A CRITERION FOR *n*-CONVEXITY

P. S. BULLEN

The development of the P^n -integral of R. D. James and W. H. Gage is based on certain properties of n-convex functions. In order to develop this integral systematically a more detailed study of n-convex functions is needed. In the second section of this paper various derivatives are defined and some of their properties given; in the third and last sections properties of n-convex functions are developed.

2. Definitions and some simple properties of generalized derivatives. Suppose F is a real-valued function defined on the bounded closed interval [a, b] then if it is true that for $x_0 \in]a, b[$

$$(1)$$
 $\frac{F(x_0+h)+F(x_0-h)}{2}=\sum_{k=0}^r eta_{2k} \frac{h^{2k}}{(2k)!}+o(h^{2r}), \text{ as } h\to 0$

where $\beta_0, \beta_2, \dots, \beta_{2r}$ depend on x_0 only, and not on h, then $\beta_{2k}, 0 \le k \le r$, is called the *de la Vallée Poussin derivative of order 2k of F at x_0, and we write \beta_{2k} = D_{2k}F(x_0).*

If F possesses derivatives $D_{2k}F(x_0)$, $0 \le k \le r-1$, write

$$(2) \frac{h^{2r}}{(2r)!} \theta_{2r}(F; x_0, h) = \frac{F(x_0 + h) + F(x_0 - h)}{2} - \sum_{k=0}^{r-1} \frac{h^{2k}}{(2k)!} D_{2k}F(x_0)$$

and define

(4)

$$egin{align} ar{D}_{zr}F(x_{\scriptscriptstyle 0}) &= \limsup_{h o 0} \, heta_{zr}(F;\, x_{\scriptscriptstyle 0},\, h) \;, \ &\ \underline{D}_{zr}F(x_{\scriptscriptstyle 0}) &= \liminf_{h o 0} \, heta_{zr}(F;\, x_{\scriptscriptstyle 0},\, h) \;. \end{gathered}$$

F will be said to satisfy Condition C_{2r} in [a, b] if and only if

- (a) F is continuous in]a, b[,
- (b) $D_{2k}F$ exists, is finite, and has no simple discontinuities in $]a, b[0 \le k \le r 1,$
- (c) $\lim_{h\to 0} h\theta_{2r}(F;x,h) = 0, x\in]a,b[\sim E, \text{ where } E \text{ is countable.}$

In particular C_2 requires F to be continuous in]a, b[and smooth in $]a, b[\sim E.$

In a similar way the de la Vallée Poussin derivatives of odd order can be defined by replacing (1) by

$$(1)' \qquad rac{F(x_{\scriptscriptstyle 0}+h)-F(x_{\scriptscriptstyle 0}-h)}{2} = \sum\limits_{k=0}^r eta_{\scriptscriptstyle 2k+1} rac{h^{\scriptscriptstyle 2k+1}}{(2k+1)!} + o(h^{\scriptscriptstyle 2r+1}) \, ,$$

as $h \to 0$, with similar changes in (2), (3) and (4). If it is true that

(5)
$$F(x_0 + h) - F(x_0) = \sum_{k=1}^r \alpha_k \frac{h^k}{k!} + o(h^r), \text{ as } h \to 0$$

where $\alpha_1, \dots, \alpha_r$ depend on x_0 only, and not on h, then $\alpha_k, 1 \leq k \leq r$, is called the *Peano derivative of order* k of F at x_0 , and we write $\alpha_k = F_{(k)}(x_0)$. If F possesses derivatives $F_{(k)}(x_0), 1 \leq k \leq r-1$, write

$$(6) \qquad \frac{h^r}{r!} \gamma_r(F; x_0, h) = F(x_0 + h) - F(x_0) - \sum_{k=1}^{r-1} \frac{h^k}{k!} F_{(k)}(x_0),$$

then proceeding as in (3) we define $\overline{F}_{(r)}(x_0)$ and $\underline{F}_{(r)}(x_0)$. Further by restricting h to be positive, or negative, in (5), or (6) we can define one-sided Peano derivatives, written $F_{(k),+}(x_0)$, $F_{(k),-}(x_0)$, $\overline{F}_{(k),+}(x_0)$, etc. It is easily seen, [3], that if $F_{(k)}(x_0)$, $1 \leq k \leq r$, exists then

(7)
$$F_{(r)}(x_0) = \lim_{k \to 0} \frac{1}{h^r} \sum_{k=0}^r (-1)^k \binom{r}{k} F(x + (r-k)h).$$

It is shown in [7] that the condition C_n , n=2r or 2r+1, holds automatically for the Peano derivatives. If we say $F_{(k)}$, $1 \le k \le r$, exists in an (a, b) we will mean that $F_{(k)}$ exists in a, b and that the appropriate one sided derivates exists at those of the points a and b that are in (a, b).

Let x_0, \dots, x_r be (r+1) distinct points from [a, b] then the rth divided difference of F at these (r+1) points is defined by

(8)
$$V_r(F) = V_r(F; x_r) = V_r(F; \{x_k\}) = V_r(F; x_0, \dots, x_r)$$

$$= \sum_{k=0}^r \frac{F(x_k)}{w'(x_k)},$$

where

(9)
$$w(x) = w_r(x) = w_r(x; x_k)$$
, etc. $= \prod_{k=0}^{r} (x - x_k)$.

This rth divided difference has the following properties, which we collect for reference in

LEMMA 1. (a) $V_r(F; x_k) = 0$ for all choices of points x_0, \dots, x_r if and only if F is a polynomial of degree at most r-1.

- (b) If F is a polynomial of degree r then for all x_0, \dots, x_r , $V_r(F; x_k) = coefficient$ of x^r .
- (c) $V_r(F; x_0, \dots, x_r)$ is independent of the order of the points x_0, \dots, x_r .

