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ON THIRD ORDER, NONLINEAR, SINGULAR,
BOUNDARY VALUE PROBLEMS

PHILIP HARTMAN

Let Paβχ be the singular boundary value problem on
0 ^ t < oo consisting of the nonlinear ordinary differential
equation y!" + yn + λ(l — yf2) = 0, the boundary conditions
2/(0) = a, y' (0) = β and y' (oo) = lf and the condition
β < Vf(t) < 1 for t > 0. The problems Paβλ arise in boundary
layer theory and questions of existence and uniqueness
have been settled for parameters on the range: (λ, a)
arbitrary, 0 ^ / 3 < l . If Λ = 0, a "discontinuity" occurs in
the existence theory at β = 0 in the following sense: if
0 < β < 1, then Paβo has a solution for all α, but if β = 0,
then there is a number Ao with the property that PαOo has
a solution if and only if a ^ Ao. In this paper, it is shown
that, if λ > 0, a similar "discontinuity" occurs at β — — 1;
namely, if λ > 0 and — 1 < β < 1, then Paβχ has a solution
for arbitrary a, while if β—— 1, then there exists a number
-Aλ such that Pa, _i, λ has a solution if a > Ax but no solu-
tion if a < Ax.

1* Questions of existence and nonexistence> uniqueness and
nonuniqueness for the problem (1*1) — (1*4):

(1.1) y'" + yy" + X(l-y'2) = 0,

(1.2) y'{t)-+1 as ί—oo ,

(1.3) y(0) = a, y'(0) = β ,

(1.4) β < y'(t) < 1 for 0 < t < «> ,

have been settled, in the case β — 0, by Iglisch, Grohne, and Kemnitz;

cf. [2], ]6], [7], [8]. These papers include results of Weyl [10] for

λ ^ 0, but not those of Goppel [1] for λ ^ 0, a ^ 0 and 0 g β < 1.

See [2] and [4] for the cases λ = 0, 0 ^ / 3 < l . Asymptotic behavior

of solutions is discussed in [1] and [3]. A complete summary of

this theory for arbitrary λ, a, and 0 ^ β < 1 is given in [4,

pp. 519-537].

Although the cases β < 0 do not occur in fluid mechanics, there

is no mathematical reason for ignoring them. We shall prove the

following assertion which exhibits the " discontinuity " in the existence

theory at λ > 0, β = - 1 .

THEOREM 1.1. Let X > 0. // - 1 < β < 1, then (1.1)-(1.4) has a
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solution for all a. If β — — 1, then there exists a number Aλ such
that (1.1) — (1.4) has a solution if a > AλJ but has no solution if
a <Aλ.

The first statement, that, concerning — 1 < β < 1, can easily be
obtained by known arguments; cf., e.g., Coppel [1]. In order to ob-
tain additional information about the solutions for use in the proofs
of the statements concerning β = —1, a proof indicated in [4, Exercise
6.4, pp. 524 —525] will be employed. It is known (Iglisch [7]) that
the solutions in Theorem 1.1 are unique if 0 ^ β < 1; cf. [4, p. 523]
(or Theorem 6.1 below). Questions of uniqueness will remain undecid-
ed for — 1 <̂  β < 0, except in the case λ = 1/2, where they will be
decided affirmatively (Theorem 6.1). The related question of existence
when a — Aλ will remain open.

It can be remarked that (1.4) is equivalent to

(1.5) y"{t) > 0 for 0 ^ t < oo

if - 1 ^ β < 1 and λ > 0. For, on the one hand, (1.1) has the trivial
solutions y = a±t, yf = ± 1 , y" = 0. On the other hand, if λ > 0
and y(t) is any nontrivial solution of (1.1) satisfying y"(t0) = 0, then
y'"(t0) < 0 or y'"(t0) > 0 according as | yf{Q | < 1 or | y'(t0) \ > 1 and,
correspondingly, yr (t) has a strict maximum or a minimum at t = t0.

2. Existence statements (λ > 0, \β\ <1). The corresponding
part of Theorem 1.1 has the following refinements:

THEOREM 2.1. For a, β, λ on the set

(2.0) {(or, /3, λ): - oo < a < oo, - 1 < β < 1, λ > 0} ,

there exist solutions y = y*(t; a, β, λ), y*(t; α, β, λ) of (1.1) — (1.4),
which may coincide, with the following two properties: (i) the functions

(2.1) y*,y* and -(l-y^)/(l-β), -(l-y*')/(l-β)f hence y*',y*' ,

and

(2.2) y^l{i-y^) and y*"/(l-V*')

are increasing functions of a, β, and λ for fixed t ^ 0 and t > 0,
respectively; (ii) if y(t) is any solution of (1.1) — (1.4), then

y* ^ y ^ y*, v*'^ yf^ y*',

(2.3)

3/^7(1-3/*0 ^ 2/7(1-2/') ^ »*7(1-1/*')
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The proof of Theorem 2.1 will be given in §3. It depends on
some essentially known results (Lemmas 1A, 2A, and 3A) on linear,
second order differential equations stated in the Appendix below for
easy reference in the forms to be used here.

