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A CRITERION FOR #-CONVEXITY

P. S. BULLEN

The development of the P"-integral of R. D. James and
W. H. Gage is based on certain properties of n-convex functions.
In order to develop this integral systematically a more detailed
study of n-convex functions is needed. In the second section
of this paper various derivatives are defined and some of their
properties given; in the third and last sections properties of
n-convex functions are developed.

2. Definitions and some simple properties of generalized de-
rivatives. Suppose F is a real-valued function defined on the bounded
closed interval [a, b] then if it is true that for z,¢ ]a, b]

F(z, + h) + F(z, = h) = 3 Bu—t + oh), as h—0

(1) 2 (2k)'

where By, B; -+, B: depend on z, only, and not on A, then B,,0 =
k < r, is called the de la Vallée Poussin derivative of order 2k of F
at x,, and we write B, = D, F(x,).

If F possesses derivatives D, F(z,), 0 < k < r — 1, write

kT F(x,+h) + Fle,—h) S h*
(2) e 0,.(F; 0, h) = 5 py 1 D,.F(x,)
and define
D,.F(x,) = lim sup 0,,(F; «,, h) ,
(3)

D, F(x,) = liminf 4,.(F; x,, h) .
h—0

F will be said to satisfy Condition C,, in [a, b] if and only if

(a) F is continuous in ]a, b,

(b) D,F exists, is finite, and has no simple
(4) discontinuities in Ja,b)[ 0k < r — 1,

(c) lhl_r.lol h0..(F;x, h) = 0, x €la, b ~ E, where

FE is countable.

In particular C, requires F' to be continuous in Ja, b] and smooth in
la, b ~ E

In a similar way the de la Vallée Poussin derivatives of odd order
can be defined by replacing (1) by

F,+h) — Flx, —h) _ 3 h*+
2 ]Zs 182k+l (__-__-2]6 ¥ 1)!
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as h— 0, with similar changes in (2), (3) and (4).
If it is true that

(5) F(xo+h)~F(xn)=j,a,,%';_+o(kf), as h—0
=1 !

where «,, ---, @, depend on z, only, and not on Ak, then a;, 1<k =17,
is called the Peamo derivative of order k of F at x, and we write
a, = Fy(x). If F possesses derivatives F(z), 1 <k <r — 1, write

4 r—1 k
(6)  LrFionh) = Fo,+ ) — Fa) - 52 Fu@),

then proceeding as in (3) we define F, (x,) and F,(z,). Further by
restricting 4 to be positive, or negative, in (5), or (6) we can define
one-sided Peano derivatives, written F,, (o), Fuy (%), Fu, . (x,), ete.
It is easily seen, [3], that if F,(z),1 < k < r, exists then

_ 13 1 (T _
(7) Fio(e) = lim = 3% (<1) ( k)F(er(r k)h) .

It is shown in [7] that the condition C,, n = 2r or 2r + 1, holds
automatically for the Peano derivatives. If we say F,,1=k<r,
exists in an (a, b)) we will mean that F,, exists in Ja, b] and that the
appropriate one sided derivates exists at those of the points @ and b
that are in (a, b).

Let «y, -+, 2, be (r + 1) distinct points from [a, b] then the rth
divided difference of F at these (r + 1) points is defined by

(8) VAF) = V(F;x,) = V.(F; {x}) = V(F; @, +++, @)
-5 F(x,)
k=0 w'(x) ’
where
(9) w(x) = w,(x) = w,(x; x,), ete.

= Ifz[o(x — ) .

This rth divided difference has the following properties, which we
collect for reference in

LEMMA 1. (@) V.(F;zx,) = 0 for all choices of points x,, «++, x, if
and only if F is a polynomial of degree at most r — 1.

(b) If F is a polynomial of degree r them for all wxy «+-, 2.,
V.(F; x,) = coefficient of «".

() V.(F;2 «++,2,) is independent of the order of the points
Loy =y Lpe
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(d) There is a simple relation between successive divided differ-
ences given by

(xo - mr) VT(F; Loy ***y xr)

(10)
= Vr-—1(F; Loy ***y x’r-—-l) - Vr—1(F; Lyy o0y xr) .

(e) For any F we have the Newton Interpolation Formula,

(11) F@) = F@) + 5, Vs 2, + -+, B) (@3 )
+ Vr(F; Ly Lyy * 0y xr)wr_l(x; xk) .