(d) There is a simple relation between successive divided differences given by

(10)
$$(x_0 - x_r) V_r(F; x_0, \dots, x_r)$$

$$= V_{r-1}(F; x_0, \dots, x_{r-1}) - V_{r-1}(F; x_1, \dots, x_r) .$$

(e) For any F we have the Newton Interpolation Formula,

(11)
$$F(x) = F(x_1) + \sum_{k=1}^{r-1} V_k(F; x_1, \dots, x_{k+1}) w_{k-1}(x; x_i) + V_r(F; x, x_1, \dots, x_r) w_{r-1}(x; x_k).$$

This last formula can be written differently as follows. Given the (r+1) points P_k , $0 \le k \le r$, with coordinates $(x_k, F(x_k))$, $0 \le k \le r$, respectively, there is a unique polynomial of degree at most r passing through these points given by

(12)
$$\pi_r(F; x; P_k) = \pi_r(x; P_k) = \pi_r(x; x_0, x_0, \dots, x_r), \text{ etc.}$$

$$= \sum_{k=0}^r F(x_k) \prod_{\substack{j=0 \ j \neq k}}^r \frac{(x-x_j)}{(x_k-x_j)}.$$

This formula (12) is known as the Lagrange Interpolation Formula. It is easily seen that for all (r + 1) distinct y_0, \dots, y_r

$$(13) V_{\alpha}(\pi_{\alpha}; y_{\nu}) = V_{\alpha}(F; x_{\nu}).$$

Then (11) can be written

(14)
$$F(x) = \pi_{r-1}(F; x; x_k) + V_r(F; x, x_1, \dots, x_r) w_{r-1}(x; x_k).$$

Using the divided difference we now define another derivative. Suppose all of x, x_0, \dots, x_r are in [a, b] and

(15)
$$x_k = x + h_k, \ 0 \le k \le r, \quad \text{with}$$
$$0 \le |h_r| < \dots < |h_r|.$$

then the rth Riemann derivative of F at x is defined by

(16)
$$D^{r}F(x) = \lim_{h_{r}\to 0} \cdots \lim_{h_{0}\to 0} r! \ V_{r}(F; x_{k})$$

if this iterated limit exists independently of the manner in which the h_k tend to zero, subject only to (15). In a similar manner we define the upper and lower derivatives; and if the h_k all have the same sign the one-sided derivatives; these will be written $\bar{D}^r F(x)$, $\bar{D}^r_+ F(x)$, etc. If we say $D^r F$ exists in (a, b) we make the same gloss as for $F_{(r)}$.

Since we can let h_0, \dots, h_s very first and then h_{s+1}, \dots, h_r the above definition and (10) imply that if $D^rF(x)$ exists then so does $D^kF(x)$, $1 \le k \le r$; or more generally if $\bar{D}_+^rF(x)$ is finite then $\bar{D}_+^kF(x)$ is finite,

 $1 \le k \le r$. Remark however that even if $D_+^r F(x)$ and $D_-^r F(x)$ exist, are finite and equal, this does not imply that $D^r F(x)$ exists, [15, p. 26]. If instead of (15) and (16) we have

$$(15)' h_k = (r - 2k)h, 0 \le k \le r,$$

(16)'
$$D_s^r F(x) = \lim_{x \to \infty} r! \ V_r(F; x_k) ,$$

(with obvious modifications for the upper and lower derivatives), this is called the r^{th} symmetric Riemann derivative. In particular the cases r=1,2 coincide with definitions of D_1F , D_2F respectively. In general if $\bar{D}_s^rF < \infty$ in]a,b[then $F_{(r)}$ exists and equals \bar{D}_s^rF almost everywhere, [12].

The usual rth order derivative of F at $x, x \in (a, b)$, will be written $F^{(r)}(x)$.

Theorem 2. If $x \in [a, b[$ then $D_+^r F(x) = F_{(r),+}(x),$ provided one side exists.

Proof. Suppose first that $F_{(r),+}(x)$ exists; then taking the rth divided difference of F(x+h), (considered as a function of h) at the points $h_0, h_1, \dots, h_r, 0 \le h_0 < \dots < h_r$, using (5) and Lemma 1 (a), (b) we see that

$$r! \ V_r(F; x + h_k) = F_{(r),+}(x) + V_r(o(h^r); h_k)$$
.

Letting h_0, \dots, h_r tend to 0 successively we get that $D_+^r F(x)$ exists and equals $F_{(r),+}(x)$.

If now we suppose that $D_+^r F(x)$ exists then the rest of the theorem follows using Lemma 1(e).

A similar result obviously holds for lefthanded and two-sided derivatives; the latter is due to Denjoy [6] and Corominas [4], who give different proofs.

COROLLARY 3. (a) If $x \in [a, b]$ and $F_{(k),+}(x)$ exists $1 \le k \le r-1$ then $\overline{F}_{(r)+}(x) = \overline{D}_+^r F(x)$, and $\underline{F}_{(r),+}(x) = \underline{D}_+^r F(x)$.

- (b) If $x \in]a$, b[and $D^kF(x)$ exists $1 \le k \le r-1$ and $D_+^rF(x)$, $D_-^rF(x)$ exist and are equal then $D^rF(x)$ exists, and is equal to this common rule.
- *Proof.* (a) is proved by a simple adaption of the proof of Theorem 2. (b) holds since the similar result holds for Peano derivatives.

The following results due to Burkill [3], Corominas [4], and Olivier [14] should be noted.

THEOREM 4. (a) If $F_{(r-1)}$ exists, in [a, b] and if

$$\inf [F_{(r),+}, F_{(r),-}] > A > -\infty$$
,

then $F_{(r-1)}$ is continuous.

- (b) If $F_{(r)}$ is continuous in [a, b] then $F^{(r)}$ exists, and $F^{(r)} = F_{(r)}$.
- (c) If $F_{(r)}$ exists at all points of [a, b] then $F_{(r)}$, possesses both the Darboux property and the mean-value property.

The definitions of the terms used in (c) can be found in [14].

3. n-convex functions. A real-valued function F defined on the closed bounded interval [a, b] is said to be n-convex on [a, b] if and only if for all choices of (n + 1) distinct points, x_0, \dots, x_n , in [a, b], $V_n(F; x_k) \geq 0$, [4, 7, 15]. If -F is n-convex then F is said to be n-concave. The only functions that are both n-convex and n-concave are polynomials of degree at most n-1, (Lemma 1).

If n=1 this is just the class of monotonic increasing functions and n=2 is the class of convex functions; (the class n=0 is just the class of nonnegative functions, but we will usually only be interested in $n \ge 1$).

THEOREM 5. Let

$$P_k = (x_k, y_k), 1 \leq k \leq n, n \geq 2, a \leq x_1 < \cdots < x_n \leq b$$

be any n distinct points on the graph of the function F. Then F is n-convex if and only if for all such sets of n distinct points, the graph lies alternately above and below the curve $y = \pi_{n-1}(F; x; P_k)$, lying below if $x_{n-1} \leq x \leq x_n$. Further $\pi_{n-1}(x; P_k) \leq F(x)$, $x_n \leq x \leq b$; and $\pi_{n-1}(x; P_k) \leq F(x) (\geq F(x))$ if $a \leq x < x_1$, n being even (odd).

