ALGEBRAS WITH MINIMAL LEFT IDEALS WHICH ARE HILBERT SPACES

BRUCE A. BARNES

This paper gives a necessary and sufficient condition that certain topological algebras A (normed algebras and algebras which are inner product spaces) be left (right) annihilator algebras. It is assumed that the socle of A is dense in A and that a proper involution * is defined on the socle. Then the necessary and sufficient condition is essentially that the minimal left (right) ideals of A be complete in the norm on A and be a Hilbert space in an equivalent norm.

We prove a useful preliminary result in § 2. In § 3 we deal with the question of when a normed algebra A is a left or right annihilator algebra. In § 4 we consider this same question when A is a topological algebra in a topology defined by an inner product. This section is motivated by the work of P. Saworotnow and B. Yood on such algebras (see, for example, [5] and [9]). In the final section we generalize the well known result of Bonsall and Goldie that B^* annihilator algebras are dual.

Notation and terminology. A is always a complex algebra. S_A denotes the socle of A, when this exists. If E is a subset of A, let L(E) and R(E) denote the left and right annihilator of E respectively $(L(E) = \{u \in A \mid uv = 0 \text{ for all } v \in E\})$. A is a left (right) annihilator algebra if for every proper closed right (left) ideal M of A $L(M) \neq 0(R(M) \neq 0)$ and L(A) = 0 (R(A) = 0). A left (right) ideal M of A is a left (right) annihilator ideal if M = L(E) (M = R(E)) for some subset E of A. If A is semi-simple, A is a modular annihilator algebra if A/S_A is a radical algebra; see [8]. Annihilator and dual algebras are defined and discussed in [4, pp.96-107].

An involution * defined on A (or S_A) is proper if $uu^* = 0$ implies u = 0. u is a self-adjoint if $u = u^*$. We denote the set of all self-adjoint minimal idempotents of A by H. If * is proper on S_A , then minimal left (right) ideals of A will have the form Ah (hA), $h \in H$, by [4, Lemma 4.10.1, p. 261].

Let \mathscr{H} be a Hilbert space. $\mathscr{B}(\mathscr{H})$ is the algebra of all bounded operators on $\mathscr{H}, \mathscr{F}(\mathscr{H})$ is the subalgebra of $\mathscr{B}(\mathscr{H})$ consisting of all operators which have finite dimensional range, and $\mathscr{C}(\mathscr{H})$ is the algebra of compact operators on \mathscr{H} . If $T \in \mathscr{B}(\mathscr{H})$, we denote the operator bound of T as |T|. Given $u, v \in \mathscr{H}$, we define an operator (u|v) on \mathscr{H} by (u|v)(w) = (w, u)v for all $w \in \mathscr{H}$. More generally if X is a normed linear space and X' is the normed dual of X, given $x \in X$ and $f \in X'$ we define an operator (f | x) on X by (f | x)(y) = f(y)x for all $y \in X$.

2. Preliminary results. Let \mathscr{H} be a Hilbert space. Assume that B is a subalgebra of $\mathscr{B}(\mathscr{H})$ with $\mathscr{F}(\mathscr{H}) \subset B$. Furthermore, assume that B is a topological linear space with a topology \mathscr{T} such that

(i) The maps $x \to xy$ and $x \to yx$ are continuous on B for all $y \in B$;

(ii) $\mathcal{F}(\mathcal{H})$ is dense in B in the topology \mathcal{T} ;

(iii) If $\{u_n\} \subset \mathscr{H}$ and $u_n \to 0$ in \mathscr{H} , then $(w \mid u_n) \to 0$ in \mathscr{T} for any $w \in \mathscr{H}$.

For \mathcal{K} a closed subspace of \mathcal{H} , define

$$\mathscr{R}(\mathscr{K}) = \{T \in B \mid T(\mathscr{H}) \subset \mathscr{K}\}.$$

THEOREM 2.1. Assume B is as given above. Then B is a left annihilator algebra. Also every right annihilator ideal of B is of the form $\mathscr{B}(\mathscr{K})$ for some closed subspace \mathscr{K} of \mathscr{H} . If $T \in \overline{TB}$ for all $T \in B$, then every closed right ideal of B is a right annihilator ideal.

Proof. Assume that N is a closed right ideal of B. Let

$$\mathscr{J} = \{Tu \mid T \in N, u \in \mathscr{H}\}$$
.

