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A NOTE ON THE MINIMALITY OF CERTAIN
BITRANSFORMATION GROUPS

TA-SUN WU

Let (T, X) be a transformation group with compact Ήaus-
dorff space X and topological group T. Let {X, G) be a trans-
formation group with G a compact topological group. Then
the triple (T, X, G) is a bitransformation group if (tx)g = £(##)
for all te T,xeX, geG and the action of G on X is strongly
effective, (that is xg = x if and only ifg = the identity ele-
ment e of G). A bitransformation group (T,X,G), induces
canonically the transformation group (T,X/G) where X/G is
the orbit space of (X, G). Let (Γ, X, G) be a bitransformation
group. Suppose (T, X/G) is a minimal transformation group
whereas (T, X) is not a minimal transformation group then
what is the possible structure of (T, X, G)?

In this note, it is proved that the fundamental group of
X must be of certain form when G is a circle group. Use
this result together with some results of Malcev, a necessary
and sufficient condition is found for the minimality of certain
nilflows.

THEOREM 1. Let (T, X, G) be a bitransformation group with
circle group G. If(T, X/G) is a minimal transformation group and
(T, X) is not minimal, then there exists a finite group H of G such
that X is a covering space of XJH and X/H admits a section over
X/G.

Proof. Let I be a minimal set in (T, X). Let H={geG:
gM = M}. Then H is a proper closed subgroup of G. Thus H is a
finite group. The natural projection p: X/H-+ X/G is a principal
bundle map with fiber G/H. Then p\M/H: M/H-* X/G is a homeo-
morphism. Thus p admits a global cross section.

COROLLARY. Besides all the notation of Theorem 1, assume that
X is path connected. Then ττ(X) is a isomorphic with a subgroup
of π(X/G) Z, where Z is the integer group and the dot denotes semi-
direct product.

From now on, we shall assume that N is a simply connected
nilpotent analytic group. A subgroup H of N is a uniform subgroup
if the homogeneous space N/H is compact. Let Γ be a discrete uni-
form subgroup of N. Then Γ is torsion-free and finitely generated
[2]. For each discrete uniform subgroup Γ of N, there is a subset
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D = {dly , dm} of Γ with the following properties:
(1) there exist m one-parameter groups di(t) such that N =

{di(ti)d2(ί2) dm(£m): tί9 , tm e R, reals}.
(2) Γ = K K H ί O dm(wm): ^ , w2, , raw e Z, integers}.
( 3) If JVf = {di(ίt.) dm{tm)\ ti9 ti+1, , tw any real numbers,

then Ni is a closed subgroup of N and iV* is normal in N^. D is
called a canonical basis of Γ.

Let F be a nilpotent group and F= F° 3 F1 => F 2 z>. Z) Fp z> i ^ 1 = (β)
be the descending central series. We recall that Fi = [F, F^ 1 ] ,
where [F, F^1] is the subgroup of F generated by {[α, b] = αδα"1^"1:
aeF.beF'-1. Let JV = N^N'i) . . . ^NmZ)Nm+ι = (e) be the de-
scending central series. Then ΓpaNpΠΓc:Np we shall prove that.

LEMMA 1. Γ* is uniform in Np and Γf)Np/Γp is finite.

Proof. Let F be the vector subspace of Np spanned by Γp. Let
D — {d19 •••, d,, •••, d*, •••, dw} be a canonical basis of i9 such that
{dz, .-., dm}, {dk, •••, dm} are canonical basis for iV "̂1 and Np respec-
tively. Then {didjifydfWjity1: teR} is an one-parameter group con-
taining didjdT'dj1 if I ̂  j . Hence {d4i(0^rldi(i)} S V. For each fixed
t0 6 ϋ!, {diίtjdjίtojdiίίĵ ^yίίo)""1: ί e R} is an one parameter group containing
ddiiQdid-iU)-1 eV iί l^j. This implies that d^d^diisY^ty1 e V
for any s,teR. Thus Np = [N, NP~L] s F and iV27 = F. Hence Γp

is uniform in Np and Γf]Np/Γp is finite.
In order to state our next result, we recall the definition of coset

transformation group. Let T be a topological group and G/H a coset
space. Let ^ be a continuous homomorphism from T into G. Then
(Γ, G/iϊ) is a coset transformation group (relative to #) if tgH =
έ?(t)gH for teT,ge G.