Proof. Let $x_0 \neq x_k$, $1 \leq k \leq n$, $x_1 < x_0 < x_n$ and suppose in fact $x_j < x_0 < x_{j+1}$. If F is n-convex then $V_n(F; x_0, \dots, x_n) \geq 0$; i.e.,

$$\sum_{k=1}^{n}rac{F(x_{k})}{w_{n}^{'}(x_{k})}\geqq-rac{F(x_{0})}{w_{n}^{'}(x_{0})}$$
 ,

or $F(x_0) \ge -\sum_{k=1}^n F(x_k) [w_n'(x_0)/w_n'(x_k)] = \pi_{n-1}(x_0, P_k)$, if (n-j) is even, but $F(x_0) \le \pi_{n-1}(x_0, P_k)$ if (n-j) is odd. This proves the necessity; the sufficiently is immediate by reversing the argument. The last remark follows in a similar way by considering $x_n < x_0 < b$, and $a \le x_0 < x_1$.

This theorem generalizes the property that a convex function always lies below its chord.

THEOREM 6. If F is an n-convex function on [a, b] and

$$a \le x_1 < \cdots < x_n \le b, \, a \le z_1 < \cdots < z_n \le b, \, z_k \le x_k, \, 1 \le k \le n$$
 , then $V_{n-1}(F;z_k) \le V_{n-1}(F;x_k)$.

The following particular case suffices to prove this result.

$$x_k = z_k, k \neq j + 1, x_i < z_{i+1} < x_{i+1}$$
.

Then, as in Theorem 5,

$$sign[F(z_{j+1}) - \pi_{n-1}(z_{j+1}; x_k)] = (-1)^{n-j}$$
.

Hence, with this π_{n-1} ,

$$V_{n-1}(F;z_k) - V_{n-n}(\pi_{n-1};z_k) = rac{F(z_{j+1}) - \pi_{n-1}(z_{j+1};x_k)}{\prod\limits_{\substack{k=1 \ k
eq j+1}}^n (z_{j+1} - x_k)} \leqq 0$$
 .

That is

$$V_{n-1}(F; z_k) \le V_{n-1}(\pi_{n-1}; z_k)$$

= $V_{n-1}(F; x_r)$, by (13).

THEOREM 7. If F is n-convex in [a, b] then

- $F^{(r)}$ exists and is continuous in [a,b], $1 \leq r \leq n-2$,
- (b) both $F_{(n-1),-}$, $F_{(n-1),+}$ are monotonic increasing and if

$$a \leq x_1 < \cdots < x_n \leq x \leq y_1 < \cdots < y_n \leq b$$

then

(18)
$$(n-1)! \ V_{n-1}(F; x_k) \leq F_{(n-1),-}(x)$$

$$\leq F_{(n-1),+}(x) \leq (n-1)! \ V_{n-1}(F; y_k) ,$$

- (c) $F_{(n-1),+} = (F^{(n-2)}'_+, F_{(n-1),-} = (F^{(n-2)})'_-,$ (d) $F^{(n-1)}$ exists at all except a countable set of points.

Proof. Using Theorem 2, it is an immediate consequence of Theorem 6 that $F_{\scriptscriptstyle (r),+}$ exists in [a, b[, $F_{\scriptscriptstyle (r),-}$ exists in]a, b], $1 \leq r \leq n-1$ and that (b) holds.

From (b) we get that both $F_{(n-1),+}$, $F_{(n-1),-}$ are continuous except on a countable set. Then, again from (b), we have that $F_{(n-1),+}$ $F_{(n-1),-}$ except on a countable set.

Then if we prove (a) and (c), (d) is immediate.

Suppose $a \leq x_1 < \cdots < x_n \leq b$ then repeated application of (10) gives

$$V_{n-1}(F;x_1,\,\cdots,\,x_n) = rac{V_1(F;x_1,\,x_2)\,-\,V_1(F;\,x_2,\,x_3)}{x_1\,-\,x_3}\,-\,V_2(F;\,x_2,\,x_3,\,x_4) = rac{(x_1\,-\,x_4)}{(x_1\,-\,x_n)}$$

Now let $x_1 \rightarrow x_2$, then by Theorem 6 the left-hand side of this expression tends to a finite limit, K_1 say: i.e.,

$$K_1(x_2, \, \cdots, \, x_n) = rac{ rac{D^1 F(x_2) \, - \, V_1(F; \, x_2, \, x_3)}{(x_2 \, - \, x_3)} \, - \, V_2(F; \, x_2, \, x_3, \, x_4) }{(x_2 \, - \, x_4)} \, \cdots \, .$$

If now $x_3 \to x_2$ we get a finite limit on l.h.s. of this last expression: hence $D_-^1F(x_2) = D_+^1F(x_2)$; that is $DF(x_2)$ exists. A similar argument shows DF is continuous in |a, b|.

In a similar way, expressing V_{n-1} in terms of V_2 , V_3 , ... we show that $D_+^2F(x_3)=D_-^2F(x_3)$ and so by Corollary 3(b), $D^2F(x_3)$ exists then as above D^2F exists and is continuous in]a,b[.

In this way we show D^rF exists and is continuous in]a, b[, $1 \le r \le n-2$. Hence, by Theorem 2, $F_{(r)}$ exists and is continuous in [a, b[, $1 \le r \le n-2$ and so finally, by Theorem 4(b), the same is true of $F^{(a)}$. This proves (a).

For the proof of (c) let $x_0 < \cdots < x_{2n-3}$ then repeated application of (10) gives

$$\sum_{k=0}^{n-2} (x_k - x_{k+n-1}) V_{n-1}(F; x_{k,...}, x_{k+n-1})$$

$$= V_{n-2}(F; x_{0,...}, x_{n-2}) - V_{n-2}(F; x_{n-0,...}, x_{2n-3}).$$

Let $x_k \to x_0$, $1 \le k \le n-2$, $x_k \to x_{n-1}$, $n \le k \le 2n-3$ then by Theorem 6 the limit on the left hand side exists, and the value limit on the right hand side follows from (a). Thus we get an expression of the form

$$(n-1)(x_0-x_{n-1})K(x_0,x_{n-1})=\frac{1}{(n-2)!}\{F_{(x_0)}^{(n-2)}-F_{(x_{n-1})}^{(n-2)}\}.$$

Now dividing and letting $x_{n-1} \to x_0$ we get

$$(n-1)! \lim_{x_{n-1} o x_0 + 1} K(x_0, x_{n-1}) = (F^{(n-2)})'_+(x_0)$$
;

a simple application of (11) shows that the left hand side of this last expression is equal to $F_{(n-1),+}(x_0)$. This completes the proof of the first

part of (c), the rest follows using a similar argument.