Assume that w = T(u) + S(v) where $u, v \in \mathcal{H}$ and $T, S \in N$. Assume that $u \neq 0$, and let $\lambda = |u|_2^2$ ($|\cdot|_2$ the norm on \mathcal{H}). Then

 $(1/\lambda)S(u \mid v) \in N$

and $(T + (1/\lambda)S(u|v))(u) = w$. This proves that \mathscr{J} is a subspace of \mathscr{H} . Let $\mathscr{H} = \widetilde{\mathscr{J}}$. The proof of [4, Lemma 2.8.24, p. 104] implies that $R(L(N)) = \mathscr{R}(\mathscr{H})$. If $v \in \mathscr{H}$, then there exists $\{u_n\} \subset \mathscr{H}$ and $\{T_n\} \subset N$ such that $T_n(u_n) = v_n \to v$ in \mathscr{H} . Then given any $w \in \mathscr{H}$, $(w|v_n) = T_n(w|u_n) \in N$ for all n. By (iii) $(w|v_n) \to (w|v)$ in the topology \mathscr{J} . Thus whenever $v \in \mathscr{H}$ and $w \in \mathscr{H}$, $(w|v) \in N$. Using this result, the proof of [4, Lemma 2.8.26, p. 105] implies that

$$R(L(N)) \cdot B \subset N$$
.

Therefore if L(N) = 0, $B^2 \subset N$, and it follows that $\mathscr{F}(\mathscr{H}) \subset N$. Then by (ii) N = B. This proves that B is a left annihilator algebra.

If $T \in \overline{TB}$ for all $T \in B$, then whenever $T \in R(L(N))$, $T \in \overline{TB} \subset \overline{R(L(N)) \cdot B} \subset N$. Therefore N = R(L(N)), so that N is a right annihilator ideal.

A theorem similar to Theorem 2.1 can be proved concerning the left ideals of *B*. Assume that $\mathcal{F}(\mathcal{H}) \subset B \subset \mathcal{B}(\mathcal{H})$ and that *B* satisfies (i), (ii), and

(iv) If $\{u_n\} \subset \mathscr{H}$ and $u_n \to 0$ in \mathscr{H} , then $(u_n | v) \to 0$ in the topology \mathscr{T} on B for all $v \in \mathscr{H}$

Define $B^* = \{T^* | T \in B\}$. Topologize B^* with the topology

$$\mathscr{T}^* = \{U^* | \, U \!\in\! \mathscr{T}\}$$
 .

Then $\mathscr{F}(\mathscr{H}) \subset B^* \subset \mathscr{B}(\mathscr{H})$ and B^* satisfies (i) and (ii). But also by (iv) and the fact that $(v|w)^* = (w|v)$ for all $v, w \in \mathscr{H}$, B^* satisfies (iii). Then the conclusions of Theorem 2.1 hold for B^* . Therefore B^* is a left annihilator algebra and every right annihilator ideal is of the form $\{T \in B^* | T(\mathscr{H}) \subset \mathscr{H}\}$ for some closed subspace \mathscr{H} of \mathscr{H} . Let N be a proper closed left ideal of B. Then N^* is a proper closed right ideal of B^* . Therefore there exists $T \in B, T \neq 0$, such that $T^*N^* = 0$. Then $R(N) \neq 0$. Now assume that N is a left annihilator ideal of B. Then N^* is a right annihilator ideal of B^* which implies that $N^* = \{T \in B^* | T(\mathscr{H}) \subset \mathscr{H}^{\perp}\}$ for \mathscr{H} some closed subspace of \mathscr{H} . Then it is not difficult to verify that

$$N = \{T \in B \mid T(\mathscr{K}) = 0\}.$$

Finally if $T \in \overline{BT}$ for all $T \in B$, then $T \in \overline{TB}^*$ for all $T \in B^*$. This implies that when $T \in \overline{BT}$ for all $T \in B$, then every closed left ideal of B is a left annihilator ideal (by Theorem 2.1 again).

Combining these remarks and Theorem 2.1 we have the following result.

THEOREM 2.2. Assume that $\mathscr{F}(\mathscr{H}) \subset B \subset \mathscr{B}(\mathscr{H})$ and that B satisfies (i)-(iv). Then B is an annihilator algebra. If in addition $T \in \overline{TB}$ and $T \in \overline{BT}$ for all $T \in B$, then B is dual.

