SUBADDITIVE FUNCTIONS

Chi Song Wong

In a recent paper, D. W. Boyd and J. S. W. Wong ask for an example of positive subadditive function ϕ for which $\phi(t) < t$ for all t and there exist 0 < c < d such that $\sup_{t \in [c,d]} \phi(t)/t = 1$. Our main result is that such an example does not exist.

For a metric space (X, d), we shall use Ran d to denote the set $\{d(x, y): x, y \in X\}$ and use cl Ran d to denote the closure of Ran d. Let X be a complete metric space, let ψ be a function of cl Ran d into $[0, \infty)$ and let T be a function of X into itself such that T is ψ -contractive on $X(d(T(x), T(y)) \leq \psi(d(x, y)), x, y \in X)$. E. Rakotch [3, Corollary to Theorem 2] shows that if there is a decreasing function α on $[0, \infty)$ such that for any t > 0, $\alpha(t) < 1$ and $\psi(t) = \alpha(t)t$, then T has a unique fixed point. In order to show that Theorem 2 in [1] actually extends the above result when X is metrically convex, D. W. Boyd and J. S. W. Wong [1, p. 464] ask for an example of positive subadditive function ϕ for which $\phi(t) < t$ for all t > 0 and there exist 0 < c < d such that

$$\sup_{t \, \epsilon \, [c,d]} \, \phi(t)/t = 1$$
 .

We now show that such an example does not exist.

THEOREM. Let ϕ be a positive subadditive function on an interval (0, b) $(0 < b \leq \infty)$ such that $\phi(t) < t$ for all t in (0, b). Then

$$\sup_{a \leq t < b} \phi(t)/t < 1$$
 , $0 < a < b$.

Proof. If $b = \infty$, then by subadditivity and Theorem 7.6.2 in [2],

$$\lim_{t o\infty} \phi(t)/t = \inf_{t>0} \phi(t)/t$$
 ;

thus from $\phi(t)/t < 1$, $\sup_{t>a} \phi(t)/t < 1$ for large *a*'s. So we may assume that $b < \infty$. Suppose to the contrary that there exist *c*, *d* in (0, b) such that c < d and

$$\sup_{t \in [c,d]} \phi(t)/t = 1.$$

Then there exists a sequence $\{t_n\}$ in [c, d] such that

(1)
$$\lim_{n\to\infty}\phi(t_n)/t_n=1$$
.

By compactness of [c, d], we may, by taking a subsequence, assume that $\{t_n\}$ converges to some t in [c, d]. Let m be any positive integer. Then by the subadditivity of ϕ ,

$$(2) \hspace{1.5cm} \phi(t_n) \leq m \phi(t_n/m) < t_n \;, \hspace{1.5cm} n \geq 1.$$

From (1) and (2),

(3)
$$\lim_{n\to\infty}\phi(t_n/m) = t/m .$$

We now prove by induction that

$$(4) \qquad \qquad \lim_{k \to \infty} \phi(jt_n/2^k) = jt/2^k \;, \qquad k \ge 1, \; 0 < j < 2^k, \; j \; ext{ is odd.}$$

Assume that (4) is true for $k \leq i$, where *i* is given. Let *j* be any odd number in $(0, 2^{i+1})$. Then

$$(5) \qquad \phi((j+1)t_n/2^{i+1}) \leq \phi(jt_n/2^{i+1}) + \phi(t_n/2^{i+1}) < (j+1)t_n/2^{i+1}.$$

By (5), the induction hypothesis and (3) (also by (1) if $j = (2^{i+1} - 1)/2^{i+1}$), we have by letting $n \to \infty$,

$$(j+1)t/2^{i+1} \leq \lim_{n o \infty} \sup \phi(jt_n/2^{i+1}) \, + \, t/2^{i+1} \leq (j\,+\,1)t/\hat{z}^{i+1}$$
 ,

i.e.,

$$\lim_{n o \infty} \phi \left(j t_n / 2^{i+1}
ight) \, = \, j t / 2^{i+1} \, ,$$

proving (4). Take any s in (0, t). It suffices to prove that $s \leq \phi(s)$. Since the set

$$D = \{ jt/2^k \colon k \geqq 1, \; 0 < j < 2^k, \; j \; ext{ is odd} \}$$

is dense in (0, t), there exists a strictly decreasing sequence $\{s_n\}$ in D which converges to s. By (4), there is a sequence $\{w_n\}$ for which

$$(\ 6\) \hspace{1.5cm} s_n - 1/n < w_n < s_n, \ \phi(w_n) > s_n - 1/n \ , \hspace{1.5cm} n \geqq 1.$$

Now

(7)
$$\phi(w_n) \leq \phi(w_n - s) + \phi(s) < (w_n - s) + \phi(s)$$
, $n \geq 1$.

From (6) and (7), we obtain $s \leq \phi(s)$.

From the above result, we know that the condition (24) in [1] can be dropped. We thus have an improved version of [1, Proposition].

PROPOSITION. Let (X, d) be a complete metrically convex metric space and let $f: X \to X$. Suppose that there is a function ψ of cl Ran dinto $[0, \infty)$ such that $\psi(t) < t$ for all t in cl Ran $d - \{0\}$ and f is ψ contractive on X. Then there exists a decreasing function α on $[0, \infty)$ such that $\alpha(t) < 1$ for all t > 0 and

$$d(f(x), f(y)) \leq \alpha(d(x, y))d(x, y), \qquad x, y \in X.$$

D. W. Boyd and J. S. Wong show that α in the above proposition can actually be constructed as follows:

$$lpha(t) = \sup_{s \geq t} \phi(s)/s \;, \qquad \qquad t > 0 \;,$$

where

(*)
$$\phi(t) = \sup\{d(f(x), f(y)): x, y \in X, d(x, y) = t\}, t \in \operatorname{Ran} d.$$

References

1. D. W. Boyd and J. S. Wong, On nonlinear contractions, Amer. Math. Soc., 20 (1969), 458-464.

2. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., Vol. **31**, Amer. Math. Soc., Providence, R. I., 1957.

3. E. Rakotch, A note on contraction mappings, Proc. Amer. Math. Soc. 13 (1962), 459-465.

Received July 27, 1970.

SOUTHERN ILLINOIS UNIVERSITY