Formula (18) is due to James [7, Lemma 10.4], who however assumes the existence of $F_{(n-1)}$ in]a, b[.

- COROLLARY 8. (a) F is n-convex on [a, b] if and only if F differs by a polynomial of degree at most (n-1) from $\int_a^x (x-t)^{n-1} \mu(dt)$, for some Lebesgue-Stieltjes measure μ . In particular if and only if F is the (n-1)st integral of a monotonic function.
- (b) If F is n-convex in [a, b], $|F| \leq k$, then $|F_{(k)}(x)| \leq AK \sup \{1/(b-x)^k, 1/(x-a)^k\}$, $0 \leq k \leq n-1$ where A is a constant independent of k, F and x, and where if k=n-1 the derivative is to be interpreted as $\sup (|F_{(n-1),+}(x)|, |F_{(n-1),-}(x)|)$.
- (c) If F is n-convex on [a, b], $a \le x \le y \le b$, $a \le x + h \le y$, and $x \le y + k \le b$ then

$$\gamma_{n-1}(F; x; h) \leq F_{(n-1),-}(y)$$
 and $F_{(n-1),+}(x) \leq \gamma_{n-1}(F; y; k)$.

Proof. (a) This is immediate from Theorem 7 (b).

(b) From (18) we have that

$$\frac{1}{(n-1)!} \sum_{k=0}^{n-1} \frac{F(x_k)}{w'(x_k)} \leq \sup \left\{ F_{(n-1),+}(x), F_{(n-1),-}(x) \right\} \leq \frac{1}{(n-1)!} \sum_{k=0}^{n-1} \frac{F(y_k)}{w'(y_k)}$$

from which (b) in the case k = n - 1 is easily deduced. The rest follows by integration, using, (a).

(c) Immediate using (18), (11), (6) Theorems 2 and 4.

The definition, (12), of $\pi_r(x; P_k)$ can be extended to cover the case when not all of the P_k are distinct. Thus if only s of these points are distinct then besides giving the values at the s points, a total of r+1-s derivatives must also be given—either r+1-s derivatives all at one point, or r+1-s first derivatives at r+1-s distinct points, (when $r+1-s \le s$), etc. Theorem 5 can be extended, using Theorems 6, 7 and taking limits; thus as an example of many possible extensions we state

THEOREM 9. Let $P_k = (x_k, y_k)$, $1 \leq k \leq r$, $a \leq x_1 < \cdots < x_r \leq b$, be r distinct points on the graph of the function F. Suppose that $F_{(s),+}(x_1)$ exists, $1 \leq s \leq n-r$. Then Theorem 5 holds if $\pi_{n-1}(x; P_k)$ is taken to have $\pi_{n-1}(x_s; P_k) = F(x_s)$, $1 \leq s \leq r$, $\pi_{n-1}^{(r)}(x_1; P_k) = F_{(s),+}(x_1)$, $1 \leq s \leq n-r$, and if P_1 is considered as n-r+1 points at and to the right of P_1 but to the left of P_2 .

THEOREM 10. (a) If F is n-convex on [a,b] and $P_k=(x_k,y_k)$, $1 \le k \le n$ are n distinct points on the graph of F, $a \le x_1 < b$, let

 $x_k = x_1 + \varepsilon_k h$, $0 < \varepsilon_2 < \cdots < \varepsilon_n$; then as $h \to 0+$, $\pi_{n-1}(x; P_k)$ converges uniformly to the right tangent polynomial at x_1 ,

(19)
$$\tau_{n,+}(F; x; x_1) = \tau_{+}(x) = F(x_1) + \sum_{k=1}^{n-2} \frac{(x - x_1)^k}{k!} F^{(k)}(x_1) + \frac{(x - x_1)^{n-1}}{(n-1)!} F_{(n-1),+}(x_1), x_1 \leq x \leq b .$$

Further on the right of $x_1, \tau_+ \leq F$.

- (b) A similar result holds for the left tangent polynomial at $x_1, \tau_-(x; x_1), a \le x \le x_1, a < x_1 \le b$. However in this case if n is even (odd) then on the left of $x_1, \tau_- \le F(\ge F)$.
- (c) At all but a countable set of points x_1 , a similar result holds for the tangent polynomial at x_1 , $\tau(x_1; x)$, a < x < b, $a < x_1 < b$. However if n is even the graph of τ lies below that of F, whereas if n is odd the graphs cross, τ being above on the left of x_1 , and below on the right of x_1 .

Proof. It suffices to consider (a). But (a) is a simple consequence of Theorems 5, 7, (11), and (14).

Corollary 11. (a) If F is n-convex in [a, b] then

$$\inf \left\{ \underline{F}_{\scriptscriptstyle(n),+},\,\underline{F}_{\scriptscriptstyle(n),-} \right\} \geqq 0 \; .$$

- (b) If F is n-convex in [a, b] and $F_{(n-1)}$ exists in [a, b] then it is continuous.
- (c) If F is n-convex in [a,b] then $F_{(n-1),+}$ is upper-semi continuous (u.s.c.), $F_{(n-1),-}$ is lower semi-continuous (l.s.c.).

Proof. (a) Suppose in Theorem 10, for simplicity, that $x_1 = 0$. Then F lies above the right tangent polynomial at x = 0, i.e.,

$$\frac{F(x)-\tau_+(x)}{x^n}\geqq 0,$$

in some interval [0, h]. Hence $\underline{F}_{\scriptscriptstyle(n),+}(0) \geq 0$: in a similar way $\underline{F}_{\scriptscriptstyle(n),-}(0) \geq 0$.

- (b) Immediate from (a), Theorem 4(a), Theorem 7(a).
- (a) This is just Theorem 3.2 [3], adapted to one sided derivatives. The following theorem generalizes a result well known when n = 1, [13, Corollary 32.3] and n = 2 [7, Th. 4].