3. Normed algebras. We assume throughout this section that A is a semi-simple modular annihilator algebra, that there is a proper involution * defined on S_A , and that A is a normed algebra with norm $||\cdot||$. Recall that H denotes the set of self-adjoint minimal idempotents of A. When $h \in H$, we define a functional f_h on S_A by the rule $f_h(u)h = huh$. By the proof of [7, Th. 5.2, p. 358] we have that f_h is a positive hermitian functional on S_A . We introduce an inner product on the minimal left ideal Ah by the usual definition, $(uh, vh) = f_h((vh)^*uh), u, v \in A$. We call this inner product the cannonical inner product on Ah and denote the corresponding norm by

 $|\cdot|_{2}$. We define a *-representation of S_{A} on the inner product space Ah by $u \to T_{u}^{h}, u \in S_{A}$, where $T_{u}^{h}(vh) = uvh$ for all $v \in A$. As shown in the proof of [7, Th. 5.2, p. 358], the operators T_{u}^{h} are bounded on Ah. Also by [7, Lemma 7.1, p. 358] T_{u}^{h} has finite dimensional range on Ah for all $u \in S_{A}$. In a similar fashion a cannonical inner product can be introduced on the minimal right ideal hA, and a *-representation of S_{A} can be constructed into $\mathcal{B}(hA)$.

Since S_A is a modular annihilator algebra with proper involution *, then by [1, (1.3), p. 6] there is a unique norm $|\cdot|$ on S_A with the property that $|uu^*| = |u|^2$ for all $u \in S_A$. We call $|\cdot|$ the operator norm on S_A .

THEOREM 3.1. Assume that A is a left (right) annihilator algebra in the norm $||\cdot||$. Also assume that there exists K > 0 such that $K||u|| \ge |u|$ for all $u \in S_A$. Then for any $h \in H$, Ah (hA) is a Hilbert space in the canonical norm $|\cdot|_2$, and $||\cdot||$ and $|\cdot|_2$ are equivalent on Ah (hA).

Proof. We consider only the case where A is a left annihilator algebra. Also it is sufficient to prove the theorem when A is primitive. For in the general case given $h \in H$, Ah is a minimal left ideal of some minimal closed two sided ideal M of A. Then M is primitive and by the proof of [4, Th. 2.8.12, p. 99] M is a left annihilator algebra. Therefore assume that A is primitive. We shall show that S_A is a left annihilator algebra. If N is a proper closed right ideal of S_A , then \overline{N} , the closure of N in A, is a proper closed right ideal of A. Then $L(\overline{N}) \neq 0$, and therefore there exists a minimal idempotent $e \in L(\overline{N})$. Then $e \in S_A$ and eN = 0. Thus S_A is a left annihilator algebra.

Assume $h \in H$. Note that $|uh|^2 = |(uh)^*uh| = |uh|_2^2 |h| = |uh|_2^2$ so that $|\cdot|$ and $|\cdot|_2$ coincide on Ah. By hypothesis $K||u|| \ge |u|$ for all $u \in S_A$, and therefore $K||uh|| \ge |uh|_2$ for all $u \in A$. We prove that $||\cdot||$ and $|\cdot|_2$ are equivalent on Ah. Since A is primitive, the representation $u \to T_u^h$ of S_A on Ah is faithful. Let $\mathscr{F} = \{T_u^h | u \in S_A\}$. By the proof of [4, Lemma 2.8.20, p. 101] $(f|x) \in \mathscr{F}$ whenever f is a continuous linear functional on Ah with respect to $||\cdot||$ and $x \in Ah$. It follows that any such functional f must be continuous on Ah with respect to $|\cdot|_2$. Let V be the normed dual of Ah with respect to $||\cdot||$, and let B be the unit ball in Ah with respect to $||\cdot|_2$. For any $f \in V$, $\sup_{x \in B} |f(x)| < +\infty$. Then by the Uniform Boundedness Theorem applied to the set B; $\sup_{x \in B} \sup_{||f|| \le 1} |f(x)| \le J$ for some finite number J. It follows that $||x|| \le J|x|_2$ for all $x \in Ah$. Therefore $||\cdot||$ and $|\cdot|_2$ are equivalent on Ah.

It remains to be shown that Ah is a Hilbert space in the norm

 $|\cdot|_2$. Since $K||u|| \ge |u|$ for all $u \in S_A$, S_A is a left annihilator algebra with respect to $|\cdot|$. Let \mathscr{H} be the Hilbert space completion on Ah. Given $w \in \mathscr{H}$, we define f(x) = (x, w) for $x \in \mathscr{H}$. Choose $uh \in Ah$ such that $|uh|_2 = 1$. $(f|uh) \in \mathscr{F}$ by the proof of [4, Lemma 2.8.20, p. 101]. Therefore $(f|uh)^* \in \mathscr{F}$. For any $x \in Ah$,

$$(x, w) = ((f | uh)x, uh) = (x, (f | uh)^*uh).$$
 Therefore
 $w = (f | uh)^*(uh) \in Ah.$

Thus $\mathcal{H} = Ah$.