This last formula can be written differently as follows. Given the

(r + 1) points P,,0 < k < », with coordinates (x,, Fl(x,), 0=k =<,

respectively, there is a unique polynomial of degree at most » passing
through these points given by

. (F; ¢; P) = w.(x; P) = T, (X; Toy oy <5 X,), ete.
= 3, Fl) [T-2 =%

“O(k—x) ’

12)

This formula (12) is known as the Lagrange Interpolation Formula.
It is easily seen that for all (» + 1) distinct ¥y, +--, ¥,

(13) Vi@ yo) = V(F; ) -
Then (11) can be written
(14) F) =, (Fy ;@) + V(F @, @, 00, )W, (25 @)

Using the divided difference we now define another derivative.
Suppose all of z, x,, -+, x, are in [a, b] and

=2+ h,0< k<7, with

(15)
Oé lhol L eee K |hrl ’

then the rth Riemann derivative of F at x is defined by
(16) D'F(x) = lim «-- lim 7! V.(F; x,)
k-0

hg—0
if this iterated limit exists independently of the manner in which the
h, tend to zero, subject only to (15). In a similar manner we define
the upper and lower derivatives; and if the %, all have the same sign
the one-sided derivatives; these will be written D"F(x), D} F (x), ete. If
we say D'F exists in (a, b) we make the same gloss as for F,,.
Since we can let A, - -+, i, very first and then k,,,, -, h, the above
definition and (10) imply that if D"F(x) exists then so does D*F(x),
1 <k=<r; or more generally if D} F(x) is finite then D*F(x) is finite,
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1=k =r. Remark however that even if D’} F(r) and D" F(x) exist,
are finite and equal, this does not imply that D"F(x) exists, [15, p. 26].
If instead of (15) and (16) we have

15y hy=(r—2bh,0=k<r,
(16)’ D:F(x) = lim»! V(F; z) ,

(with obvious modifications for the upper and lower derivatives), this
is called the ™ symmetric Riemann derivative. In particular the
cases r = 1,2 coincide with definitions of D.F, D,F respectively. In
general if DiF < c in Ja, b[ then F,, exists and equals D;F almost
everywhere, [12].

The usual rth order derivative of F at z, x € (a, b), will be written
Fo ().

THEOREM 2. Ifxela,b] then D .F(x) = F.,,(x), provided one side
exists.

Proof. Suppose first that F,, . (x) exists; then taking the »th di-
vided difference of F(x + k), (considered as a function of &) at the
points kg, by +++, b, 0 Z hy < o+« < h,, using (5) and Lemma 1 (a), (b)
we see that

! V.(F;2 + hy) = Foy () + V.(0(h7); by) .

Letting kg, ---, h, tend to 0 successively we get that D7 F(x) exists
and equals F,, ,(x).

If now we suppose that D7 F(x) exists then the rest of the theorem
follows using Lemma 1(e).

A similar result obviously holds for lefthanded and two-sided de-
rivatives; the latter is due to Denjoy [6] and Corominas [4], who
give different proofs.

COROLLARY 3. (a) If zela,b] and Fy, (%) exists L <k <r —1
then F . (x) = D.F(x), and F,, (x) = D, F(x).

(b) If xecla, b and D*F(x) exists 1 £k < r — 1 and D F(z), D_F(x)
exist and are equal then D F(x) exists, and is equal to this common
rule.

Proof. (a) is proved by a simple adaption of the proof of Theorem
2. (b) holds since the similar result holds for Peano derivatives.

The following results due to Burkill [3], Corominas [4], and Olivier
[14] should be noted.
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THEOREM 4. (a) If F._, exists, in [a,d] and if
inf [E(r),+! E(r).—-] > A > —oo ’

then F_, 1s continuous.
(b) If F, is continuous in [a, b] then F'” exists, and F" = F,,.
(¢) If F, exists at all points of [a,d] then F,,, possesses both
the Darboux property and the mean-value property.

The definitions of the terms used in (c) can be found in [14].

3. mn-convex functions. A real-valued function F defined on the
closed bounded interval [a, 0] is said to be n-convex on [a,b] if and
only if for all choices of (» + 1) distinct points, z,, ---, z,, in [a, b],
V.(F;%) =0, [4,7,15]. If —F is n-convex then F is said to be n-
concave. The only functions that are both n-convex and mn-concave
are polynomials of degree at most n — 1, (Lemma 1).