THEOREM 12. If F is n-convex on [a,b], $a<\alpha<\beta< b$, $E_k=\{x;\, \alpha\leq x\leq \beta \ \ and \ \ \bar{F}_{(n)}(x)\geq k\}$ then

(20)
$$km^*(E_k) \le 2n\{F_{(n-1),-}(\beta) - F_{(n-1),+}(\alpha)\}$$

(where m* denotes the outer Lebesgue measure).

Proof. For simplicity we will ignore the countable set where $F_{(n-1)}$ may not exist and suppose that k>0. Further let E_k^+ be as E_k but with $\bar{F}_{(n),+}$ instead of $\bar{F}_{(n)}$ and suppose $m^*E_k^+>0$; with a similar definition for E_k^- .

If then $\varepsilon>0,\,x\in E_k^+$ there is an h>0 such that

$$\gamma_n(F; x; h) \geq \bar{F}_{(n),+}(x) - \varepsilon \geq k - \varepsilon$$
.

So, by [20], there is a finite family of nonoverlapping intervals $[x_i, x_i + h_i]$, $i = 1, \dots, p$ such that $x_p + h_p \leq \beta$,

$$\gamma_n(F; x_i, h_i) \geq k - \varepsilon, i = 1, \dots, p$$
,

and

$$\sum\limits_{i=1}^{p}h_{i}\geq m^{st}E_{k}^{+}-arepsilon$$
 .

Thus

$$\sum_{i=1}^{p}h_{i}\gamma_{n}(F;x_{i},h_{i})\geq(k-arepsilon)(m^{st}E_{k}^{+}-arepsilon)$$
 ;

but since

(21)
$$h\gamma_n(F; x, h) = n\{\gamma_{n-1}(F; x, h) - F_{(n-1)}(x)\}$$

we have that

$$\sum_{i=1}^p \left\{ \gamma_{n-1}(F;x_i,h_i) - F_{(n-1)}(x_i) \right\} \geq \frac{k-\varepsilon}{n} (m^*E_k^+ - \varepsilon)$$
.

However by Corollary 8(c)

$$egin{align} \sum_{i=1}^{p-1} \left\{ {F}_{(n-1)}(x_{i+1}) \, - \, {\gamma}_{n-1}(F;\, x_i,\, h_i)
ight\} & \geq 0 \; , \ F_{(n-1)}(x_i) \, - \, F_{(n-1)}(lpha) & \geq 0 , \ F_{(n-1)}(eta) \, - \, {\gamma}_{n-1}(F;\, x_p,\, h_p) & \geq 0 \; . \ \end{array}$$

Adding the last four inequalities we get that

$${F}_{(n-1)}(eta)-{F}_{(n-1)}(lpha)\geqqrac{k-arepsilon}{n}(m^*E_k^+-arepsilon)$$
 .

This together with a similar inequality for E_k^- , implies (20).

A function that is the difference of two *n*-convex functions will be called δ -*n*-convex; as in the cases n = 1 and n = 2, [16], such

functions can be characterized by their variational properties.

If F is defined on [a, b] as well as $F_{(k)}$, $1 \le k \le n-1$, let us write

$$\omega_n(F; a, b) = \omega_n(a, b)$$

$$= \max \{ \sup_{a < x < b} |(x - a)\gamma_n(F; a; x - a)|,$$

$$\sup_{a < x < b} |(b - x)\gamma_n(F; a; b - x)| \};$$

this quantity was introduced by Sargent [19].

THEOREM 13. A function F defined on [a, b] is δ -n-convex if and only if either of the following conditions is satisfied.

- (a) $\sum_{k=1}^{m} \omega_n(F; a_k, b_k) < K$ for all finite sets of nonoverlapping intervals, $[a_k, b_k], 1 \leq k \leq m$.
- (b) $\sum_{k=0}^m |(x_k-x_{k+n})V_n(F;x_k,\cdots,x_{k+n})| < K$ for all finite sets of distinct points x_0,\cdots,x_{m+n} .

Proof. The discussion of (b) is similar to the case n=2 in [16] but using Corollary 8(a).

If (a) is satisfied then $F_{(n-1)}$ is of bounded-variation [19, Lemma 1], and so by Corollary 8(a) F is δ -n-convex.

If F is n-convex then by (21) and Corollary 8(c),

$$(x-a)\gamma_n(F;a;x-a) = n\{\gamma_{n-1}(F;a;x-a) - F_{(n-1)}(a)\} \ge 0$$

and so by Corollary 8(c)

(22)
$$\omega_n(F; a, b) \leq n\{F_{n-1}(b) - F_{(n-1)}(a)\}$$
.

From this it easily follows that if F is δ -n-convex then (a) holds.

4. Sufficient conditions for n-convexity. In this section we obtain some sufficient conditions for a function to be n-convex. First we prove the following generalization of a well-known property of convex functions.

THEOREM 14. (a) If F is n-convex in [a, b] then $F^{(n-2)}$ has no proper maximum in [a, b].

- (b) A function F with continuous derivative of order (n-2) is n-convex if and only if no function of the form $F(x) + \sum_{k=0}^{n-1} a_k x^k$ has its derivative of order (n-2) attaining a maximum in a, a.
- *Proof.* (a) Suppose $F^{(n-2)}$ has a proper maximum at x_0 , then consider $G(x) = F(x) \pi_{n-2}(x; P_k)$, where the polynomial π_{n-2} is determined uniquely by the conditions

$$G(x_0) = G'(x_0) = \cdots = G^{(n-2)}(x_0) = 0$$
.

Now consider $\pi_{n-2}(x;Q_k)$ where $Q_k=(x_k,G(x_k)), 0 \leq k \leq n-2$, $x_0<\cdots< x_{n-2}$. Then by Theorem III [4], (13), and Lemma 1(b), the coefficient of x^{n-2} in $\pi_{n-2}(x;Q_k)$ is $G^{(n-2)}(x_0+\delta), x_0+\delta$ being some point in $]x_0, x_{n-2}[$. Hence, using Theorem 7(a), since x_0 is a proper maximum of $G^{(n-2)}$ and $G^{(n-2)}(x_0)=0$, if x_0,\cdots,x_{n-2} are close enough together this coefficient is not positive.

Let $x_k \to x_0$, $1 \le k \le n-3$ then $\pi_{n-2}(x; Q_k)$ becomes a polynomial of degree n-2 with its value and that of its first (n-3) derivatives at x_0 being zero; it's (n-2)nd derivative is nonpositive. Hence, by Theorem 9, $G \le 0$ in $[x_0, x_{n-2}]$.