Using the previous result, we give an example of a norm on $\mathscr{F}(\mathscr{H})$ in which $\mathscr{F}(\mathscr{H})$ is not a left annihilator algebra. Let \mathscr{H} be an infinite dimensional Hilbert space and denote the norm on \mathscr{H} by $|\cdot|_2$. Let $||\cdot||$ be any norm on \mathscr{H} such that $|x|_2 \leq ||x||$ for all $x \in \mathscr{H}$, and $|\cdot|_2$ and $||\cdot||$ are inequivalent on \mathscr{H} . If f is any discontinuous linear functional on \mathscr{H} , then $||x|| = |x|_2 + |f(x)|$ is an example of such a norm. Every functional on \mathscr{H} continuous with respect to $|\cdot|_2$ is continuous with respect to $||\cdot||$. It follows that every operator $T \in \mathscr{F}(\mathscr{H})$ is bounded in the norm

$$||T|| = \sup_{||x|| \le 1} ||Tx||$$
.

We note that there exists K > 0 such that $K||T|| \ge |T|$ ($|\cdot|$ the operator norm on $\mathscr{F}(\mathscr{H})$) by [4, Th. 2.4.17, p. 69]. Now fix $u \in \mathscr{H}$ such that $|u|_2 = 1$. Let N be the minimal left ideal of $\mathscr{F}(\mathscr{H})$ defined by $N = \{(u|v) | v \in \mathscr{H}\}$. $v \to (u|v)$ is an isometry of \mathscr{H} in the norm $|\cdot|_2$ onto N in the operator norm since $|(u|v)| = |u|_2 |v|_2 = |v|_2$. To verify that $\mathscr{F}(\mathscr{H})$ is not a left annihilator algebra in the norm $||\cdot||$, it is sufficient to prove that the map $v \to (u|v)$ is a bicontinuous map from \mathscr{H} in the norm $||\cdot||$ onto N in the norm $||\cdot||$. For then $||\cdot||$ and $|\cdot|$ are inequivalent on N, and therefore Theorem 3.1 gives the result.

$$||(u|v)|| = \sup_{||x|| \le 1} ||(u|v)(x)|| = \sup_{||x|| \le 1} |(x, u)|||v|| \le ||v||$$

and

$$||(u | v)|| \ge ||(u | v)(u/||u||)|| = (1/||u||)||v||$$
.

This completes the example.

Now we prove a converse of Theorem 3.1.

THEOREM 3.2. Assume that S_A is dense in A. Assume that for every $h \in H$ Ah (hA) is a Hilbert space in the norm $|\cdot|_2$, and that $|\cdot|_2$ and $||\cdot||$ are equivalent on Ah (hA). Then A is a left (right) annihilator algebra. If in addition $u \in \overline{uA}$ ($u \in \overline{Au}$) for all $u \in A$, then every closed right (left) ideal of A is a right (left) annihilator ideal.

Proof. We assume that for every $h \in H$ Ah is a Hilbert space in the norm $|\cdot|_2$, and that $|\cdot|_2$ and $||\cdot||$ are equivalent on Ah. First suppose that A is primitive. Given $h \in H$, then $u \to T_u^h$ is a faithful *-representation of S_A on the Hilbert space Ah. Given any u, v, $w \in A, T_{(uh)(vh)}^h(wh) = (wh, vh)(uh) = (vh | uh)(wh)$. Therefore all the operators of the form (vh | uh) are in the image of the representation $w \to T_w^h$. It follows that $\mathscr{F}(Ah)$ is in the image of this representation. By [4, Th. 2.4.17, p. 69] there exists K > 0 such that $K||u|| \ge |T_u^h|$ for all $u \in S_A$. Then since S_A is dense in A, there is a unique extension of the representation $u \to T_w^h$ of S_A to a representation $u \to T_u$ of A onto a subalgebra B of $\mathscr{B}(Ah)$. Therefore

$$\mathscr{F}(Ah) \subset B \subset \mathscr{B}(Ah)$$
.

We consider B normed by $|| \cdot ||$ in the natural way, $|| T_u || = || u ||$ for $u \in A$. B clearly has properties (i) and (ii) listed previous to Theorem 2.1. If $|u_n h|_2 \to 0$, then by hypothesis $|| u_n h || \to 0$, and therefore

$$||(wh|u_nh)|| = ||T_{(u_nh)(wh)^*}|| \to 0$$

for any $w \in A$. This proves that *B* also satisfies (iii). By Theorem 2.1, *B*, and hence *A*, is a left annihilator algebra. If in addition $u \in \overline{uA}$ for all $u \in A$, then again by Theorem 2.1, every closed right ideal of *A* is a right annihilator ideal. This proves the theorem when *A* is primitive. In the general case let $\{M_{\alpha} | \alpha \in I\}$ be the set of all minimal closed two sided ideals of *A*. M_{α} is primitive for each $\alpha \in I$, and therefore the theorem holds for each M_{α} . Since *A* has dense socle, *A* is the topological sum of the $M_{\alpha}, \alpha \in I$. Then by the proof of [4, Th. 2.8.29, p. 106], the theorem holds for *A*.