If n =1 this is just the class of monotonic increasing functions
and n = 2 is the class of convex functions; (the class #n = 0 is just
the class of nonnegative functions, but we will usually only be in-
terested in n = 1).

THEOREM 5. Let
Po=@,y)Hl=k=n,n=2,a=x<-:+<2,=b,

be any n distinct points on the graph of the function F. Then F 1s
n-convex if and only if for all such sets of n distinct points, the
graph lies alterrnately above and below the curve y = w,_(F;x; Py,
lying below iof ©,_, < v = x,. Further m,_(x; P,) < F(z), 2, < x < b;
and 7, .(z; P) < F@)(=ZF () if a <2 <z, n being even (odd).

Proof. Let 2, #wx,1 =<k =<mn,2z, <2, <z, and suppose in fact
x; < x < 2. If F is m-convex then V., (F)x, ---,x,) = 0; i.e.,

o _F@) - Fx)

= ’

Eroawn(x)  wa(@)

or F(x) = —Xiic, Fwy)[wi(@o)/wi(x)] = T,i(@o, Pi), if (m — J) is even,
but F(z,) < m,_.(x, P,) if (m — J) is odd. This proves the necessity;
the sufficiently is immediate by reversing the argument. The last
remark follows in a similar way by considering z, < z, < b, and a <
X, < Xy

This theorem generalizes the property that a convex function always
lies below its chord.
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THEOREM 6. If F is an n-convex fumction on [a,b] and
asx, <+ <2, =bas2z< <2, =b25=21,1=k<n,

then Vn_l(F; zk) = Vn—1(F; xk)-

Proof. The following particular case suffices to prove this result.
=2 k#+ 10 <2y < Xjyy .
Then, as in Theorem 5,
sign [F(z;1) — Tuei(Zi15 )] = (1) .
Hence, with this z,_,,

Ve F52) — Vi 20 = LG = TnCini @) g,
kI:[l (%41 — @)

ki1

That is

Vird(F52) £ Vo i(Taes; 20)
V,.(F;z,), by (13).

THEOREM 7. If F 1is m-convex in [a, b] then
(@) F exists and is continuous in [a,b], 1< r < n — 2,
(b) both F_, _, F._, . are monotonic increasing and if

a2 < <, fr =Y <0 <Y, =D
then

(18) (n =DV, (F2) = Fioyy,—(2)
SFo @ =0-DV,(Fu),

© Foy.=EF",Fo,_=EF"").,
d) F®™ exists at all except a countable set of points.

Proof. Using Theorem 2, it is an immediate consequence of The-
orem 6 that F,, . exists in [a, b[, F,, _ exists in ], 0,1 <r=<n—1
and that (b) holds.

From (b) we get that both F,_, ., F,_, - are continuous except
on a countable set. Then, again from (b), we have that F,_, . =
F_, _ except on a countable set.

Then if we prove (a) and (¢), (d) is immediate.

Suppose a <z, < --+ <, < b then repeated application of (10)
gives
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Vn—x(F; Tyy o ovy T,)
Vo, o) = ViFi 20 @) _ yF; a, 0, 2,)

X — X

------------------

Now let z, — x,, then by Theorem 6 the left-hand side of this ex-
pression tends to a finite limit, K, say: i.e.,

D'F(x,) — VI(F; Ly T3)
(x, — @)
Kx(xzy R xn) = (xz - Ih)

- Vz(F; Ty Ly )

If now z; — 2, we get a finite limit on l.h.s. of this last expression:
hence D-F(x,) = D' F(x,); that is DF(x,) exists. A similar argument
shows DF is continuous in ]a, b[.

In a similar way, expressing V,_, in terms of V,, V,, --- we show
that D% F(x;,) = D> F(x;) and so by Corollary 3(b), D*F(x.) exists then
as above D*F exists and is continuous in ]a, b].

In this way we show D’F exists and is continuous in Ja, d[,1 <
r <n — 2. Hence, by Theorem 2, F, exists and is continuous in
la,b[,1 < r <n — 2 and so finally, by Theorem 4(b), the same is true
of F'“. This proves (a).