3* Proof of Theorem 2.1. (a) Existence. Assume that

(3.0) λ > 0 , - 1 < / 3 < 1 , - o o < α < o o .

Introduce the function

(3.1) h = 1 - y' ,

so that (1.1) becomes a linear second order equation for h,

(3.2) h" + yh? - λ(l + y') h = 0 .

Define a sequence of successive approximations {yn(t)} as follows:

(3.3) K = 1 - β , y0 = oc + βt , y0' = β .

If hk, yk, yk

f have been defined for k = 1, , n satisfying

(3.4J hn(0) = 1-/3; hn(t) > 0 and hn\t) < 0 for t ^ θ ,

(3.5 J y: = 1 - Λw and ^( ί ) = α + Γ 2//(
Jo

let Λ = ΛΛ+1(ί) be a solution of

(3.6J h" + yn(ί)A' - λ(l + yn'{t)) h = 0 ,

satisfying (3.4Λ+1). Actually, such a solution exists, is unique, and
satisfies the analogue of

(3.7) hn(t) > 0 , i.e., yn'(t) > 1 , as t > ^

(when n ^ 1). This follows from the Lemma 1A applied to (3.6J.
The conditions (5) and (7) of the Lemma 1A can be verified directly
for n = 0, and are a consequence of the Remark following Lemma 1A
if n ^ 1, since 1 + yn

f = 2 - hn(t) ^ 1 + β > 0 for β > - 1 .
The sequences so defined satisfy

(3.8J K > hn+1 for t > 0; hn'/hn > hn+1'/hn+1 for t ^ 0

(3.9J yn' < ynVl and yn < yn+1 for t > 0 .

The relations (3.80) hold, since h0 = 1 - β and /^(0) = 1-/3, Λ/(ί) < 0
for t ^ 0. Hence (3.90) holds. Assume (3.9%). Then (3.8W+1) follows
from Lemma 2A (and its proof) if (3.5J has a unique solution
h = hnVι satisfying (3.4W+1). But this uniqueness has already been
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noted. This proves (3.8J - (3.9J for n = 0,1, .
Define another sequence of successive approximations {Yn(t)} as

follows:

(3.10) Ho = 0, Y0(t) = a + t, Yo' = 1 .

If Hk, Yk9 Yk h a v e b e e n defined for k = 1, •••, w sa t i s fy ing

( 3 . 1 1 J Hn(0) = 1-/3, Hn(t) > 0 and HL(t) < 0 for t ̂  0 ,

(3.12.) Y ^ l - H n and Γn(ί) = α + Γ Γ?:(
Jo

let H = Hn+1(t) be a solution of

(3.13J JΓ" + Yn(t)H' - λ(l + Yί(t))H= 0

satisfying (3.11n+1). This solution exists, is unique, and satisfies the
analogue of

(3.14Λ) Hn{t) > 0, i.e., Y'%(t) > 1, as t > - ,

by Lemma 1A and the Remark following it.

As above, an induction, based on Lemma 2A, shows that, for
n = 0, 1, ••• ,

(3.15J Hn < Hn+i for t > 0; H:\H% < RUJH^ for t ̂  0

(3.16,) Γ; > Γί + 1 and Yn > Yn+1 for ί > 0 .

Similarly, we can obtain

(3.17.J Hm{t) < hn{t) for t > 0

and m, w = 0, 1, that is,

(3.18,,) Y'm > y'n and Ym > Yn for t > 0 .

For (3.170n), (3.180Λ) are trivial for n = 0, 1, . Thus Lemmas 1A
and 2A give (3.17lfΛ+1) for n = 0,1, •••, while (3.1810) is trivial. This
argument which goes from m = 0 to m = 1 can be repeated for any
m to give (3.17mw), (3.18mn). Thus

(3.19) l=Y^Y!^'-^vl^vi = β9

(3.20) a + t = Yo^Y1^---'£yι^Vo = a + βt,

for t ̂  0.

