converges to t uniformly on ^// Π ~ ^ c . Hence if ^ f were an
algebra of subsets of Ω, then it would follow that Fn—>t on ̂ € —
J^. In general, we know that Fn need not converge to t. We shall
establish the uniform convergence of Fn on ̂ ~ by showing that Fn

is almost increasing on ^ 7 (What we mean by the term "almost
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increasing" will become clear in due course.)
Let m > n, and let φ — Majrι+1 c M = Mam c c Mι c Mo = ί2 be

an εm-decomposition sequence for m.
Since JV< = Uίsw*αΛ £y> it follows from (8) that for A e ^f,

-α w ε Λ + i/2^(JSTi n Ac) = -anεn + Σ i/27<£/ Π Ac)

£ -anen+ Σ i/27f(Ly Π A')<

< Σ λ(Ly n AC) .

Hence,

(18) i/2nμ(Ni Π Ac) < αnen + X(iV, Π Ac) , A e

If Ac = M;, then (10) implies that λ ^ Π Mf) < εm + j/2mμ{Ni Π
Thus,

(19) (ΐ/2* - jβ^μiN, Π ilfJ) < αwεw + εm .

Let p = 2m~%, and let Ks = Mjp, j = 1, , m2w. Then (see (13))

- 2 - Σ J"(ΛΓ* Π ^ ) = 2r^[(μ{M1 Π ί?) + + M ^ P Π

n )) ]

1 n J&) + M#2 n E7) + + μ{κm2n n E)\

(recall that J ^ D ^ D •••)•
In (19), let j = (i - l)p. Then (i/2n - j/2m)) = 2~%, and (19) be-

comes

(20) μiN, n XΪLJ < 2 (αnen + εm) .

From (13) it follows that

Fn(E) = 2 - Σ i " W Π # )

n i r^ n E) + ^(ΛΓ, n JS:^ n E)\

t n z"/^ n E) + 2-%
 Σ M ^ - I n E).

Hence using (20) and the paragraph between (19) and (20), we obtain

Fn(E) <δn + Fm(E), where

δn = 2~nan2
n(anen + ε J - αw(α.ε + e J .

Moreover, an inspection of the argument which produced (21) shows
that (21) is valid if {E%) is a finite collection of pairwise disjoint
elements of J ^ E = \JiEif and Fn(£r) is defined to be Σ i ^ ( ^ i )

Inequality (21) says that Fn is almost increasing. Since the Fn's
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are nonnegative and lim mpnFn(E) ^ \\mnFn(Ω) — t(Ω), the JFVS are
uniformly bounded. Hence F(E) = limw FJJE) exists for each finite
union E of pairwise disjoint elements of ^ Γ

We have extended the JFVS to the set j y of finite disjoint
unions of elements of j^~. Recall that J ^ is the algebra of subjects
of Ω which is generated by ^f or ^ , and a nonnegative additive
function on j^~ has a unique additive extension to Szf. Moreover,
we have shown that the extensions converge (almost increasingly)
pointwise on Szf to a nonnegative additive function F.

Because the Fn's are almost increasing to F on jzf and s^ is
an algebra of subsets of Ω, it is easy to see that the Fn's coverge
uniformly to F on s*f. But, ^~ c Sϊf, and the sequence {Fn} con-
verges to F in Li-norm.

In summary, the sequence {/J is a Cauchy sequence in L^Ω, jy, μ)
and the integrals Fn of fn converge to F uniformly.

By the Radon-Nikodym derivative of λ with respect to μ, we
shall mean the object {/J = F.

We shall conclude this section with a characterization of the
Radon-Nikodym {/J that is analogous to that given by S. Johansen
([4, Th. 4]) in the case where ^f is a σ-lattice in 2t and each of λ
and μ is countably additive on <JC From (10):

X(Nΐ Π B) < i/2nμ(Ni π B) + en , ΰ e

and (18):

λ(Ac n Nd > iβnμ(Ac n iSΓi) - anen , A e

we obtain the following proposition which will be shown to charac-
terize the Radon-Nikodym derivative.

Let M > 0 and ε > 0. Then there exists a posi-
(22) tive integer k such that if n > k, a, h e R, b < M,

and A, ΰ e ^ ^ , then

( i ) λ([Λ ̂  6] n A)< bμ([fn ^ b] Π A) + ε, and
(ii) λ(Bc n [Λ > a]) > aμ{Bc n [Λ > α]) - e.

