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WILSON ANGLES IN LINEAR NORMED SPACES

J. E. VALENTINE AND S. G. WAYMENT

The purpose of this note is to give a complete answer to
the question: which linear normed spaces over the field of
reals have the property that an angle (determined by two
metric rays) can be defined in terms of the euclidean law of
cosines ?

Menger [7] introduced a system of axioms for "angle spaces" and
related problems. Wilson [11] has shown that a theory of angles
analogous to that of euclidean space is possible for complete, convex
metric spaces any four points of which are congruent with four
points of euclidean space. However, he also proved [10] that a
complete, convex, externally convex metric space with the property
that each four points of the space are congruent to four points of
euclidean space is an inner-product space. In [12] Wilson extended
his definition of angle to general metric spaces in the following way
(for definitions of metric concepts used in this paper see [1]). If α,
b, c, are points of a metric space, with distance between pairs denoted
by ab, ac, be, the symbol bac is called an angle with vertex a and
its value is defined by the formula

bac = Arc cos [(ab2 + ac2 — bc2)/2ab ac] .

This definition is possible by virtue of the triangle inequality. If
R, Rf are two metric rays, (congruent images of half-lines), with
common initial point a and if b, c are points on R, Rf, respectively,
b Φ a Φ c, then R, Rr make an angle [R; R'] if lim bac exists as b
and c tend to a on the metric rays R, R' respectively.

Wilson notes that in general metric spaces angles defined in this
way lack many important properties usually associated with angles
and suggests that a further investigation of the types of spaces
admitting these properties and of conditions for the existence of
angles between rays is needed. In this paper we restrict the class
of metric spaces to the class of linear normed spaces over the field of
reals. We show that if such a space admits an angle as defined
above, then the linear normed space is an inner-product space.
Thus, a linear normed space over the reals which admits an angle
for each pair of rays with a common point is an inner-product space
and consequently has the euclidean four-point property postulated by
Wilson in [11]. In light of [10], this then is a partial converse of

[HI.
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It should be noted that in this paper a local property is given
which characterizes inner-product spaces among the class of linear
normed spaces over the reals. So far as the authors know, this
is the only local characterization that has been given. We will show
that the criteria of Blumenthal [1] are satisfied and thus obtain our
result.

2 Angles in linear normed spaces* In the discussion that fol-
lows B will denote a linear normed space with the property that for
each point a and each pair of rays R, Rf with common initial point
a, lim bac exists as b and c tend to a on the rays R, R', respectively.
For convenience we will denote "lim bac as b and c tend to a on R,
R\ respectively" by limδ,c^α bac.

We note that if α, b are distinct points of B, then the algebraic
line determined by α, 6, denoted by

L(a, b) = {x e B \ x = Xa + (1 - X)b}

is a metric line; since the mapping Xa + (1 — λ) b —> (1 — λ) | a — b \
is a congruence between L(a, b) and the real line.

THEOREM 1. If R(a, b) and R(a, c) are algebraic rays in B, (i.e.,
rays which are contained in algebraic lines) with common initial
point a, then the angle [R(a, b);R(a, c)] is equal to

Arc cos [(ab2 + ac2 — bc2)/2ab ac] .

Proof. Since limδ,c_α [ab2jrac2 — bc2)/2ab ac] exists and ab = \a — b\,
this limit is independent of the way in which b and c tend to a on
the rays R(a, b) and R(a, c), respectively. Thus,

lim bac
b, c—>α

= Arc cos lim α-(l-λ)δ-λα|2 + \a-{l-X)c-Xa
2|α-(l-λ)δ-λα|

(l-λ)c-λαl2

x I a — (1 — X)c — Xa \

= Arc cos lim (1-λ)2 | α-6 \2 + (l-λ)2[ a - c \2 - (1-λ)2 [ b-c
2 ( 1 —λ,)2 I α —6 I \a-c\

= A r c c o s [ ( | α - 6 | 2 + \a-c\2 - | b-c | 2)/2 | a-b \ \a-c\\ .

THEOREM 2. // α, 6, c, d is a quadruple of points of B with b,
c, d on an algebraic line, then points α', 6', c', d' of the euclidean
plane E2 exist which are congruent to a, 6, c, d.
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Proof. Since 6, e, d lie on an algebraic line, one of them, say c
is between the other two. Now points α', δ', d' of E2 exist which
are congruent to α, δ, d. Let c' be the point in E2 between δ' and
d' such that δ'c' = 6c and c'd' — cd. Now, αδ = α'δ', αd = α'cf,
6c = 6V, and cd = c'd\ and it suffices to show that ac — a'c'. By
Theorem 1,

cos [R(b, a); R(b, c)] = (αδ2 + 6c2 - ac2)/2ab be

= (ab2 + bd2 - ad2)/2ab . 6d

- (α'δ'2 + δ'd'2 - a'd'z/2a'V. δ'd'

= (α'δ'2 + ό'c'2 - αV2)/2α'δ' 6V

and it follows that ac = α'c' which completes the proof.