Consequently, the limits
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(3.21) y*(t) = lim F.(ί), V*(t) = Km yn(t) ,

(3.22) y*'{t) = lim YJ(t), ym'(t) = lim y.'(ί) ,

exist for ί 7> 0. It is clear that the sequences {yn'}, {!/»"}, {YJ}, {Yn"}
are uniformly bounded on έ-intervals Hence (3.21), (3.22) hold uni-
formly on such intervals. If h*{t) = 1 — y*(t) and h* — 1 — y*'(t),
then these functions are the unique solutions of

(3.23) V ' + y*(t)K' - λ(l + y*'(t))K = 0 ,

(3.24) V ' + V*(t)h*' - λ(l + y*'(t))h* = 0 ,

satisfying λ* > 0, h*' < 0 and Λ* > 0, A*' < 0 for t έ 0; cf. Lemma
3A. By Lemma 1A, we have h*(t), Λ,*(ί)-->0 as ί-^oo, It follows
that y = 2/*(£), 2/*(ί) are solutions of (1.1) — (1.4).

(b) On monotony ( i ) . We now verify the statements concerning
the monotony of (2.1) — (2.2). Let the functions hn, yn, Hn, Yn be
written as hn(t; a, β, 7), yn(t; a9β,X), . For

(3.25) a, ̂  aif - 1 < βt ^ β2 < 1, 0 < \ ^ λ2 ,

let hnj(t) = hn{t; aίf βiΊ Xj) for j = 1, 2. Then

An2/(1 ~ βύ ̂  ^ / ( l ~ βύ for ί ^ 0 ,

ftΆ8 ^ Λ' i / ^ for t ^ 0 ,

3/*2 ̂  2/ii and τ/w2 έ 3/»i for ί ^ 0 ,

hold for ̂  = 0. An induction shows that these inequalities hold for
n = 0, 1, . (Note that the first of these inequalities gives

(l-yj)/(l-β2) £ (l-yjyil-β,) £ (l-yn>)l(χ-β2) ,

which implies the last two inequalities.) A limit process, as %-»oo,
shows that the functions

(3.26) 7/*, - (l-^')/(l-/5), y*"/(l-V*')

are nondecreasing with respect to a, β, and λ. By considering the
equation (3.23) for h*(t) — h*(t; a, β,X), one obtains the assertions
concerning the strict monotony of (3.26) in Theorem 2.1. The mono-
tony statements concerning ?/*, y*', y*tf are proved similarly.

(c) On part (ii). Let y(t) be a solution of (1.1) — (1.4) and
h{t) = 1 - y'(t), so that h > 0, h' < 0. Then τ/0(ί) ̂  y(ί) ^ Y0(t) and
3/o'(ί) ^ l/'(ί) ^ yo'(ί). Thus the differential equations (3.2) and (3.60),
(3.130) imply the case n = 1 of
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K^h^Hn and h'JK S h'/h ^ Hn'/Hn ,

(3.27)

Vn^V^Y* and y'n^y' S YL ,

by Lemma 2A. A simple induction argument shows the validity of
these inequalities for n — 1, 2, and £ ̂  0. Hence (2.3) follows by
letting n —> °o.

4* A preliminary result (λ > 0, /9 = —1). Define the functions
7*(α, /S, λ) 7^(0:, /3, λ) on the set (2.0) by

(4.0) Ύ*(a, β, λ) = y*"φ; a, β, λ), 7+(α, β, λ) = ^ " ( 0 ; α, β, λ)

so that, for example, y* is the solution of (1.1) satisfying the initial
condition y* = a, y*' = β, y*" = 7* at £ = 0. By Theorem 2.1, the
positive function 7*(α, /9, λ)/(l — /5) is an increasing function of each
of its arguments on the set (2.0). Define Ύ*(a, — 1, λ) by

(4.1) 7*(α, - 1 , λ) = 2 lim 7*(α, /3, λ)/(l - /S) = lim 7*(α, /9, λ) .

Thus 7*(α, — 1, λ) is a nondecreasing function of α and of λ, and
satisfies

(4.2) 0 ^ 7*(α, - 1 , λ ) < 2 7*(α, /3, λ)/(l - /9) for - 1 < β < 1 .

PROPOSITION 4.1. The problem (1.1) - (1.4) with β = - 1 &αs α
solution if and only if

(4.3) 7 * ( α , - l , λ ) > 0 .

/^ particular, if it has a solution for β — — 1 cmd some λ = λG > 0,
a — a0, then it has a solution for β = — 1, a Ξ> a0, λ ^ λ0.

Proof Let λ > 0 be fixed and denote the solution of (1.1)
satisfying the initial conditions y(0) — α, τ/'(0) = β, y"(0) — Ί by
V = y(t, a, β, 7).