4. Algebras which are inner product spaces. Throughout this section we assume that A is a semi-simple modular annihilator algebra which is an inner product space with inner product (\cdot, \cdot) . Also we assume that the maps $x \to xy$ and $x \to yx$ are continuous on A for all $y \in A$. An element x has a left (right) adjoint if there exists $w \in A$ such that (xy, z) = (y, wz)((yx, z) = (x, zw)) for all $y, z \in A$. If $x \in A$ has a left (right) adjoint, then it is unique. Assume that every element $u \in S_A$ has a left adjoint which we denote by u^* . Suppose that $u^*u = 0$. By [1, (2.2), p. 6] there exists an idempotent $e \in A$ such that u = ue. Then $0 = (u^*u, e) = (u, u)$ so that u = 0. This verifies that * must be proper on S_A . Similarly if every element in

 S_A has a right adjoint, then this adjoint must be proper on S_A . We denote the norm determined on A by the inner product by $|\cdot|_2$.

THEOREM 4.1. Assume that every element $u \in S_A$ has a left (right) adjoint u^* and that A is a left (right) annihilator algebra. Then for every $h \in H$, Ah (hA) is a Hilbert space in the norm $|\cdot|_2$, and $|\cdot|_2$ and $|\cdot|_2$ are equivalent on Ah (hA).

Proof. We prove the "left" part of the theorem only. As in the proof of Theorem 3.1, it is sufficient to prove the theorem when A is primitive. Therefore assume A is primitive. Given $h \in H$,

$$(uh, vh) = ((vh)^*uh, h) = (uh, vh)|h|_2^2$$

for all $u, v \in A$. Therefore $|\cdot|_2$ and $|\cdot|_2$ are equivalent on Ah. $u \to T_u^h$ is a faithful representation of S_A on Ah. Let $\mathscr{F} = \{T_u^h | u \in S_A\}$. By the same argument as in the proof of Theorem 3.1, S_A is a left annihilator algebra with respect to $|\cdot|_2$. Then by the proof of [4, Lemma 2.8.20, p. 101] $(f | uh) \in \mathscr{F}$ for all $u \in A$ and all functionals f continuous on Ah with respect to $|\cdot|_2$. Then the argument in the last paragraph of the proof of Theorem 3.1 implies that Ah is a Hilbert space in the norm $|\cdot|_2$.

Now we prove a result in the other direction.

THEOREM 4.2. Assume that every element $u \in S_A$ has a left (right) adjoint u^* . Assume that A has dense socle in the norm $|\cdot|_2$ and that for every $h \in H$, Ah (hA) is a Hilbert space in the norm $|\cdot|_2$. Then A is a left (right) annihilator algebra. If in addition $u \in \overline{uA}$ $(u \in \overline{Au})$ for all $u \in A$, then every closed right (left) ideal of A is a right (left) annihilator ideal.

Proof. We prove the "left" part of the theorem only. It is sufficient to prove that the theorem holds for each minimal closed two sided ideal M of A. For then by the proof of [4, Th. 2.8.29, p. 106] the result follows for A. Therefore assume that M is a minimal closed two sided ideal of A. Choose $h \in H \cap M$. Then $u \to T_u^h$ is a faithful representation of M on the Hilbert space Ah. T_u^h is a bounded operator on Ah since $u \to ux$ is a continuous map on A. Let $B = \{T_u^h | u \in M\}$. We norm B by $|T_u^h|_2 = |u|_2$ for $u \in M$, Given uh and vh, then $T_{(uh)(vh)^*}^h \in B$, and

$$T_{(uh)(vh)*}(wh) = (wh, vh)uh = (vh | uh)(wh)$$

for all $wh \in Ah$. Therefore $\mathscr{F}(Ah) \subset B$. B satisfies properties (i)

and (ii) given previous to Theorem 2.1 by hypothesis. Also as noted in the proof of Theorem 4.1, $|uh|_2^2 = |uh|_2^2 |h|_2^2$ for all $u \in A$. Therefore if $|u_nh|_2 \to 0$, then $|u_nh|_2 \to 0$, so that for any $v \in A$, $|u_nh(vh)^*|_2 \to 0$. It follows that $|(vh|u_nh)|_2 = |T_{(u_nh)(vh)^*}^h|_2 \to 0$. Therefore *B* satisfies (iii). Then Theorem 2.1 applies and this completes the proof.