COROLLARY. Let α, 6, c, dbe a quadruple of points of B with 6, c, d
on an algebraic line with c between b and d. If R{c, δ), R(c, d), and
R(c, a) are algebraic rays, then [R(c, 6); R(c, a)] + R(c, a); R{c, d)] — π.

Proof. By Theorem 2, points a', δ', c, 'd! of Ez exist which are
congruent to α, δ, c, d. Moreover, by Theorem 1, the angle between
two algebraic rays is given by the euclidean law of cosines, which
is also true for triangles in E2. The corollary now follows.

THEOREM 3. If α, δ, c are linear points of B with b between a
and c, for any rays R(b, α), iϋ(6, c), [iϋ(6, c); i2(6, c)] = π.

Proof. Let {αj, {cn} be sequences of points on R(b, a) and R(b, c),
respectively, such that an Φ b Φ cn. Then ancn — anb + bcn and
(ajf + cnb

2 — ancn

2)/2anb cnb — — 1 , and consequently, limα,5^6 abc = π.

THEOREM 4. If ayb are any two distinct points of B, then a, b
determine a unique metric line; viz. the algebraic line.

Proof We first show that α, δ are endpoints of exactly one
metric segment. It is known that α, δ are endpoints of an algebraic
segment S(a, δ), which is also a metric segment. Suppose α, δ are
endpoints of another metric segment S^a, δ). Let d be a point of
S^α, δ) — >S(α, δ), choose a point e on S(a, b) such that be = bdf and
let c be a point such that δ is between a and c. It follows from
the transitive property of betweeness that 6 is between d and c. If
R(b, d) and iϋ(6, c) are the algebraic rays through δ, d and 6, c,
respectively, then by Theorem 3, [R(b, d); R(b, c)] = π. Moreover, if
R(b,e) is the algebraic ray of δ, e it follows from the corollary of
Theorem 2 that [R(b, e); R(b, d)\ + [R(b, d); R{b, c)] = π. Consequently,
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[R(b, e); R(b, d)\ = 0. Thus, (bd2+ be2- de2)/2be bd = 1 or (bd - be)2 =

de2 and bd ^ be + de or bd + de — be. But this implies that de = 0
or d = e, contrary to fact. Therefore, each two distinct points are
endpoints of exactly one segment.

The algebraic line through distinct points a, b is a metric line.
That the segment S(a, b) cannot be prolonged to another line, follows
as above, except that the point d is chosen so that d is between a
and b and c is chosen on the algebraic line through α, b such that b
is between a and c.

The proof of Theorem 4 shows that if three points are linear
then the three points lie on an algebraic line.

THEOREM 5. Any set of four points of B which contains a linear
triple is congruently imbeddable in E2.

Proof. Theorem 4 and Theorem 2.

It now becomes possible to complete the proof of the final result.
This depends on a property known as the weak euclidean four point
property which is defined in the following way [1, p. 123].

DEFINITION. A metric space M has the weak euclidean four-
point property provided that each quadruple of pairwise distinct
points of M containing a linear triple is congruently imbeddable E2.

The importance of the weak euclidean four-point property lies
in its usefulness as a means of characterizing inner-product spaces.
Blumenthal (loc. cit.) has shown that a complete, convex, externally
convex metric space with the weak euclidean four-point property is
an inner-product space. Moreover, he points out [2] that completeness
is not essential in the setting of a linear normed space.

Since each two-dimensional subspace of a real inner-product space
is congruent to the euclidean plane, and since each two intersecting
lines of such a space lie in a two-dimensional subspace, a real inner-
product space satisfies our criteria. This observation together with
an application of the above result of Blumenthal yields the following
theorem, which characterizes inner-product spaces among the class
of linear normed spaces over the field of reals.

THEOREM 6. The linear normed space B over the field of reals
is an inner-product space if and only if lim bac exists as b, c tend
to a on the rays p and σ, respectively for each triple of points
α, 6, c, and each pair p and σ of metric rays through α, b and α, c,
respectively.
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It should be noted that BlumenthaFs example of a convexly
metrized tripod shows that the hypothesis that B is a linear normed
space in Theorem 6 can not be deleted.
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