Suppose that (1.1) — (1.4) has a solution y(t), where λ > 0,
β = - 1 . Then (1.4) implies that - 1 < y'(t) < 1 for t > 0. Thus, by
Theorem 2.1,

y"{t) ^ 7*(2/(£), !/'(£), λ) for £ > 0 .

Since τ/'(0) = — 1 < 0 implies that y(t) < a for small £ > 0,

#"(£) ^ 7*(α, 2/'(£), λ) for small £ > 0 .

Letting t —> 0 gives
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(4.4) Ύ*(a, - l , λ ) ^ y " ( 0 ) > 0 .

Consequently, (4.3) is a necessary condition for the existence of a
solution of (1.1) - (1.4), λ > 0 and β = - 1 .

In order to prove the converse, assume that (4.3) holds. Let
y*(t) = y*(t; a, β, λ) be the "maximal" solution of (1.1) - (1.4),
- 1 < β < 1, of Theorem 2.1. Thus

y*(t; a, β, λ) - y(t, a, β, 7*(α, β, λ)) .

Let

(4.5) y(t) = y(t, a, - 1 , τ*(α, - 1 , λ)) = lim y*(t; a, β, λ) .

Then y(t) is the solution of (1.1) satisfying the initial conditions

y(0) = a , y'(0) = - 1 , τ/"(0) - 7*(α, - 1 , λ) > 0 .

In view of (4.4) and the inequalities for y* = #*(£; α, /S, λ),

α + /3ί ^ 3/* ^ α + t , - 1 < 2/* < 1

0 £ y*"/(l-y*') ^ y*"(t; a, βQ, λ)/(l - y*"(t; a, β0, λ))

for ί ^ 0, — 1 < β <£ /5o < 1, the solution (4.5) exists for t ^ 0 and
satisfies

- 1 ^ 2/'(t) S 1 and ί/"(t) ^ 0 for t ^ 0 .

Note that s/"(£) > 0 for t ^ 0, for if there is a least t = t0 > 0 where
3/"(ί0) = 0, then y'"(t0) < 0 (unless y'(t0) = 1 and y"{U) = 0 which, by
the uniqueness of solutions of (1.1), would imply that y = a + t,
y' = 1, y" = 0). But y"(t0) = 0, τ/'"(ί0) < 0 gives 2//;(ί) < 0 for small
t - t0 > 0. Hence #"(£) > 0 and - 1 < y'(t) < 1 for ί > 0. It is easy
to show that y'(t)—>l as ί—> oo; e.g., examine the equation (3.2) for
h = 1 — y\ Thus # = 2/(ί) is a solution of (1.1) — (1.4). This completes
the proof of Proposition 4.1.

5. Proof of Theorem I X (λ > 0, β= - 1 ) . This part of
Theorem 1.1 follows from Proposition 4.1 if it is verified that when
λ > 0 and β = - 1 , then

(a) there exist α-values for which (1.1) — (1.4) has solutions;
(b) there exist a-values for which (1.1) — (1.4) does not have

solutions.
On (a). Let y(t) be the solution of (1.1) — (1.4) for a given

λ > 0, β = 0, a = 0. It will be shown that there exists a (largest)
tt < 0 such that y(t) exists on t, ^ t < oo, ^(Q = - 1 , and #"(0 > 0
for tt <Ξ £ < oo. In this case, τ/(ί + ^) is a solution of (1.1) — (1.4)
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with a = y{t^), β = — 1, and assertion (a) is proved.
Since y'"{G) = - λ < 0, it follows that y"(t) > y"φ) > 0, y' < 0

for small -t > 0. Also, y(t) > 2/(0) = 0 as t decreases from 0, as
long as y'(t) < 0. Thus y"' = -yy" - λ(l - yn) < 0 as long as
— 1 tί y' < 0. Hence tx exists unless there is a tQ < 0 such that
V'"(t) - > - o o a s ί - > ί o + O, while y'(t) > - 1 for t0 < t ^ 0. Since this
is impossible, the desired tx exists.

The proof of (b) will be obtained in several steps (c) — (g).
(c) It will be shown that for a fixed λ > 0, there exists a large

— a > 0 such that y(t, α, — 1 , 7) is not a solution (1.1) — (1.4), λ > 0
and β = - 1 , for any choice of 7 > 0. If y(t, a, — 1, 7) is a solution,
then 0 < y"(0) = 7 ^ 7*(α, - 1 , λ) ^ 7*(0, - 1 , λ); cf. (4.4). Hence, it
suffices to show that y(t, a, —1,7) is not a solution of (1.1) — (1.4)
for 7 on the fixed (possibly empty) bounded range 0 < 7 <£ 7*(0, — l,λ).