We apply the previous theorems to right-modular complemented algebras as defined by B. Yood [9, p. 261]. Let A be an algebra with an inner product (\cdot, \cdot) . A is a right-modular complemented algebra if

(a) the maps $x \to xy$ and $x \to yx$ are continuous for all $y \in A$,

(b) any right or left ideal I for which $I^{\perp} = \{0\}$ is dense in A (where $I^{\perp} = \{x \in A \mid (x, y) = 0 \text{ for all } y \in I\}$),

(c) the intersection of the closed modular maximal right ideals of A is $\{0\}$, and M^{\perp} is a right ideal for each closed modular maximal right ideal M.

We prove the following theorem.

THEOREM 4.3. Assume that A is a modular annihilator algebra and a right-modular complemented algebra. Then A is an annihilator algebra if and only if every minimal left or right ideal of A is a Hilbert space in the norm determined by the inner product.

Proof. First note that A is semi-simple by property (c). Since A is a modular annihilator algebra, then by [8, Lemma 3.3, p. 38] every modular maximal right ideal M of A is of the form (1 - e)A where e is a minimal idempotent of A. Then by (a) M is closed. Similarly every modular maximal left ideal of A is closed. Also by [9, Th. 2.1, p. 262] K^{\perp} is a right (left) ideal for all right (left) ideals K of A.

Assume that every minimal left or right ideal of A is a Hilbert space in the norm determined by the inner product. Given K a minimal right ideal of A, then $N = K^{\perp}$ is a right ideal. Also N + Kis dense by (b). Since K is complete, it follows that N + K = A. Therefore N is a modular maximal right ideal of A. By the proof of [8, Th. 4.5, p. 44] every element of $N^{\perp} = K$ has a left adjoint. Since K was an arbitrary minimal right ideal, then every element in S_A has a left adjoint. A similar proof shows that every element of S_A has a right adjoint. A has dense socle by (b). Therefore by Theorem 4.2, A is an annihilator algebra.

Now assume that A is an annihilator algebra. Take K minimal right ideal of A. Then $N = K^{\perp}$ is a proper closed right ideal of A. Since A is an annihilator algebra, there exists a modular maximal right ideal M such that $N \subset M$. K + N is a dense right ideal of A

by (b). Assume that $x \in K^{\perp \perp}$. Then there exists $\{x_n\} \subset N$ and $\{y_n\} \subset K$ such that $x_n + y_n \rightarrow x$. Then

$$|x_n|_2 = |(x_n + y_n - x, x_n/|x_n|_2)| \le |x_n + y_n - x|_2 \rightarrow 0$$
.

Therefore $y_n \to x$ and since K is closed, $x \in K$. It follows that $K = K^{\perp \perp}$. Now $K^{\perp} \subset M$, and therefore $M^{\perp} \subset K$. Since M^{\perp} is a nonzero right ideal of $A, M^{\perp} = K$. Then every element in K has a left adjoint by the proof of [8, Th. 4.5, p. 44]. It follows that every element in S_A has a left adjoint, and by a similar proof every element in S_A has a right adjoint. Then Theorem 4.1 implies that every minimal left or right ideal of A is a Hilbert space in the norm determined by the inner product.

5. Algebras dual in the operator norm. A well known theorem of Bonsall and Goldie states that an annihilator B^* -algebra is dual. This was generalized by B. Yood who proved that any modular annihilator B^* -algebra is dual; see [8, Th. 4.1, p. 42]. In this section we generalize this result still further. We assume throughout that A is a modular annihilator algebra with an involution * and a norm $|\cdot|$ with the property that $|u^*u| = |u|^2$ for all $u \in A$ (such a norm always exists on A when A is a normed algebra and * is proper by [7, Th. 5.2, p. 358]). We call $|\cdot|$ the operator norm on A.

THEOREM 5.1. Assume that A has the properties given above. Then if every minimal left ideal of A is complete in the operator norm, A is dual.

We prove three lemmas.

LEMMA 5.2. If every minimal left ideal of A is complete in the operator norm, then there is an isometric *-representation $u \rightarrow T_u$ of A onto a subalgebra B of the compact operators on a Hilbert space \mathscr{H} with the following properties:

(1) \mathcal{H} is the Hilbert space direct sum of a set of closed subspaces $\mathcal{H}_{\alpha}, \alpha \in I$ where I is some index set.