In a similar way $G \ge 0 (\le 0)$ in some interval to the left of x_0 when n is odd (even). Further in every such interval around x_0 there are points where these inequalities are strict.

Now consider the (n + 1) points z_0, \dots, z_n where

$$z_0 < z_1 \cdots < z_{1n/21} = x_0 < \cdots < z_n$$
.

Then

$$V_{\scriptscriptstyle n}(F;z_{\scriptscriptstyle k}) = \, V_{\scriptscriptstyle n}(G;z_{\scriptscriptstyle k}) = rac{G(z_{\scriptscriptstyle 0})}{w_{\scriptscriptstyle n}'(z_{\scriptscriptstyle 0})} + \, F + rac{G(z_{\scriptscriptstyle n})}{w_{\scriptscriptstyle n}'(z_{\scriptscriptstyle n})} \geqq 0 \; .$$

If then $z_1, \dots z_{n-1}$ tend to x_0 then $K \to 0$ and we get

$$rac{G(z_0)}{(z_0-x_0)^{n-1}(z_0-z_n)}+rac{G(z_n)}{(z_n-x_0)^{n-1}(z_n-z_0)}\geqq 0$$
 .

But whether n is even, or odd both terms on the l.h.s. of this expression can be chosen to be negative-which contradiction completes the proof of (a).

(b) The necessity is evident. Suppose then that F is not n-convex. Then by Theorem 5 there exists a polynomial $\pi_{n-1}(x; P_k)$ such that the two curves y = F(x), $y = \pi_{n-1}(x; P_k)$ do not intertwine correctly.

Consider $G(x) = F(x) - \pi_{n-1}(x; P_k)$; then $G(x_1) = \cdots = G(x_n) = 0$ and G changes sign at most (n-2) times. Hence $G^{(n-2)}$ has three zeros and so has a local maximum. This completes the proof.

COROLLARY 15. (a) If F is n-convex then $F^{(r)}$ is (n-r)-convex, $1 \le r \le n-2$.

(b) If F is n-convex then $F^{(n)}$ exist a.e.

Proof. (a) The case r=n-2 is just Theorem 14(b). In general $F^{(k)}$, $1 \le k \le n-3$, has a continuous derivative of order n-k-2 satisfying the hypotheses of Theorem 14(b), and hence $F^{(k)}$ is (n-k)-convex.

(b) Since $F^{(n-2)}$ is convex this follows immediately from well known properties of convex functions.

Note that the case r = n - 1 of Corollary 15(a) is just the last part of Theorem 7(b).

We now wish to prove a converse of Corollary 11(a). Because of applications to symmetric Perron integral, [7], this converse will be obtained in terms of de la Vallée Poussin derivatives and the results in terms of Peano derivatives will be simple corollaries. A direct proof could be constructed from the proof of the more general results.

THEOREM 16. If F satisfies C_{2m} , $m \ge 1$, in]a, b[and

- (a) $\bar{D}_{2m}F(x) \geq 0, x \in]a, b[\sim E, |E| = 0,$
- (b) $ar{D}_{2m}F(x)>-\infty$, $x\in]a,\,b[\, \sim S,\,\,S\,\,a\,\,\,scattered\,\,set,$
- (c) $\limsup_{h\to 0} h\theta_{2m}(F;x;h) \geq 0 \geq \liminf_{h\to 0} h\theta_{2m}(F;x;h), x \in S$ then F is 2m-convex. (A set is said to be scattered if it contains no subsets that are dense in themselves.)

Proof. If E=S then by Theorem 6.1, [9], (a), (b), (c) imply $\bar{D}_{2m}F \geq 0$ in]a,b[and so the result follows from Theorem 4.2, [8].

Given $\varepsilon>0$, T, |T|=0, $T\in G_{\delta}$, $T\neq\varnothing$ let $\chi_{\varepsilon,T}=\chi$ be a function on [a,b] such that

- (i) γ is absolutely continuous,
- (ii) χ is differentiable,
- (iii) $\chi'(x) = \infty$, $x \in T$,
- (iv) $0 \leq \chi'(x) < \infty, x \notin T$,
- (v) $\chi(a) = 0$, $0 \le \chi(b) \le \varepsilon/(b-a)^{2m-1}$. That such a function exists is well known, [21]. Then define

(23)
$$\Psi_{\varepsilon,T,2m}(x) = \Psi(x) = \frac{1}{(2m-2)!} \int_a^x (x-t)^{2m-2} \chi(t) dt,$$

the (2m-1)st integral of χ . Then $\Psi^{(2m-1)}(x)=\chi(x)$ and, using (2), we have on integrating by parts that

$$\begin{array}{ll} (24) & \frac{h^{2m}}{2m!} \theta_{2m}(\Psi;x;h) = \frac{1}{2(2m-2)!} \int_0^h (h-t)^{2m-2} \{\chi(x+t) - \chi(x-t)\} dt \\ \\ & \geq \frac{1}{2(2m-1)!} \chi'(x) \cdot h^{2m} \;, \end{array}$$

SO

$$\underline{D}_{2m}\Psi(x) \geq m\chi'(x) \geq 0$$
.

If now $E \subset T$ then we easily see that (i) Ψ is C_{2m} , and 2m-convex, (ii)

 $D_{2m}\Psi(x) \geq 0$, (iii) $D_{2m}\Psi(x) = \infty$, $x \in E$, (iv) $0 \leq \Psi \leq \varepsilon$.

Hence if we write $\Psi_n = \Psi_{\epsilon}$, with $\epsilon = 1/n$, and put $G_n = F + \Psi_n$ then G_n satisfies the conditions of the theorem with E = S, and so by the above is 2m-convex. Letting $n \to \infty$ we then get that F is 2m-convex.

The case of $m=1, E=\emptyset, S$ countable is a classic result about convex functions, [22].