THEOREM (characterization of the Radon-Nikodym derivative).
Suppose that {gn} is a sequence of simple ^-measurable functions

such that {gn} is an L^Cauchy sequence [i.e., \ \gm — gn\dμ—>θ). If
\ JΩ J

{gn} can play the role of {fn} in (22), then {gn} = {/J.

Proof. Suppose that {gn} can play the role of {fn} in (22). Let
δ > 0. Let ε be a positive number less than one; ε will be specified
later. Notice that for sufficiently large n, (22-(ii)) implies the in-
equality μ([fn > a]) < (ε + X(Ω))/a for fn and the analogous inequality
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for gn. Suppose that a = (ί + 1)3 and b = iδ. Then for sufficiently
large n, aμ([fn ^ b] Π [gn > a]) - ε < bμ([fn ̂  b] Π [g* > α]) + ε or
μdfn ^ 6] Π [flr, > α]) < 2ε/d; symmetrically, μ([gn Sb]Γ) [fn> a]) < 2ε/δ.
Choose a positive integer m such that (1 + \{Ω))jmδ < δ/2. Then, using
consecutive terms of the sequence 0 < δ < 2δ < < mδ for δ and α,
we obtain μ([\fn - gn\>2δ) <(1 + X(Ω))/mδ + 2m(2ε/δ) which can be
made < δ by choosing e to be sufficiently small. Hence the sequence
{/» — #J converges to zero in ^-measure. However, the sequence
{fn — 9»} ί s an element of V^Ω, Szf, μ) and, hence, the integrals

define a weakly convergent sequence of bounded and finitely additive
set functions on jzf. It then follows from the proof of Theorem 2.1

in [2] that ί \fn - gn\dμ-+0 and, hence, {/J = {gn}.

4. Conditional expectation* Suppose that μ is a nonnegative
additive set function on St and that we have been looking at its re-
strictions to ^€, J^, and Ssf.

We have already remarked that the completions Vp of Lp =
LP(Ω, St, ̂ ) are spaces of additive set functions on SI and that the
Radon-Nikodym derivative F = {fn} of λ with respect to μ is an ele-
ment of V^Ω, Sϊf, μ) which extends to Vλ.

Notice that since μ(Ω) < oo, VzCiV,.

Suppose that λ is the restriction to ^~ of an element H = {Λw}

of V2 (i.e., JEf(-E7) = lim I hndμ). Then the following theorem pro-

vides a rather satisfying extension of results of H. D. Brunk and
others (cf. [1], [4], the references in [1] and [4], •••)• Among other
things, our theorem characterizes F as the best F2 approximation to
H that can be obtained via a L-Cauchy sequence of simple
measurable functions.

THEOREM.

( i ) FeV2,

(ii) [HKdμ ^ [FK dμf K = {Km} ^-measurable, Ke V2,

(iii) [HKdμ ^ \FKdμ, K= {km} ̂ jfc'-measurable, Ke Vt,

(iv) \HFdμ= \F2dμ,

(v) f(JET — Ffdμ ^ \(H - Kfdμ, K - {km} ^f-measurable, Ke

V2.
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Moreover, the conditions of the theorem characterize F among the
L2-Cauchy sequences of simple ^'-measurable functions.

Proof of ( i ). In order to establish (i), it suffices to show that

|

because then there exists G e V2(Ω, Ssf, μ) such that G — {fn} and

WF-Gll^ \\F-Fn\\1 + H i ^ - G I I ^ \\F

We can assume, without loss of generality, that μ(Ω) = 1. We shall
first show that {/„} is bounded in L2. To this end, let p e Vι be de-
fined by

ρ(E) = lim [ hldμ ,
n JE

and let {un} be the Radon-Nikodym derivative of p with respect to μ
as constructed in § 3.

For the sequence {/J, (22) can be refined to read

(23) ( ί } Mlfn ~ b] ° A ) < {b + 2~n)μ{lfn ~ b] Π A) + ε"'
( i i ) λ([/ n > a] Π Bc) > (a - 2-")μ([fn > a] f] Bc) - anεn ,

Moreover, the inequalities in (23) also hold for {un} with respect to
p. These versions of (23) will be utilized in our proof that {fn} is
bounded in L2.