(2) If $T \in B$, then T is reduced by each $\mathcal{H}_{\alpha}, \alpha \in I$ (i.e.,

$$T(\mathscr{H}_{\alpha}) \subset \mathscr{H}_{\alpha} \ and \ T(\mathscr{H}_{\alpha}^{\perp}) \subset \mathscr{H}_{\alpha}^{\perp}$$

all $\alpha \in I$).

(3) If $T \in \mathcal{F}(\mathcal{H})$ and T is reduced by \mathcal{H}_{α} for all $\alpha \in I$, then $T \in B$.

(4) $B \cap \mathscr{F}(\mathscr{H})$ is dense in B.

Proof. Let $\{M_{\alpha} | \alpha \in I\}$ be the set of minimal two sided ideals of

A, I some index set. For each $\alpha \in I$, choose an element $h_{\alpha} \in H \cap M_{\alpha}$. Let $\mathscr{H}_{\alpha} = Ah_{\alpha}$. Ah_{α} is an inner product space in the cannonical inner product. Also $|uh_{\alpha}|^2 = |(uh_{\alpha})^*(uh_{\alpha})| = |uh_{\alpha}|^2_2$. Therefore $|\cdot|_2$ coincides with $|\cdot|$ on Ah_{α} . Therefore \mathscr{H}_{α} is a Hilbert space. Let \mathscr{H} be the Hilbert space direct sum of the $\mathscr{H}_{\alpha}, \alpha \in I$. For each α we have a *-representation $u \to T_u^{h_{\alpha}}$ of A on $Ah_{\alpha} = \mathscr{H}_{\alpha}$. $|T_u^{h_{\alpha}}| \leq$ |u| for all $u \in A$, $\alpha \in I$. Then we define $u \to T_u$ a representation of A on \mathscr{H} in the usual fashion, $T_u(\sum_{\alpha \in I} v_\alpha h_\alpha) = \sum_{\alpha \in I} T_u^{h_\alpha}(v_\alpha h_\alpha)$. $u \to$ T_u is a faithful *-representation of A onto a subalgebra B of $\mathscr{B}(\mathscr{H})$. By [1, (1.3), p. 6] $|u| = |T_u|$ for all $u \in A$. T_u has finite dimensional range for all $u \in S_A$ by [7, Lemma 5.1, p. 358]. Also the socle of A is dense in A by the proof of [2, Lemma 2.6, p. 287]. It follows that $\mathcal{F}(\mathcal{H}) \cap B$ must be dense in B and that $B \subset \mathcal{C}(\mathcal{H})$. It remains to prove (3). By Theorem 3.2 A is a left annihilator algebra, and by the proof of that theorem $\mathscr{F}(\mathscr{H}_{\alpha}) \subset \{T_{u}^{h_{\alpha}} | u \in M_{\alpha}\}$. Assume that $T \in \mathcal{F}(\mathcal{H}), T(\mathcal{H}_{\alpha}) \subset \mathcal{H}_{\alpha}$, and $T(\mathcal{H}_{\alpha}^{\perp}) \subset \mathcal{H}_{\alpha}^{\perp}$ for all $\alpha \in I$. Then $T(\mathscr{H}_{\alpha}) = 0$ for all but a finite number of $\alpha \in I, \alpha_1, \alpha_2, \cdots, \alpha_n$. Then there exists $u_k \in M_{\alpha_k}$, $1 \leq k \leq n$, such that $T_{u_k}^{h_{\alpha_k}}(x) = T(x)$ for all $x \in I$ \mathscr{H}_{a} . Let $u = u_{1} + \cdots + u_{n}$. Then $T_{u}(x) = T(x)$ for all $x \in \mathscr{H}$. This proves (3).

LEMMA 5.3. Let B be as in Lemma 5.2. Then $T \in \overline{TB}$ and $T \in \overline{BT}$ for all $T \in B$.

Proof. Assume that $T \in B$. Then T^*T is a compact operator on the Hilbert space \mathscr{H} . Let $\{\lambda_k\}$ be the sequence of distinct nonzero eigenvalues of T^*T . Let $\{E_k\}$ be the sequence of projections onto the corresponding eigenspaces. For all $\alpha \in I$ denote by F_{α} the projection onto the subspace \mathscr{H}_{α} . By hypothesis $F_{\alpha}T^*T = T^*TF_{\alpha}$ for all $\alpha \in I$. It follows that $F_{\alpha}E_k = E_kF_{\alpha}$ for all $\alpha \in I$ and all k. By (3) of Lemma 5.2 $E_k \in B$ for all k. Then $|T - \sum_{k=1}^{N} TE_k|^2 = |(T - \sum_{k=1}^{N} TE_k)^*$ $(T - \sum_{k=1}^{N} TE_k)| = |T^*T - \sum_{k=1}^{N} \lambda_k E_k|$. Since $T^*T = \sum_{k=1}^{+\infty} \lambda_k E_k$ by the Spectral Theorem for compact operators, then $T(\sum_{k=1}^{N} E_k) \to T$ as $N \to$ $+\infty$. This proves $T \in \overline{TB}$. A similar argument using TT^* in place of T^*T shows that $T \in \overline{BT}$.