(d) It will be verified, by an induction, that n differentiations of
(1.1) give a differential equation of the form

(5.1) y{^3) + yy^+2) + (n - 2X)y'y^ι) = Pn(y", , y{n)) ,

where Pn is an expression of the type

(5.2) P = Σ anj{^)y{j)y{n+2~5),

(5.3) αnJ (λ) ^ 0 for 2λ ^ w - 1 .

This statement is correct if n = 1, with Px = 0, for a differen-
tiation of (1.1) gives

Y' = 0 .

Assume (5.1) — (5.3) and differentiate (5.1) to get

'n+2) = Pn+1

where Pn+1 = Pn' + {2X-n)y"y{n+ι). Hence the analogue of (5.1)-(5.3)
holds for n + 1.

(e) The solution y(t) = #(£, a, — 1 , 7) satisfies the initial conditions

(5.4) 3/(0) = α, 2/'(0) = - 1 , τ/"(0) = 7 .

It will be shown, by an induction, that y{k+2}(0) is a polynomial in a,
7 of the form

(5.5,)

for k = 0, 1, . This is the case for k = 0 and fc = 1, ?/"(0) = 7
and 2/'"(0) = - 7 α . Assume (5.5fc) for 0 ^ fc ^ w, ^ ^ 1. Then, by
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( 5 . 1 ) ,

#<•+»>(0) = - a y { n + 2 ) ( 0 ) + (n - 2 λ ) ? / ( w + 1 ) ( 0 ) + P n ( y " φ ) , •••, 2/

Hence (5.5n+1) follows from (5.5*), 0 ^ fc g rc, and (5.2), (5.3).
Note that (5.5*) implies, for k > 0, that

(5.6) y{k+2)(0) - τay{k+1)(0) =

for any constant r, where ΣΣ is a sum of terms of the form
Ckij(\, τ)ajT for 0 ^ i, i ^ & - 1.

(f) Let λ > 0 and let w > 0 be the integer satisfying

(5.7) n - 1 < 2λ ^ n .

Let τ denote the number

(5.8) τ = 2λ - n , so that 0 < 1 + r ^ 1 , r ^ O .

It follows from (5.5Λ) and (5.6) that there exists a number — a > 0,
so large that if 0 < 7 ^ 7*(0, - 1 , λ), then

(5.9) yik)(0) > 0 for k = 2, . . . , n + 2 ,

(5.10) 7/(%+2)(0) - τατ/(%+1)(0) > 0 .

(g) It will now be shown that, for such a choice of a, the pro-
blem (1.1) — (1.4) with β — — 1 has no solution, To this end, write
(5.1) as a second order equation for v = y{n+1),

(5.11) v" + yv' + (n - 2λ)2/'v = Pw(?/", , y{n)) .

In this equation, make the variation of constants

(5.12) v = w exp r \ y(r)dr ,
Jo

transforming (5.11) into

Using the definition (5.8) of τ gives

(5.13) w" + (2τ + l)yw' = ~τ(τ + l)y2w + Pn expf-τΓ ydr) .
\ Jo /

Since τ ^ 0 and 1 + τ > 0, the right side of (5.13) is nonnegative
if w and y", *- ,y{n) are nonnegative, cf. (5.2), (5.3). Also

(5.14) w = v expί — τ I i/drj , w' — {vf — τyv) expί —τ\ ydr) ,
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where v = y{n+1). In particular, w satisfies the initial conditions

w(0) = v(0) = y{n+ί)(0) > 0 ,

w'φ) = v'{0) - τavφ) = y{n+2)(0) - τay{n+1)(0) > 0 .

Up to a positive factor, the left side of (5.13) is

w'exp(2τ + l) 1 ydr).
\ Jo /

If wf is positive on an interval [0, t], then the function w, hence
y{n+1), and y",'",y{n) are positive there also, by virtue of (5.9).
Consequently, y", , yin+ί) and w,w' are positive on their right
maximal interval of existence.

If n > 1, this implies that y'" > 0, hence y"(t) ^ Ί > 0. If y(t)
exists for t ^ 0, then y'{t) —> oo as t —* ^ and i/(ί) is not a solution
of (1.1) - (1.4).

Consider the case n = 1. Suppose, if possible, that #(£) is a
solution of (1.1) - (1.4). Then

y'" ~ τyv" = - ( 1 + ? W - X{l-y'2) < 0 for large ΐ.