COROLLARY 17. If F,G are defined in [a,b] and (a) F-G is C_{2m} , (b) $\overline{D}_{2m}(F-G)(x) \geq 0 \geq \underline{D}_{2m}(F-G)(x)$ for $x \in]a,b[\sim E,|E|=0$, (c) $D_{2m}(F-G)(x) < \infty$, $\overline{D}_{2m}(F-G)(x) > -\infty$, $x \in]a,b[\sim S,S$ scattered, (d) $\limsup_{h\to 0} h\theta_{2m}(F-G;x;h) \geq 0 \geq \liminf_{h\to 0} h\theta_{2m}(F-G;x;h)$ for $x \in S$ then for all sets x_1, \dots, x_{2m} of 2m distinct points in [a,b], if $P_k = (x_k, F(x_k))$, $Q_k = (x_k, G(x_k))$, $1 \leq k \leq 2m$

(25)
$$F(x) - \pi_{2m-1}(x; P_k) = G(x) - \pi_{2m-1}(x; Q_k).$$

Proof. If F_1 , G_1 , denote the l.h.s., r.h.s., of (25) respectively then $F_1 - G_1$ is both 2m-convex and 2m-concave, by Theorem 16. So being a polynomial of degree at most 2m-1 and vanishing at x_k , $1 \le k \le 2m$, is identically zero.

This result is well known in the case m=1 when it implies that if F-G is continuous, $D_2(F-G)=0$ then F,G differ by a linear function, [10]. Kassimatis [11] pointed out that the requirement F-G continuous is not sufficient in the general case; the condition required is that of Corollary 17.

COROLLARY 18. (a) If $n \ge 2$ (i) $\overline{F}_{(n)}(x) \ge 0$, $x \in]a, b[\sim E, |E| = 0$, (ii) $\overline{F}_{(n)}(x) > -\infty$, $x \in]a, b[\sim S, S \text{ a scattered set, then } F \text{ is } n\text{-convex.}$ (b) If $n \ge 2$ (i) $\overline{(F-G)}_{(n)}(x) \ge 0 \ge \overline{(F-G)}_{(n)}(x)$, $x \in]a, b[\sim E, |E| = 0$, (ii) $\overline{(F-G)}_{(n)}(x) < \infty$, $\overline{(F-G)}_{(n)}(x) > -\infty$, $x \in]a, b[\sim S, S \text{ scattered, then } \overline{(25)} \text{ holds.}$

Proof. This is an immediate corollary of Theorem 16, Corollary 17, the analogous results for the odd-ordered derivatives and the remark made earlier that C_n is satisfied.

This result generalizes the classic case, when n = 1, see for instance, [17, p. 203]. But this can be still further extended as follows.

THEOREM 19. If $n \ge 2$, and (i) $F_{(n-1)}$ exists in [a, b], (ii) $\overline{F}_{(n),+}(x) \ge 0$, $x \in [a, b] \sim E$, |E| = 0, (iii) $\overline{F}_{(n),+}(x) > -\infty$, $x \in [a, b] \sim C$, C countable, then F is n-convex.

Proof. As in the proof of Theorem 16 we can assume that E=C and so suppose $\overline{F}_{(n),+}(x) \geq 0$ except when $x=x_0, x_1, \cdots$. We may assume that for all $k \in N$, $x_k \neq b$.

Adopting a procedure due to Bosanquet [1] and Sargent [18] we exhibit for each $k \in N$ a monotonic *n*-convex function Z_k with the following properties

(i)
$$Z_k^{(r)}(a)=0, Z_k^{(r)}(b)\leqq [(b-a)^{n-r-1}/(n-r-1)!]2^{-(k+1)}arepsilon, 0\leqq r\leqq n-1,$$

- (ii) $\overline{(F+Z_k)}_{(n),+}(x_k) \geq 0$,
- (iii) $V_n(Z_k; y_r) \leq K2^{-(k+1)}\varepsilon$, for all (n+1) distinct points y_0, \dots, y_n . Then if we define $G(x) = F(x) + \sum_{k \in N} Z_k(x)$, $G_{(n),+}(x) \geq 0$ everywhere and so is n-convex, by usual arguments; but

$$V_n(G; y_r) = V_n(F; y_r) + \sum_{k \in N} V_n(Z_k; y_r)$$

and so $V_n(F; y_r) \ge -K\varepsilon$, which implies F is n-convex.

It remains to define the function Z_k . Since C_n is satisfied, we have, by (4) and (6), $\lim_{n\to 0}h\gamma_n(F;x_k;h)=0$ so we can find a sequence $y_1,\,y_2,\,\cdots$ in $[x_k,\,b[$ such that $0< y_{s+1}-x_k=h_{s+1}<\frac{1}{2}(y_s-x_k)=h_s/2$, and $h_s\gamma_n(F;x_k;h_s)>-\varepsilon\cdot 2^{-(k+s)}$. Now define the function z_k in such a way as to be continuous and

$$egin{align} z_k(x) &= 0, \, a \leq x \leq x_k, \ &= 2^{-(k+1)} arepsilon, \, y_1 < x \leq b, \ &= 2^{-(k+s)} arepsilon, \, x = y_s, \, s = 1, \, 2, \, \cdots, \ &= ext{linear in } [y_{s+1}, \, y_s], \, s = 1, \, 2, \, \cdots. \end{array}$$

Then z_k is continuous, increasing on [a, b], $z_k(a) = 0$, $z_k(b) = 2^{-(k+1)}\varepsilon$, $z_k(x_k) = 0$, $z_k(x)/x - x_k$ decreases in $]x_k$, b[. It is then easily checked that

$$\int_0^{h_s} (h_s-t)^{n-2} z_k(x_k+t) dt \geq rac{z_k(y_s) h_s^{n-1}}{n(n-1)} = rac{2^{-(k+s)} h_s^{n-1} arepsilon}{n(n-1)}$$
 .

Define then,

$$Z_k(x) = \frac{1}{(n-2)!} \int_a^x (x-t)^{n-2} z_k(t) dt$$
,

the (n-1)st integral of z_k . Then $Z_k^{(n-1)} = z_k$ and using Theorem 7, and Corollary 8, Z_k clearly has all properties wanted except possibly (ii). This we now check. First note that by (21)

$$h_s \gamma_n(Z_k; x_k, h_s) = n \gamma_{n-1}(Z_k; x_k, h_s)$$
.

So as in the proof of (23),

$$h_s \gamma_n(Z_k; x_k, h_s) = n \frac{(n-1)}{h_s^{n-1}} \int_0^{h_s} (h_s - t)^{n-2} z_k(x_k + t) dt \ge 2^{-(k+s)} \varepsilon$$
 .

Hence,

$$h_s \gamma_n(Z_k + F; x_k, h_s) \geq 0$$

which completes the proof.

A theorem of a slightly different form can be obtained using the symmetric Riemann derivatives.