Let α2 > 6, let A = {fl > α2), and let Bc = (un ^ b). From (23)
and Holder's inequality we obtain for C = An Bc = (/% > a2 > b Ξ> %J
the following chain:

[(α - 2-)μ(C) - ^Λ] 2 <

< [φ + 2-MO +

Rearranging the first and last terms of the chain leads to

[(a - 2-γ - (b + 2-)][μ(C)]2 < [2αwεn(α - 2-) + εJ^(C) + {anεnf .

But, A = φ iί a2 ^ n2; and if α2 < ^2, then

α2 - 2α2~w + 4~n - b - 2~n > a2 - b - (2n + l)2- w

and (a2 - b)[μ{C)}2 < ξn where
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ξn < (2anεnn + εn)μ{Ω) + (anεnf + (2n + l)2-n[μ(Ω)]2 .

Then, since (Λ2 > un + 2) c Uo**<n* (Λ2 > A; + 1 ^ & ̂  O ,

J"([Λ >u% + 2]) < ^(f.) 1 ' 1

and, hence,

j fldμ £ j undμ + 2 + ^4(f J1 '2 ^ P ,

where P is independent of n. Therefore, {/„} is bounded in L2.
Perhaps we should digress briefly and comment on the last term,

(2n + l)2~n[μ(Ω)]2, of the inequality that determines ξn. Firstly, 2n + 1
comes from ||Λ||oo, 2~n comes from the mesh of fn, and μ(Ω) was
taken to be one so this component appears only for emphasis; and
secondly, the term %4(f J 1 / 2 appears in bounding the fn's in L2. This
is the only argument in which the ratio of H/JU to the mesh of fn

has to be controlled: all the other arguments can be pushed through
by adjusting εn.

We know that {fn} converges in Lγ, and we have just shown that
{fn} is bounded in L2. Hence {/J converges weakly in V2(Ω, j&, μ):
Suppose that G e V2(Ω, j ^ y μ) and ε > 0. Then there exists a simple

.^-measurable function k = Σi^ΛZ^y such that if K — \fc, then \\G —

K\\2 < e and

|(G, Fm -Fn)\^ \(G -K,Fm- Fn)\ 4- \(K, Fm - Fn)\

<Z \\G - (fm-fn)dμ

Denote the weak limit of {/J in V2(Ω, j y , μ) by G.
We know that \\G\\2 ^ lim inf% | |/w | | 2 . Suppose for the moment

that | | / J | 2 - + | | G | | 2 (i.e., | |G ||2 ^ I i m s u p j | / J | 2 ) . Then

||G - Fn\\t =(G-Fn,G- Fn) = (G, G) - 2(G, Fn) + (Fn, Fn) -> 0

(i.e., {/J converges to G in V2(Ω, j y , μ)) and, as we remarked before,
G = F. Hence in order to complete a proof of (i), it suffices to show
below that | |G | | 2 ^ I i m s u p j | / J | 2 .

Because {/J is almost increasing, using (20), we have

μ([fn >fm + 2-2-1) ^ Σ μ{\fn > ( i + l)/2* > i/2 ^

- Σ ^W+2 n Kϊ+ί)

Hence,
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fldμ < ( (fm + 2-{n-1])2dμ + n2ηn

7 JE

< \ fldμ + 2-ί fmdμ + Ar^μiE) + nίrln ,
JE JE

and {fl} is almost increasing. Thus, | | F n | | 2 is almost increasing.
Moreover, it follows from S. Leader's work ([5]) that

(G, Fn) = Σ G(L*)F (L*> = Σ i/2?G(L{)

= lim Σ iβ"Fm(Li)(Fm -=» G)

^ lim Σ i/2n(Fn(Li) - δn) (see (21))

= Σ ί/2M( /»di« - an(an
ί J

fldμ - n22nδn .

Hence, \\Fn\\2

2 - n22nδn ^ | | F . | | 2 | | G | | 2 and, finally, lim | | F n | | 2 = | | G | | 2 .