For the proof of (¢) let z, < .-+ < #,,_; then repeated application
of (10) gives

= V..(F; Lo, ..., Tps) — Vo Dno,eon, Lon—3) «

Let ¢, — 2,1k n—-2,0,—2,,,n < k < 2n — 3 then by Theorem
6 the limit on the left hand side exists, and the value limit on the
right hand side follows from (a). Thus we get an expression of the
form

1

(n — (@, — 2, ) K(@o, ¥,,) = m

{F,2 — F&2))) .

Now dividing and letting «, , — x, we get

m—1D! lim K(x, x,_) = (F"2), () ;
+

Ty 1%t

a simple application of (11) shows that the left hand side of this last
expression is equal to F,_,, .(x,). This completes the proof of the first
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part of (c), the rest follows using a similar argument.
Formula (18) is due to James [7, Lemma 10.4], who however
assumes the existence of F,_, in ]a, b[.

COROLLARY 8. (a) F is m-convex on [a, b] if and only if F differs
by a polynomial of degree at most (n — 1) from Sx(x — )" p(dt), for

some Lebesgue-Stieltjes measure p. In particular if and only if F
18 the (n — 1)st integral of a monotonic function.

(b) If F is n-conver in [a,b], |F| <k, then |F(x)| < AK sup
{1/ — )%, 1/(x — a)*},0 < k < n — 1 where A is a constant independ-
ent of k, F and x, and where if k =n — 1 the derivative is to be
wnterpreted as sup (| F_y,+(@) |, | Fy,—(2)]).

(¢) If F is n-convex on [a,bl,a s <y<bafae+ h=y, and
=y -+ k=0b then

Yo Fy a3 0) £ Fiusyy, (y) and Fy) () = Vi(F5 95 k)

Proof. (a) This is immediate from Theorem 7 (b).
(b) From (18) we have that

1 8 Fly 1 5 Fy)
(n — 1)! kg:‘) w,(xk) _S_ sup {F(n—l),+(x)’ F(n-—l),-(x)} g (% _ 1)! =0 wl(yk)

from which (b) in the case k = n — 1 is easily deduced. The rest
follows by integration, using, (a).

(¢) Immediate using (18), (11), (6) Theorems 2 and 4.

The definition, (12), of 7.(x; P.) can be extended to cover the case
when not all of the P, are distinct. Thus if only s of these points
are distincet then besides giving the values at the s points, a total of
r + 1 — s derivatives must also be given—either » + 1 — s derivatives
all at one point, or » + 1 — s first derivatives at » + 1 — s distinct
points, (when r + 1 — s < s), etc. Theorem 5 can be extended, using
Theorems 6, 7 and taking limits; thus as an example of many possible
extensions we state

THEOREM 9. Let P, = (x, ), L<k<r,aZx, < -+-- <2,<0, be
r distinct potnts on the graph of the function F. Suppose that F,, .(x,)
exists, 1l <s<n —r. Thren Theoren 5 holds if w,_(x; P,) 1is taken
to have w, (x;P)=Fz),l=s=nrn (x;P)=F,.(x),1=s=
n — r, and if P, 1s considered as n — r + 1 points at and to the right
of P, but to the left of P..

THEOREM 10. (a) If F is m-convex on |a,d] and P, = (%, Ys)s
1=<k=n are n distinct points on the graph of F,a < x, <b, let
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=2, + &, 0 <6 < ov0 < g, then as h— 0+, w,_,(x; P,) converges
uniformly to the right tangent polynomial at x,,

o (Fs 33 3) = 72(x) = Fw) + z (” 1) @ —2)" pw(g)
(19) ( o
T — )"
+ WF<n~1),+(xl)y s =ac=b.
Further on the right of x,, 7, < F.

(b) A similar result holds for the left tangent polynomial at
T, T3 0),a =2 =2, <2 =b. However in this case if n 1s even
(odd) then on the left of x, 7 < F(=F).

(e) At all but a countable set of points x,, a similar result holds
for the tangent polynomial at x,, t(x;x),a <2 <b,a<x, <b. How-
ever if m 1s even the graph of T lies below that of F, whereas if n 1s
odd the graphs cross, T being above on the left of x,, and below on the
right of x,.

Proof. It suffices to consider (a). But (a) is a simple consequence
of Theorems 5,7, (11), and (14).

COROLLARY 11. (a) If F is m-convex in |a, b] then
inf {E(n),+! E(n),——} g O .