Let us say a real valued function F on [a, b] is of $type\ D_r$ if for all sets of (r+1) distinct points x_0, \dots, x_r in [a, b]

(26)
$$\inf_{a < x < b} \overline{D}_s^r F(x) \leq r! V_r(F; x_k) \leq \sup_{a < x < b} \underline{D}_s^r F(x) .$$

The following simple lemmas will be useful.

LEMMA 20. If $F^{(r-2)}$ exists and is continuous in [a,b] then for sets of (r+1) distinct points x_0, \dots, x_r in [a,b]

$$\inf_{a < x < b} \bar{D}^2_s F^{(r-2)}(x) \le r! \, V_r(F; x_k) \le \sup_{a < x < b} \underline{D}^2_s F^{(r-2)}(x) \; .$$

In particular if $F^{(r)}$ exists in [a, b] then F is of type D_r .

Proof. Let $G(x) = F(x) - \pi_{r-1}(F; x_0, \dots, x_{r-1}) - \lambda P(x)$ where P is a polynomial of degree r, λ a constant determined by requiring that $G(x_k) = 0, 0 \le k \le r$ and $V_r(F; x_k) = \lambda$.

Then since G has at least (r+1) zeros $G^{(r-2)}$ has at least 3 zeros and so has a nonnegative maximum; that is for some y $V_2(G^{(r-2)}; y_1, y, y_2) \leq 0$ for all y_1, y_2 near enough to y; that is

$$2 \cdot V_{2}(G^{(r-2)}; y_{1}, y, y_{2}) = 2V_{2}(F^{(r-2)}; y_{1}, y, y_{2},) - r! \lambda \leq 0.$$

The proof now follows that in [6].

LEMMA 21. If F is of type D_n then

$$\inf_{a < x < b} \bar{D}^n_s F(x) = \inf_{a < x < b} \underline{D}^n_s F(x), \sup_{a < x < b} \bar{D}^n_s F(x) = \sup_{a < x < b} \underline{D}^n_s F(x).$$

Proof. The case n=2 and more is proved in [6, p. 9]. The proof of the general case is the same.

THEOREM 22. If F is of type D_n and (a) $\bar{D}_s^n F(x) \geq 0$, $x \in]a, b[\sim E, |E| = 0$, (b) $\bar{D}_s^n F > -\infty$, then F is n-convex.

Proof. Since the 2m-convex function Ψ of Theorem 16 is, using

Lemma 20, of type D_{2m} we can, as in Theorem 16, assume $E = \emptyset$. The result is then a trivial consequence of (26).

COROLLARY 23. If F,G are such that (a) F-G is of type D_n , (b) $\bar{D}^n_s(F-G)(x) \geq 0 \geq \underline{D}(F-G)(x), x \in]a, b[\sim E, |E| = 0, (c) <math>\bar{D}^n_s(F-G) > -\infty, \underline{D}^n_s(F-G) < \infty, \text{ then (24) holds.}$

It would be of interest to produce some reasonable conditions on F that ensure it is of type D_r . It is known, [15], that if F is continuous then F is of type D_z , but Kassimatis, [10], has pointed out that if r>2 this is false. One would expect the existence and continuity of $F^{(r-2)}$ to imply F is of type D_r but this has not been proved. Let us say F is of $type\ d_r$ when

$$\inf_{a < x < b} \underline{D}_s^r F(x) \le r! \ V_r(F; x_k) \le \sup_{a < x < b} \overline{D}_s^r F(x) .$$

If in Theorem 22 and Corollary 23 we weaken our hypothesis to F being of type d_n , obvious modifications of the other conditions will produce analogous theorems. It has been proved in [2] that if $F^{(r-2)}$ exists and is continuous, r=2,3,4, then F is d_r ; unfortunately the method fails if r>4.

BIBLIOGRAPHY

- 1. L. S. Bosanquet, A property of Cesàro-Perron integrals, Proc. Edinburgh Math. Soc. (2) 6 (1940), 160-165.
- 2. P. S. Bullen, Construction of primitives of generalized derivatives with applications to trigonometric series, Canad. J. Math. 13 (1961), 48-58.
- 3. J. C. Burkill, The Cesàro-Perron scale of integration, Proc. London Math. Soc. (2) **39** (1935), 541-552.
- 4. E. Corominas, Contribution à la théorie de la dérivation d'ordre supérieur, Bull. Soc. Math. France 81 (1953), 177-222.
- 5. A. Denjoy, Sur l'intégration des coefficients differentiels d'ordre supérieur, Fund. Math. 25 (1935), 273-326.
- 6. _____, Leçons sur le calcul des coefficients d'une serie trigonometrique, Paris, 1941.
- 7. R. D. James, Generalized nth primitives, Trans. Amer. Math. Soc. 76 (1954), 149-176.
- 8. _____, Summable trigonometric series, Pacific J. Math. 6 (1956), 99-110.
- 9. R. D. James and W. H. Gage, A generalized integral, Trans. Roy. Soc. Canad., (3) **40** (1946), 25-35.
- 10. R. L. Jeffrey, Trigonometric Series, Toronto, 1956.
- 11. C. Kassimatis, Functions which have generalized Riemann derivative, Cand. J. Math. 10 (1958), 413-420.
- 12. J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summability of trigonometric series, Fund. Math. 26 (1936), 1-43.
- 13. E. J. McShane, Integration, Princeton, 1944.
- 14. H. W. Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. **76** (1954), 444-456.
- 15. T. Popoviciu, Les fonctions convexes, Paris, 1944.

- F. Riesz, Sur certains systems singuliers d'equations integrales, Ann. Ec. Norm.
 28 (1911), 33-62.
- 17. S. Saks, Theory of the Integral, Warsaw, 1937.
- 18. W. L. C. Sargent, On sufficient conditions for a function integrable in the Cesaro-Perron sense to be monotonic, Quarterly J. Math. Oxford 12 (1941), 148-153.
- 19. _____, On generalized derivatives and Cesaro-Denjoy integrals, Proc. London Math. Soc. (2) 52 (1951), 365-376.
- 20. W. Sierpinski, Un lemma metrique, Fund. Math. 4 (1923), 201-203.
- 21. Z. Zahorski, Ueber die Menge der Punkte in welchen die ableitung unendlichist, Tohoku Math. J. **48** (1941), 321-330.
- 22. A. Zygmund, Trigonometric Series, second edition, Cambridge, 1959.

Received January 19, 1970.

UNIVERSITY OF BRITISH COLUMBIA