Proof of (ii). Firstly, notice t h a t

HKdμ = lim \Hkmdμ = lim \kmdX

m J m j

and that

[FKdμ = lim ί^ m ^ = lim (lim \kmfndμ) .
J m j m \ n J J

But, fixing m, km = Σίsβm hχBj, h > 0, 5, e ̂ € Hence

and

Thus,

- Σ h Σ (λ - i/2ni")(i< Π 5,)

^ Σ h Σ [2-Aί(iί n 5,) + eH] (see (11))

- Σy 6i[2-ju(J3y) + αnεn] - O a s ^ - o o ,

which implies that
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kmd\ ^ lim

Hence (ii) is established.

Because the proof of (iii) is analogous to that of (ii) we will
omit the details.

Proof of (iv). It follows from (ii) that

[HFdμ £ \F2dμ

so it will suffice to show that

[HFdμ = lim [fnd\ ^ lim [fndμ =

But,

and

\fldμ= Σ (i/2 )(i/

Hence

\fndX - \fidμ = Σ (*/2*)[

>nan(-εn)~>0 (see (7)).

Proof of (v).

\(H - Kfdμ =\(H- Ffdμ + \(F - Kfdμ
(24) J J

and

\{H - F)(F - K)dμ =

- hlKdμ + [FKdμ ^ 0 .

Moreover, (24) also shows that if K can play the role of F in

the theorem, then \{F— Kf = 0 and, hence, the conditions of the

theorem characterize the Radon-Nikodym derivative of H. An ex-
cellent interpretation of these results can be found in the papers of
H. D. Brunk.



ADDITIVE SET FUNCTIONS ON LATTICES 597

5* A m a r t i n g a l e convergence t h e o r e m * In this section, we

shall establish which features of a martingale convergence theorem
carry over to the setting of additive set functions defined on lattices
of sets.

Suppose that {̂ }̂ is an increasing sequence of lattices of subsets
of Ω, and ^f = Un-^C Then the algebras, Ssfn, of subsets of Ω that
are generated by these lattices increase to the algebra, Szf, generated
by Λ.

Suppose that λ and μ are nonnegative, additive set functions
defined on s?f. Denote by \n and μn the restrictions of λ and μ to
JK Denote by F — {/J the Radon-Nikodym derivative of λ with
respect to μ, and denote by Gk = {gk,n}n=i the Radon-Nikodym deriva-
tive of Xk with respect to μk.

Because the sequences {gk,n}n are Cauchy sequences in LX{Ω, j%fk1 μk)

they are also Cauchy sequences in L^Ω, jzf, μ)

(i .e., \gk>m - gk,n\dμ = \gk,m - gk,n\dμk) .
\ JΩ JΩ /

Hence the equation

Hk(E) - lim ί gk>ndμ ,
n JE

defines an additive extension of Gk to 3/. Notice that {Hk} is de-
termined by {^fk}, λ, and μ.

Now we have enough notation to state our martingale converg-
ence theorem succinctly.

THEOREM. Suppose that λ is absolutely continuous with respect
to μ. Then the sequence {Hk} converges to F in VX{Ω, 3f, μ).

Before establishing this theorem, let us give a simple example to
illustrate the fact that the requirement that λ be absolutely continuous
with respect to μ is not superfluous.

EXAMPLE. Suppose that Ω is the set of positive integers, and
S^fn is the algebra of subsets of Ω comprised of the subsets of the
first n positive integers and their complements in Ω, n Ξ> 1. Let λ
be the additive function on 3/ which assigns zero to a finite set and
one to the complement of a finite set, and let μ be defined on the
elements E of 3/ by μ(E) = ̂ xeE2~x. Then λ is singular with re-
spect to μ; but, for each positive integer n, Xn is absolutely con-
tinuous with respect to μn. Suppose that ^£n — Jzfn, n^ 1. Then

Gn = \2nX[n+i,n+2,—idμ ,
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and the sequence {Hn} is not Cauchy.

The example shows that it is possible to have an increasing sequ-
ence {JK) of algebras such that λ is not absolutely continuous with
respect to μ even though all the λw's are absolutely continuous with
respect to the corresponding μn'&. However, λ and μ are determined
by the sequences {λn} and {μn}. Moreover, given sequences {λj and
{μn} such that each λn is absolutely continuous with respect to μnJ

then λ is absolutely continuous with respect to μ if, and only if, the
λn's are uniformly absolutely continuous with respect to the μn's (i.e.,
for each e > 0 there is δ > 0 such that if Ee JK and μjβ) < δ,
then Xn(E) < ε).