(b) If F is n-conver in |a,b] and F_, exists in [a,b] then it
18 continuous.

(¢) If F is n-convexr in [a,b] then F_, . is upper-semi conti-
nuous (u.s.c.), F,_,,_ is lower semi-continuous (1.s.c.).

Proof. (a) Suppose in Theorem 10, for simplicity, that x, = 0.
Then F lies above the right tangent polynomial at » = 0, i.e.,

F(x) —7.(2) >0,
" -

in some interval |0, 2]. Hence F',, .(0) = 0: in a similar way F,,, _(0) = 0.
(b) Immediate from (a), Theorem 4(a), Theorem 7(a).
(@) This is just Theorem 3.2 [3], adapted to one sided derivatives.
The following theorem generalizes a result well known when
n =1, [13, Corollary 32.3] and n = 2 [7, Th. 4].

THEOREM 12. If F s m-convex on [a,b], a <a < B <b, E, =
{w;a <o < B and F,(x) =k} then

(20) km*(Ey) = 20{F ), (B) — Foy, ()}
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(where m* denotes the outer Lebesgue measure).

Proof. For simplicity we will ignore the countable set where
F,_,, may not exist and suppose that k¥ > 0. Further let E} be as
E, but with F, . instead of F, and suppose m*E; > 0; with a
similar definition for Ej.

If then ¢ > 0, x ¢ Ejf there is an A > 0 such that

VuF52h) Z Fpi(w) —e2k —¢.

So, by [20], there is a finite family of nonoverlapping intervals
[, @ + k], =1, --+, p such that z, + h, < 8,

7n(F;xiyhi)Zk—s,i:l,...’p’

and
Sihizm E — <.
Thus
3 hTu(Fr i he) 2 (6 — )(m*Bf — ) ;
but since
(21) WY (F; %, h) = n{Y,_(F: %, h) — F,_,, (%)}

we have that

k=8 megs —¢.
n

g{ {Yors(Fs @iy b)) — Fpyy(2)} =
However by Corollary 8(c)

; {F (@) — YVurs(F5 25, b))} = 0

F(n-—l)(xi) - F(n—l)(a) g 07
F(n—l)(IB) - ’Yn—l(F; wp’ hp) 2 0 .

Adding the last four inequalities we get that

mw@—ﬂwmzkgﬂwm—@.

This together with a similar inequality for Ej, implies (20).

A function that is the difference of two n-convex functions will
be called o0-n-convexr; as in the cases » =1 and n =2, [16], such
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functions can be characterized by their variational properties.
If F is defined on [a, b] as well as Fy,, 1 <k < n — 1, let us write

0, (F; a,b) = w,(a, b)
=max{sup |(x — &)V, (F;a;x — a)l,
a<lz<b

sup [(b — 2)7,.(F;a; b — )|} ;
a<z<b
this quantity was introduced by Sargent [19].

THEOREM 13. A function F defined on [a, b] is 6-n-convexr if and
only if either of the following conditions is satisfied.

@) Sr 0.(F;a,b) < K for all finite sets of mnonoverlapping
intervals, [a, b, 1 <k < m.

(b) Do [(®r — @) V(I @y + o+, Tpin) | < K for all finite sets of
distinct pPoints T, * oy Tmine

Proof. The discussion of (b) is similar to the case n = 2 in [16]
but using Corollary 8(a).

If (a) is satisfied then F,_,, is of bounded-variation [19, Lemma
1], and so by Corollary 8(a) F' is é-n-convex.

If F is n-convex then by (21) and Corollary 8(c),

@ —a)V (Fia;,0 —a) =n{Y,_(F;a;5 —a) — F,_y(@)} =0
and so by Corollary 8(c)
(22) ®,(F; a,b) < n{F,_,(b) — F,_,@)}.

From this it easily follows that if F' is d-n-convex then (a) holds.

4. Sufficient conditions for 7n-convexity. In this section we
obtain some sufficient conditions for a function to be n-convex. First
we prove the following generalization of a well-known property of
convex functions.

THEOREM 14. (a) If F 1is m-convexr wn [a,b] then F'"® has no
proper maximum in |a, bl.

(b) A function F with continuous derivative of order (n — 2) 1is
n-convex if and only if no function of the form F(x) + >4z ax* has
its derivative of order (n — 2) attaining a maximum in la, bl.