PROPOSITION 1. Lei (Γ, iV//7) 6e α cosβί transformation group
where N is a simply connected nilpotent analytic group and Γ is
discrete uniform subgroup of N. Assume that dim Nq/N'qH = 1 for
q^l. Then (Γ, N/Γ) is minimal if and only if (Γ, N/ΓN') is
minimal.

Proof We shall prove this theorem by induction based the length
of nilpotency of Γ. When Γ is abelian, there is nothing to prove. As-
sume (T, N/ΓN') is minimal. By induction hypothesis (Γ, N/NP/ΓNP/NP)
is minimal. Thus (Γ, N/ΓNP) is minimal. Let Hq = {dq(tq) dm(tm):
tqy---tmeR}. Suppose (T, N/FHq) is minimal and (T, N/ΓHq+1) is
not minimal. Then (Γ, N/ΓH9+\ ΓHq/ΓHq^) is a bitransformation
group. By Corollary 1, Γ/ΓΠHq+ί is isomorphic with a subgroup of
Γ/Γf]Hq x Z. Then the image of dq(Γf]Hq+ί) under this isomorphism
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must be of the form (x, z) for some nonzero integer1. Thus (x, z)a g
(Γ/Γ Π Hq) if a is a nonzero integer. On the other hand, [(Γ/Γ ΠHqxZ,
(Γ/ΓΓ\Hq) x Z]aΓ/ΓΓ\Hq. This fact together with Lemma 1, we
have the contradiction. Thus (ϊ7, N/ΓHq+1) is minimal. By finite
induction, (ϊ7, N/Γ) is minimal.

THEOREM 2. Let (T, N/H) be a coset transformation with nil-
potent analytic group N and closed uniform subgroup H such that
dim (N/ΓH0)

q/(N/ΓH0)
q+1 = 1. Then (T, N/H) is minimal if and only

if (Γ, N/H[N, N]) is minimal.

Proof Let Ho be the identity component of H. Then Ho is a
normal subgroup of N and N/Ho is simply connected. Let π be the
canonical projection from N—>N/H0. Then π~ι(π(Γ)[N/HQ, N/Ho]) —
H[N, N]. Hence H[N, N] is closed uniform subgroup of N. If
(T, N/H[N9 N]) is minimal, then (Γ, N/Ho/H/Ho) is minimal by Pro-
position 1. But (Γ, N/H) is isomorphic with (Γ, N/Ho/H/Ho). Hence
(ϊ7, JV/jff) is minimal.

EXAMPLES. ([I, p. 52]) consider the group G of all real matrices
of the form

fl x z\

0 1 y\

\θ 0 1/

and let D be the uniform discrete subgroup of matrices

/I α

0 1 b

\θ 0

for all integers α, 6, c. Then ilf = G/Z? is a nilmanifold. Consider
a one-parameter subgroup φ(t) of G given by

2t Xt + —
2

0 1 £ί

,0 0 1

Take a point Q e M given by the coset

1 Since ,Γ is nilpotent, the semi-direct product here is actually a direct product.



556 TA-SUN WU

the orbit φf(t) in M is

1 t + x0 Ίt + Ίψ-F + z0 + a + yQ

0 1 βt + y0

\0 0 1

Then Z)[G, G] is the set of all the matrices

D .

for all integers α, 6 and real number z. And (?>(£), G/D[G, G]) is
isomorphic with the continuous flow on two-dimensional torus with
the direction ratio (a, β).

By Theorem 2, (<p(t), M) is minimal if and only if (φ(t), G/D[G, G]).
The latter is minimal if and only if a and β are rationally inde-
pendent. This answers the question in [l, p. 53].

Added in proof. After this note went in print, we have the proof
of the following statement. Let G be a simply connected solvable
analytic group and Γ be a nilpotent uniform subgroup of G. Then
(T, G/P) is minimal if and only if (T, GjΓN) is minimal, here N denotes
the analytic subgroup of G which contains [Γ, Γ] as a uniform sub-
group. The proof uses a stronger form of Lemma 1 (replacing the
circle group by torus groups) and the nilpotency of Γ. The detail
will appear later.
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