Proceeding to a proof of the theorem, suppose there is a positive
number, ε, and a subsequence {HkJ satisfying \\Hkn — JP"|| ^ 3ε, n =
1, 2, . Relabeling if necessary, we can suppose that kn = n. Since
F = {fi} and the fs are simple j^-measurable functions, there exists
%i such that fi is j^-measurable. The sequence {JK} is increasing,
so we can take ni+1 > Ui and look at the corresponding sequence {Hn.}i.
Relabeling again, we can thus suppose that /< is j^-measurable and
\\Ht — F\\^Zε. Because of the manner in which we defined the
sequences {/J and {g3 ti}i9 we can assume that gjfi = fi for i ^ j .
Referring back to the construction, we have (λ — nμ)(Mc Π N) > —εn

which implies μ(Mc Π N) < (X(Ω) + εn)/n. Hence, from the converg-
ence of μ(Mc Π N) to zero, follows the convergence of λ(ikP Π N) to
zero. Since the λfc's are uniformly absolutely continuous with respect
to the μk'&, the corresponding values Xk{M{k) Π Nik)) converge to zero
uniformly in k. (The definitions of Mm and N(k) are gleaned by putt-
ing ^ k into the construction.) Checking the paragraph that produced
(14) and then checking (15)-(17) permits us to claim that

lim Gktn{Ω) = Xk(Ω) - X(Ω)
n

uniformly in k. Thus, from (21) and the remark that follows (21)
we can conclude that lim,, Gk,n — Gk uniformly in k. Since

Fk = ^fkdμ = ^gkkdμ, lim Fk =

and

we have lim, (\\Hk -F\\) = 0.

COROLLARY 1. Suppose that ^ n is an increasing sequence of
lattices of subsets of Ω. For each positive integer n, suppose that
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each of Xn and μn is a nonnegative additive function defined on
such that Xn+1\Ssfn = Xn and μn+1\J^n = /V Finally, suppose that the
Xk's are uniformly absolutely continuous with respect to the μk's. Then
the sequence {Hk} converges in norm.

We have restricted our attention to nonnegative functions in this
paper because we wished to keep the setting simple enough to make
our presentation reasonably easy to follow.

The following corollary for an increasing sequence {JK} of algebras
of subsets of Ω will be established by using the construction given in
[2].

COROLLARY 2. Suppose that {J&Q is an increasing sequence of
algebras of subsets of Ω, X and μ are bounded, additive set functions
defined on S$f — \Jn Ssfn, with μ nonnegative and X is absolutely con-
tinuous with respect to μ. For each positive integer n, take ^ C —
Ssfn. Then {Hk} converges to X in norm.

Proof. Refer to the construction given in [2]. Adopt the nota-
tion of the martingale convergence theorem and repeat the relabelings
described in the proof of the martingale convergence theorem. Recall
that F = X and Gk = Xk, k ^ 1, because ^tk = j^J . Hence

But, the first and third terms of the right side of this latter inequ-
ality can be made smaller than ε, and the following observations show
that the second term can also be made smaller than ε.

,n ~ fk)dμj = jIg k t n - fk\dμ = y gk>n - fk\dμ

^ ||G*, -Gk\\ + 0 + | λ -

The version of Corollary 1 that is appropriate for algebras will
not be transcribed.

REFERENCES

1. H. D. Brunk, Conditional expectation given a σ-lattice and applications, Ann. Math.
Statist. 36 (1965), 1339-1350.
2. R. B. Darst, A decomposition of finitely additive set functions, J. Math. Reine
Angew. 210 (1962), 31-37.



600 RICHARD B. DARST

3. N. Dunford and J. T. Schwartz, Linear Operators, Vol. 1, Interscience, New York,
1958.
4. S. Johansen, The descriptive approach to the derivative of a set function with re-
spect to a σ-lattice, Pacific J, Math. 2 1 (1967), 49-58.
5. S. Leader, The theory of Lp -spaces for finitely additive set functions, Ann. of Math.
58 (1953), 528-543.
6. B. J. Pettis, On the extension of measures, Ann. of Math. 54 (1951), 186-197.
7. P. Porcelli, Adjoint spaces of abstract LP spaces, Port. Math. 25 (1966), 105-122.

Received July 24, 1969, and in revised form April 10, 1970. This research was
supported in part by the National Science Foundation under Grant No. GP-9470.

PURDUE UNIVERSITY