Proof. (a) Suppose F'"® has a proper maximum at =z, then
consider G(x) = F(x) — w,_,(x; P,), where the polynomial «,_, is deter-
mined uniquely by the conditions
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G@g) = G'(e) = +++ =G" () = 0.

Now consider 7,_,(%; Q) where Q, = (x, G@)), 0=k <n — 2,
Xy < +++ < x,_,. Then by Theorem III [4], (13), and Lemma 1(b), the
coefficient of #"~* in ,_,(x; @,) is G(*"*(x, + 0), x, + 6 being some point
in o, ®,.[. Hence, using Theorem 7(a), since x, is a proper maximum
of G~® and G"?(x,) =0, if , «++,w,_, are close enough together
this coefficient is not positive.

Let ,— 2,1 <k <n — 3 then 7,_,(x; Q) becomes a polynomial
of degree n — 2 with its value and that of its first (n — 3) derivatives
at z, being zero; it’s (n — 2)nd derivative is nonpositive. Hence, by
Theorem 9, G < 0 in [x,, ©,_,]-

In a similar way G = 0(<0) in some interval to the left of =z,
when % is odd (even). Further in every such interval around w, there
are points where these inequalities are strict.

Now consider the (% + 1) points z,, ---, 2, Where

z0<z1... <z1nI2]:x0< coe <zn_
Then

Vu(F; z) = Vou(G; 2) zf—{((zz‘))—)nLFJrg,—%))— =0.

If then z, «+-2,_, tend to z, then K — 0 and we get
G(z,) n G(z.)

(zO - xo)n—l(zo - zn) (zn - xo)n_l(zn - zo)

v
o

But whether » is even, or odd both terms on the lLh.s. of this ex-
pression can be chosen to be negative-which contradiction completes the
proof of (a).

(b) The necessity is evident. Suppose then that F' is not n-convex.
Then by Theorem 5 there exists a polynomial x,_,(x; P,) such that the
two curves ¥y = F(x), y = m,_,(z; P,) do not intertwine correctly.

Consider G(x) = F(x) — m,_(x; P,); then G(x) = --- =Gz, =0
and G changes sign at most (# — 2) times. Hence G™® has three
zeros and so has a local maximum. This completes the proof.

COROLLARY 15. (a) If F' is m-convex then F'” is (n — r)-convex,
1Z5r=n—2
(b) If F is n-convex then F'™ exist a.e.

Proof. (a) The case »r =n — 2 is just Theorem 14(b). In gen-
eral F'**| 1 <k < n — 3, has a continuous derivative of order n — k — 2
satisfying the hypotheses of Theorem 14(b), and hence F'* is (n — k)-
convex.
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(b) Since F™? is convex this follows immediately from well
known properties of convex functions.

Note that the case » = n — 1 of Corollary 15(a) is just the last
part of Theorem 7(b).

We now wish to prove a converse of Corollary 11(a). Because of
applications to symmetric Perron integral, [7], this converse will be
obtained in terms of de la Vallée Poussin derivatives and the results
in terms of Peano derivatives will be simple corollaries. A direct
proof could be constructed from the proof of the more general results.

THEOREM 16. If F satisfies C,ny m = 1, in ]a, b and

@ D,,F(x)=0,zcla,b]~E,|E| =0,

(b) D, F(x) > —c,xzela, b ~ 8, S a scattered set,

(¢) limsup,_, k0,,(F; x; k) = 0 = liminf,_, h0,,(F; x; h), € S then
F is 2m-convex. (A set is said to be scattered if it contains mo sub-
sets that are dense in themselves.)

Proof. If E =8 then by Theorem 6.1, [9], (a), (b), (¢) imply
D,,F =0 in Ja, b[ and so the result follows from Theorem 4.2, [8].

Given € >0, T, |T| =0,TeG;,, T+ & let y., = x be a function
on [a, b] such that

(i) yx is absolutely continuous,

(ii) yx is differentiable,

(iili) y'(x) = o,xe T,

(iv) 0=Zy'(x) < o,z¢T,

(v) (@) =0,0 < %) < ¢/(b — a)™'. That such a function exists
is well known, [21]. Then define

SIS S PR
@) Wor) = ) =t | — e

the (2m — 1)st integral of y. Then ¥®"~"(z) = y(r) and, using (2),
we have on integrating by parts that

th 1 h
0@ 03 h) = ———— h — )™y ( — — t)}d
@) o005 1) = 5 [T e+ ) — e — )t
1
P a— e 7 I S
= S@m — it @
SO

D, ¥ (x) = my'(x) = 0.