This contradicts wf > 0; cf. (5.14), where v = / ' . This completes the
proof of (c), hence (b), and of Theorem 1.1.

6. Uniqueness statements* We shall give a new simple proof of
uniqueness in the cases λ^>0, 0 ^ / 3 < l and show that this proof
can be modified to obtain uniqueness when λ = 1/2, — 1 ^ β < 1.

THEOREM 6.1 The problem (1.1) — (1.4) has at most one solution
for λ ^ 0, 0 ^ β < 1 and for λ = 1/2, - 1 ^ β < 1.

Proof, (λ ^ 0, 0 ^ /3 < 1). Along a solution y = #(£) of (1.1) for
which :?/"(£) > 0, it is possible to introduce the new independent vari-
able

(6.1) x = y'{t) ,

so that

(6.2) z = y"{t) - dx/dt

and

(6.3) dy/dx = y'ly" and dz/dx = y"'lv" .

Thus (1.1) is equivalent to the (nonautonomous) first order system
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(6.4) dy/dx = x/z , dz/dx = —y —X(l-x2)/z ,

in considering solutions for which y" > 0. The partial set of initial
conditions (1.3) becomes

(6.5) y = a at x = β .

If y(t) is a solution of (1.1) - (1.4), λ ^ 0, then y'" ^ 0 for large
t, so that y" ^ 0 is nonincreasing and (1.2) implies, therefore, that
y" —• 0 as t —> oo. (Actually, the asymptotic behavior of y" at t = oo
is known; cf. [4, p. 536]). Thus a solution ?/ of (1.1) — (1.4) deter-
mines a solution (y, z) of the system (6.4) for β ^ x < 1 satisfying
(6.5) and

(6.6) ( 0 < ) 2 >0 as a? > 1 .

It will be shown that (6.4) has at most one solution satisfying
(6.5) and (6.6) if β ^ 0. In fact, if 0 g β £ x < 1, then the right
sides of the equations in (6.4) are nonincreasing functions of z and y,
respectively. Thus, a theorem of Kamke [9] implies that if (y19 zλ),
(2/2> 2%) are two solutions of (6.4) for (0 <;) β <̂  x < 1 such that
2/1 = y2 = α and 0 < ^ < ^2 at B = /9, then ^ > ?/2 and «,. < z2 for
/9 < a? < 1. Thus the last equation of (6.4) shows that d(z2 — z1)/dx > 0
for β ^ x < 1. In particular, the limit of z2 — zly as x —+ 1, is positive
(<^ 00). Hence £ = ^, 2;2 cannot satisfy (6.6), and Theorem 6.1 is proved
for the cases indicated.

Proof, (λ = 1/2, - 1 g β < 1). The system (6.4) can be reduced
to a nonlinear, second order equation by differentiating the second
equation of (6.4) with respect to x and using the first equation to
obtain

(6.7) d2z/dx2 = (2X~l)x/z + [X(l~x2)/z2]dz/dx ,

If 2λ — 1 = 0, this reduces to

(6.8) d2z/dx2 - \—(l-x2)/z2~]dz/dx .

This linear, homogeneous equation for dz/dx shows that either
dz/dx Ξ 0 or dz/dx Φ 0 for β < x < 1. In the case of a solution
satisfying (6.6), it follows that

(6.9) dz/dx < 0 for β ^ x < 1 .

Rewrite (6.8) as a binary, first order system

(6.10) dz/dx = M, du/cte - — (l-x2)u/z2 .
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Suppose that (1.1) — (1,4) has two solutions yx{t)9 y2{t), so that
3/1 = 1/2 = ocf yl = τ/2' = β and τ/2" > #/' at ί = 0. By the last part
of (6.4), the corresponding solutions (u19 z,), (u2, z2) of (5.4) satisfy

(6.11) 0>u2^u1,z2>z1>0

at a = β, -1^ β < 1.
For — 1 ^ / 3 ^ £ < 1 , u < 0 and 2; > 0, the right sides of the

equations in (6.10) are increasing functions of u, z, respectively.
Thus, a theorem of Kamke [9] shows that solutions (uly zj, (u2, z2) of
(6.10) satisfy (6.11) for β <: x < 1, provided that they satisfy u < 0
and z > 0 for (-1 ^) β < x < 1 and (6.11) for t = β.

This leads to the same contradiction obtained in the last proof,
and completes the proof of Theorem 6.1.

REMARK. A differentiation of (1.1) with respect to t gives

(6.12) τ/(4) + yy"f + ( l - 2 λ W - 0 ,

so that if 1 - 2λ = 0,

(6.13) τ/(4) + ytf" = 0 .