LEMMA 5.4. Assume that \mathscr{K} is a Hilbert space. Then $\mathscr{F}(\mathscr{K})$ is dual in the operator norm.

Proof. Assume that M is a closed right ideal of $\mathscr{F}(\mathscr{K})$, and let $N = M + L(M)^*$. N is a right ideal of $\mathscr{F}(\mathscr{K})$. Let

$$\mathscr{J} = \{Tu \mid T \in N, u \in \mathscr{K}\}.$$

As in the proof of Theorem 2.1, \mathcal{J} is a subspace of \mathcal{K} . If $w \perp \mathcal{J}$,

then for every $u \in \mathscr{K}$ and $T \in N$, $(w \mid w)T(u) = (Tu, w)w = 0$. Therefore $(w \mid w)N = 0$. But then $(w \mid w)M = 0$ and $L(M)(w \mid w) = 0$. Therefore $|w|_2^2(w \mid w) = (w \mid w)^2 = 0$ so that w = 0. This proves that \mathscr{J} is dense in \mathscr{K} . Assume $v, w \in \mathscr{K}$. Choose $\{u_n\} \subset \mathscr{K}$ and $\{T_n\} \subset N$ such that $T_n(u_n) = v_n \to v$. Then $T_n(w \mid u_n) = (w \mid v_n) \to (w \mid v)$ so that $(w \mid v) \in$ N. Therefore $\mathscr{F}(\mathscr{K}) = N$. Take $T \in R(L(M))$. $T = T_1 + T_2$ where $T_1 \in M$ and $T_2 \in L(M)^*$. Then $T_2^*T = 0$ and $T_2^*T_1 = 0$. Thus $T_2^*T_2 =$ 0 which implies $T_2 = 0$. It follows that R(L(M)) = M. If M is a closed left ideal of $\mathscr{F}(\mathscr{K})$, then L(R(M)) = M by taking involutions. Therefore $\mathscr{F}(\mathscr{K})$ is dual.

Now we complete the proof of Theorem 5.1. By Lemma 5.2. it is enough to prove that an algebra B with the properties listed in that lemma is dual. Let F_{α} be the projection of \mathscr{H} onto \mathscr{H}_{α} for all $\alpha \in I$. Set $S_{\alpha} = \{T \in \mathscr{F}(\mathscr{H}) | TF_{\alpha} = F_{\alpha}T = T\}$. By Lemma 5.2 $S_{\alpha} \subset B$. Furthermore $\mathscr{F}(\mathscr{H}_{\alpha})$ is isometrically isomorphic to S_{α} . Therefore S_{α} is dual by Lemma 5.4. Also S_{α} is a two sided ideal of B for each $\alpha \in I$, and B is the topological sum of the $S_{\alpha}, \alpha \in I$. By Lemma 5.3 $T \in \overline{TB}$ and $T \in \overline{BT}$ for all $T \in B$. Then it follows from the proof of [4, Th. 2.8.29, p. 106] that B is dual.

REFERENCES

1. B. Barnes, Subalgebras of modular annihilator algebras, Proc. Camb. Phil. Soc. **66** (1969), 5-12.

2. ____, Algebras with the spectral expansion property, Illinois J. Math. 11 (1967), 284-290.

3. I. Kaplansky, Dual rings, Ann. of Math. 49 (1948), 689-701.

4. C. Rickart, General Theory of Banach Algebras, Princeton, 1960.

5. P. P. Saworotnow, A generalization of the notion of H^* -algebra, Proc. Amer. Math. Soc. 8 (1957), 49-55.

6. B. Yood, Homomorphisms on normed algebras, Pacific J. Math. 8 (1958), 373-381.

7. _____, Faithful *-representations of normed algebras, Pacific J. Math. 10 (1960), 345-363.

8. ____, Ideals in topological rings, Canad. J. Math. 16 (1964), 28-45.

9. ____, On algebras which are pre-Hilbert spaces, Duke Math. J. **36** (1969), 261-272.

Received January 29, 1970. This research was partially supported by a grant from the Graduate School of the University of Oregon.

THE UNIVERSITY OF OREGON EUGENE, OREGON