If now E c T then we easily see that (i) ¥ is C,,., and 2m-convex, (ii)
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D, ¥ (x) =0, (iii) D,,¥(x) = o, zc K, (iv) 0¥ <e.

Hence if we write ¥, = ¥,, with ¢ = 1/», and put G, = F + 7,
then G, satisfies the conditions of the theorem with E = S, and so
by the above is 2m-convex. Letting n— o« we then get that F is
2m-convex.

The case of m = 1, E = @, S countable is a classic result about
convex functions, [22].

COROLLARY 17. If F,G are defined in [a,b] and (@) F — G s
Cony (0) Dp(F — G)(2) = 0= D,,.(F — G)(x) for xcla, b~ E, |E| =0,
@ Duw(F — G)(x) < o, Dyy(F — G)(x) > — o0, x € a, ] ~ S, S scattered,
(d) lim sup,, ., h0,,.(F — G; z; k) = 0 = liminf,_, h0,,.(F — G; x; h) for x€ S
then for all sets x,, »++, Xy, of 2m distinct points in [a, b], of P, =
(@ F(21), @ = (01, G(r), 1 = k < 2m

(25) F(x) - n.?m——l(x; Pk) - G(x) - 7f2m_1(£l7; Qk) .

Proof. If F,, G,, denote the Lh.s., r.h.s., of (25) respectively then
F, — @G, is both 2m-convex and 2m-concave, by Theorem 16. So being
a polynomial of degree at most 2m — 1 and vanishing at z,, 1 < k < 2m,
is identically zero.

This result is well known in the case m = 1 when it implies that
if F — G is continuous, D,(F — G) = 0 then F, G differ by a linear
function, [10]. Kassimatis [11] pointed out that the requirement F' — G
continuous is not sufficient in the general case; the condition required
is that of Corollary 17.

COROLLARY 18. () Ifn =2 (i) F,.,(x) =0,z¢c]a, b ~ E, |E| =
0, (i) F,,(x) > —oo,xe]a,b] ~ S, S a scattered set, then F is n-convex.

b If nz2 () (F~Gux)=0=F - Gw©@),zecla, b~ E,
[E|=0, (i) (F—-GQu@ <c,(F—-@ur)>—cw,zcle,b[~S5S
scattered, then (25) holds.

Proof. This is an immediate corollary of Theorem 16, Corollary
17, the analogous results for the odd-ordered derivatives and the re-
mark made earlier that C, is satisfied.

This result generalizes the classic case, when n = 1, see for in-
stance, [17, p. 203]. But this can be still further extended as follows.

THEOREM 19. Ifn=2, and () F,_,, exists in [a, b], (ii) F,,.(x) =0,
x€la, bl ~E,|E| =0, (iii) F,,(x) > —,xcla, b] ~ C,C countable,
then F' 1s n-convex.
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Proof. As in the proof of Theorem 16 we can assume that £ = C
and so suppose F,, . (x) = 0 except when @ = x,, x,, ---. We may as-
sume that for all ke N, x, + b.

Adopting a procedure due to Bosanquet [1] and Sargent [18] we
exhibit for each ke N a monotonic n-convex function Z, with the
following properties

(i) ZP(@) =0,Z70) < [0 — o) Y(n —r—1DI2-*e, 0 < r <
n—1,

(ii) (F+ Z)w,+(@) =0,

(iii) V.(Zi; y.) < K2-%+¢, for all (n + 1) distinet points ¥, «++, Yn.

Then if we define G(z) = F(x) + Diiey Zi(), Gy, +(x) = 0 everywhere
and so is n-convex, by usual arguments; but

V%(G; yr) = Vn(F; y'r) + keZI‘V V'n(Zk; y’r)

and so V,(F; vy, = — Ke¢, which implies F' is n-convex.