One can give a similar proof of uniqueness (λ = 1/2, — 1 ^ β < 1) by
writing (6.13) as a first order system for the vector (y, y', y", y'"/y"),
with t as independent variable.

7 Remarks on continuity. Although we cannot settle the
general question of uniqueness for λ > 0 , — 1 ^ /S < 0, the following
may be of interest.

PROPOSITION 7.1. Let λ > 0 , —1< β < 1 be fixed and Z = Z(β,x)
the set of pairs (a, Ύ) e R2 such that the solution of the initial value
problem y = y{t, a, β, 7) of (1.1) and y = a,y' = β, y" = 7 at t — 0
is a solution (1.1) — (1.4). Then Z is homeomorphic to a line.

Of course, the solution of (1.1) — (1.4) is unique if (α, 7X),
(a,'Y2)eZ=>Ύ1 = Ύ2. In terms of the functions 7^,7* in (4.0), the
solution of (1.1) —(1.4) is unique if and only if Ύ*(a,β,X) = Ύ*(a,β,X).

PROPOSITION 7.2. Let X > 0 be fixed. The problem (1.1) - (1.4)
has a unique solution for (a, β) on the set

(7.1) -co < α < 00 , ( _ i < ) £ 0 ^ β < 1

if and only if the functions Ύ*(a, β, λ), Ύ*(a, β, X) are continuous on
(7.1).
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It is clear that uniqueness (7* = 7*) implies continuity; cf. the
last half of the proof of Proposition 4.1.

Proof of Proposition 7.1. In this proof, we shall only use the
uniqueness of the solution of (1.1) — (1.4) for λ > 0, β — 0; i.e., the
fact that Ύ*(a, 0, λ) = 7*(α, 0, λ) is continuous.

For fixed a and β = 0, the problem (1.1) — (1.4) has a unique
solution. Let y = y(x, a),z = z(x, a) be the corresponding solution of the
system (6.4), so that yφ, a) — a and 2(0, a) = 7*(α, 0, λ) = 7*(<x, 0, λ)
and y(x, a), z(x, a) are defined for 0 <ί x < 1. Since, by (2.3),

0 < 7*(y(x, a), x, λ) £ z (x, a) ^ 7*(y(x, a), x, λ) ,

it is clear that the solution (y(x, a), z(x, a)) of (6.3) exists for
— 1 < x < 1. The continuity of 7*(<x, 0, λ) implies that y(x, a), z(xf a)
are continuous for — 1 < B < 1, — co < # < co. For fixed βQ, —l<βo< l r

define the continuous mapping T7,

T a - (/So, y(β0, OL), z(β0, a)) ,

of the a-line onto a set Z in the plane x = β0 of the (x, y, ^)-space
Thus Z= Z(βQ, λ) consists of the set of points (βOf y0, z0) such that the
solution of the initial value problem (1.1) and yφ) — y0, y'φ) — βQ,
y"φ) = z0 is a solution of (1.1) - (1.4).

The map T has an inverse obtained as follows: Let (β0, y0, z0) e Z
and y — y{x, y0, z0), z = z(x, yQ, z0) the solution of (6.4) satisfying the
initial condition y = y0, z = z0 at x = /30. Then

Γ-^/So, 2/o, «o) = 2/(0, 2/o, «o) = α .

Clearly, Γ"1 is continuous and onto the α:-line. Thus Z is homeomor-
phic to a line.

Proof of Proposition 7.2. We have to show that the continuity
of 7*, 7* on (7.1) implies the uniqueness of the solution of (1.1) —(1.4)
for β = β0.

(a) Assume the continuity of Ύ*(a, β, λ), 7*(a, β, λ) on (7.1). We
shall show that

(7.2) Z = { ( x , y , z ) : x - β 0 , 7 * ( y , β Q , X ) ^ z ^ 7 * ( y , β o , X ) , y a r b i t r a r y } .

In other words, if y(t) = y(t, a, β0, 7) is the solution of the initial
value problem (1.1) and y = a, yf = β0, y" — 7 at t — 0, then a
necessary and sufficient condition that y(t) be a solution of (1.1) —(1.4)
is that

(7.3) 7*(^, βy λ) g 7 :S 7*(α, ^, λ) .
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The necessity of (7.3) is contained in Theorem 2.1. In order to
prove the converse, assume (7.3). It will be shown that y(t) exists
for t ^ 0 and satisfies (1.1)-(1.4). This is clear if there is a t ^ 0
where either

V"(t) = ΎΛvit), V'(t), λ) or y"(t) - 7*(i/(ί), y'{t), λ) .

If this is not the case, then (7.3) and the continuity of 7*, 7* imply that

0 < Ύ*(v(t), y'(t), λ) < y"(t) < 7*(y(t), y'{t), λ)

on any right interval of existence of y. But then y(t) exists for
t ^ 0. Also, there exists a lvalue ί0 such that y'(t0) ^ 0, so that

7*(^ 0 ) , Vr(Q, λ) - 7*(y(t0), ΐ/'(ί0), λ) .

This contradiction proves the sufficiency of (7.3).

(b) Uniqueness. Assume the continuity of 7*, 7* on (7.1). We
shall show that this implies the uniqueness of the solution of (1.1) —(1.4)
when β = β0. If this is not the case, that is, if Ί*(a, β0, λ) =£ 7*(α, β0, λ),
then, by (7.2), Z contains a 2-dimensional open set. But this contradicts
the fact that Z is homeomorphic to a line, and completes the proof of
Proposition 7.2.

Appendix. This appendix will deal with lemmas on second order,
linear differential equations used in the proofs of Theorem 1.1 and 2.1.
They are simple variants of known results. They are given here for
easy reference and the proofs will only be sketched or omitted.

LEMMA lA. Let q(t) Ξ> 0, p(t) be continuous, real-valued for
0 ^ t < oo. Then

(1) h" + p(t)h' - q(t)h = 0

has a solution satisfying

(2) h(0) = 1, h ^ 0 and h' < 0 for t ^ 0 ,

while

(3) h'(t0) = 0 implies that q{t) = 0 for t ^ t0 ,

so that, unless q(t) = 0 for large t,

(4) h'(t) < 0 for t ^ 0 .

This solution is unique if and only if either

(5) I e x p ί - \ p(s)ds\dt = oo or I q(t) expM p{s)ds\dt = oo .

Finally, all solutions of (1), (2) satisfy
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(6) h(t) • 0 a s t > oo

if and only if

(V \ q(t)\exp\ p(r)dr\ | \ exp( - l p(r)drjds\dt = oo

in which case, h(t) is unique.

REMARK. Note that if

q(t) ^ const. > 0 and p(t) ̂  0

for large t, then (5) and (7) hold, so that h(t) is unique and satisfies (6).

The first part of this lemma concerning existence is due to A.
Kneser; the part on uniqueness to Hartman and Wintner; and the
part on (6)-(7) to Weyl; cf., e.g., [4, Chapter XI, §6],

LEMMA 2A. Let P(t), Q(t) be real-valued, continuous functions
for t ^ 0 such that

(8) H" + P(t)H' - Q(t)H = 0

has a solution satisfying

(9) H(0) = 1, H > 0 and Hf ^ 0 for t ^ 0 .

Let p(i), q{t) be continuous for t ^ 0 and

(10) p(t)^P(t), q(t)^Q(t).

Then (1) has solution satisfying (2) and

(11) 0 <h^H and h'/h ̂  H'jH ^ 0 for t ^ 0 .

This result can be obtained by introducing the new variable v =
h/H(t) in (1). By virtue of (9) and (10), Lemma 1A is applicable to
the resulting differential equation for v,

(12) v" + (p + 2H'IH)v' - [(q-Q) - (p-P)H'/H]v = 0 .

Hence there is a solution v(t) satisfying

v(0) = 1, v > 0 and v ' ^ 0 for t ^ 0

This implies (11). Note that v'(t) < 0 for t ^ 0 unless the coefficient of v
in (12) vanishes for large t. In case v'{t) < 0 for t ^ 0, (11) becomes

(13) 0<h< H and h'/h < H'/H f or t > 0 ,

LEMMA 3A. Let qn(t) ̂  0, pn(t) be continuous, real-valued for
t ^ 0, n — 1, 2, and n = c
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(14) pn • pπ a n d qn > q^ as n • °o

uniformly on bounded t-intervals. For n = 1, 2, , let h = hn(t) be
the principal solution of

(15.) Λ" + Pnh' -Qnh = 0

satisfying h(0) — 1, hence (2). Then there exists a sequence of posi-
tive integers n(l) < n(2) < such that

hjf) = limhn{k) (ί), hj(t) = limhn{k)'(t)

exist uniformly on bounded t-intervals and h = /&«,(£) is a solution of
(lδoo) satisfying (2). In particular, a selection of a subsequence is
unnecessary if (2) determines a unique solution of (15^).

This is a result of Hartman and Wintner; cf. [4, p. 360].
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