It remains to define the function Z,. Since C, is satisfied, we
have, by (4) and (6), lim,_, A7, (F;2,; k) = 0 so we can find a sequence
Yiy Ygy oo in [xk! b[ such that 0 < Ys41 — X = hx-)—l < %(ys - 901,) = hs/27
and h,Y.(F;x,; h) > —e - 2%, Now define the function z, in such
a way as to be continuous and

Z(x) = 0,06 < v < x,
=2"% e,y <x < H,
= 2—(k+3)8y T =Yy S = 17 27 cc
= linear in [y, ., Y], s =1,2, ¢+ .
Then 2, is continuous, increasing on [a, d], z.(a) = 0, 2,(b) = 2= **+V¢,

zi(x,) = 0, z,(x)/x — x, decreases in ]x,, b[. It is then easily checked
that

hg n—1 —-(/c+s)hn—-15
he — B Hat = 2Wh _ 2 .
| =ty + 0dt 2 B = 2
Define then,
_ 1 T pym—2
Zy(x) = w2 Sa (x — " "2()dt ,
the (n — 1)st integral of z,. Then Z,* =z, and using Theorem 7,

and Corollary 8, Z, clearly has all properties wanted except possibly
(ii). This we now check. First note that by (21)

hsfyn(zk; xk) hs) = n'yn—l(Zk; xk» hs) .
So as in the proof of (23),
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. — (n _ 1) ke n—2 —(k+s)
h7(Zy; %y he) = T (hs — ) 24(x, + t)dt = 2 €.
s 0
Hence,
h‘a’)’n(Zk + F; xlc’ hs) 2 0

which completes the proof.

A theorem of a slightly different form can be obtained using the
symmetric Riemann derivatives.

Let us say a real valued function F on [a, b] is of type D, if for
all sets of (» + 1) distinct points x,, +--, z, in [a, b]

(26) inf D/F(z) < r!V.(F;x) < sup D:F() .
a<lze<

a<lz<b
The following simple lemmas will be useful.
LEMMA 20. If F"® exists and is continuous in [a,b] then for
sets of (r + 1) distinct points xy, <+, x, n [a, b]

inf D2F"2(x) < rlV(F; x) < sup DiF"(x) .
a<z<

a<zr<b
In particular if FV exists in [a, b] then F' is of type D,.
Proof. Let G(x) = F(x) — w._,(F; €y +++, %,_;) — MP(x) where P is
a polynomial of degree 7, » a constant determined by requiring that
Gx) =0,0=k <7 and V.(F;2) =\
Then since G has at least (r + 1) zeros G"® has at least 3 zeros

and so has a nonnegative maximum; that is for some y V,(G"?; y,,
Y, ¥,) =< 0 for all y,, y. near enough to y; that is

2. Vz(G(T_Z); Yo Y, yz) = 2V2(F(T_2>; Yy Yy Yo ) —rIx=0.

The proof now follows that in [6].

LEMMA 21. If F is of type D, then
inf D*F(x) = inf DF(x), sup D!F(x) = sup D!F(z) .
a<z<b a<z<b

a<lz<b a<z<b

Proof. The case n = 2 and more is proved in [6, p. 9]. The proof
of the general case is the same.

THEOREM 22. If F is of type D, and (a) DF(x) = 0,x¢ Ja,b[ ~ E,
|E| =0, (b) DIF > —co, then F is m-convex.

Proof. Since the 2m-convex function ¥ of Theorem 16 is, using
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Lemma 20, of type D,, we can, as in Theorem 16, assume E = (.
The result is then a trivial consequence of (26).

COROLLARY 23. If F, G are such that (a) F — G s of type D,
(b) D}(F — G)(x) 20= D(F — G)(x), € la, b[ ~ E, |E| =0, (c) D}(F — G)
> —oco, DI(F — G) < o, then (24) holds.

It would be of interest to produce some reasonable conditions on
F' that ensure it is of type D,. It is known, [15], that if F' is con-
tinuous then F is of type D,, but Kassimatis, [10], has pointed out
that if » > 2 this is false. One would expect the existence and con-
tinuity of F"~® to imply F'is of type D, but this has not been proved.
Let us say F' is of type d, when

inf DIF(@) < 7! V.(F;2) < sup DIF(@) .
a<a<

a<z<b

If in Theorem 22 and Corollary 23 we weaken our hypothesis to
F being of type d,, obvious modifications of the other conditions will
produce analogous theorems. It has been proved in [2] that if F"—¥
exists and is continuous, » = 2, 3,4, then F is d,; unfortunately the
method fails if » > 4.
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