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THE KAKUTANI THEOREM FOR TENSOR
PRODUCTS OF TF*-ALGEBRAS

DAVID PROMISLOW

In a recent paper Bures proved a result concerning: the
classification of tensor products of a family of semi-finite
W*-algebra,s and showed that it constituted a non-commutative
extension of the main part of Kakutani's theorem on infinite
product measures. In this paper these results are extended,
first by removing the semi-finiteness restriction, and secondly
hy completing the analogy with Kakutani's Theorem.

In particular, it is shown in [1] that if (J&ί)ieI is a family of
semi-finite W* -algebras, then the incomplete tensor products determined
respectively by the families of normal states (μ^ and (vd) are essenti-
ally the same (i.e., product isomorphic) if and only if ΣiεI[d(μi, v^f <
oo, where d is a certain metric defined on the normal states (see
Definition I d below). In fact d is a generalization of the metric
defined by Kakutani on sets of measures and when each j&l is abelian
the above result yields the first part of the theorem proved in [4].

By removing the semi-finiteness condition from Bures' product
formula ([l], Th. 2.5), which relates the distance d between product
states to the distances between their components, we are able to obtain
the same result for an arbitrary family of W*-algebras. This then
completes the classification of tensor products up to product isomorphism
as given in ([2], p. 15). Moreover we prove the product formula for
the case of infinite product states which gives the extension of the
second part of Kakutani's Theorem.

1* Preliminaries* If ,V is a TF*-algebra we let Σjy> denote the
set of all normal states on s>/. (We always consider a state μ to be
normalized so that μ(l) = 1). If μeΣ^ and TeS^ is such that
μ(TT*) = 1, we define μτeΣ^ by μr(A) = μ(TAT*) for all Ae.Sϊf.
For μ e Σ^ we let S(μ) denote the support of μ.

Suppose that S/ and .^ are W*-algebras and that μ e Σ^, veΣ^.
Then μ ® v denotes the unique element of Σ^^^ (where j y (g) £%? is
the TF* -tensor product) such that

(μ ®v)(A®B) = [μ{A)][v(B)\ for all A e sf, Be & .

A homomorphism between two ΐF*-algebras will always mean a *~
preserving identity preserving, algebraic homomorphism.

By a representation φ of a W*-algebra S>f on a Hubert space H
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we always mean a one-to-one homomorphism from s^ into Sf(H) such
that φ(J%f) is a von Neumann algebra on H. For μeΣ^9 we say that
the vector xeH induces μ relative to φ if μ(A) = (0(A)#|α?) for all

DEFINITION 1.1. Let sf be a TF*-algebra and let μ and v
We define:

, v) = {[φ, x, y]: Φ is a representation of

on H, and x, y e H induce μ, v re-

spectively relative to φ.}

d(μ, v) == inf{||a? ~ v\\ iΦ, x> y]eQ(μ,v)-}

p{μ,v) = sup{|(a?|i/)|: [Φ,x,y]eQ(μ,v).} .

The quantities d and p were introduced in [1] where it is shown
that d is a metric on Σ^ and that d and p are related by the formula

(1.1) [d(μ, v)]2 - 2[1 - (̂JM, y)] .

The number d(μ, v) can vary from 0 to i/ 2 and is equal to 0
if and only if μ = v. We consider the other extreme.

LEMMA 1.2. d(μ, y) = VΎ if and only if S(μ)S(v) = 0.

Proo/. Suppose that S(μ)S(v) = 0. Choose any [ψ, x, y] e Q(μ, v).
A direct calculation shows that Φ(S(μ))x = x and φ(S(v))y — y, so that
(x\y) = 0. It follows that /θ(/ι, v) = 0, and from (1.1) d(μ, v) = λ/~2 .

Conversely, suppose that d(μ, v) = i/lΓ so that p(/i, v) = 0. Choose
any [9, x, y] e Q(μ, v). It is a well known fact that φ(S(μ)) = the uniform
closure of the set {(φ(j&))'x}, and similary for Φ(S(v)) with y replacing
x. Therefore, to show that S(μ)S(v) = 0 it is enough to show that

{A'x\B'y) = 0

for all A\ Bf e (φ(J*f))'. Clearly it is sufficient to consider the case
where A! and Br are unitaries. But then a direct calculation shows
that

[φ, A'x, B'y\ e Q(μ, v), so that

2. The product formula for p. In this section we prove in
general the product formula for p which was obtained in ([1], Th. 2.5)
for semi-finite algebras. The key step is Lemma 2.1 which is similar
in statement and proof to ([1], Lemma 1.6). However by dealing with



THE KAKUTANI THEOREM FOR TENSOR PRODUCTS 509

only one element of the algebra we are able to avoid the use of a
trace.

LEMMA 2.1, Let J^f be a W*-algebra. Suppose that μeΣ^, and
Te J ^ + is such that μ(T2) = 1. Then,

p(μ, μτ) - μ{T) .

Proof. Choose any [ψ, x, y]eQ(μ, ft.). A direct calculation shows
that [φ,x9φ(T)x] also eQ(μ,μτ). Therefore

(2.1) p(μ, μτ) ^ | (a; | Φ(T)x) |- - μ(T) .

On the other hand, since y and ψ(T)x induce the same state re-
lative to φ it is a standard result that y = U'ψ{T)x for some partial
ίsometry U' in (Φ(J^)Y (see [3], Chapt. 1, §4, Lemma 3). Therefore

\(x\y)\ = \{x\Ufφ{T)x)\

= \(U'*φ(τyl2x\φ(τy/2x)\

= μ(T) .

Taking the supremum over all [Φ,x,y]GQ(β9 v) we obtain that

p(μ, μτ) ^ μ(T) ,

which together with (2.1) completes the proof.

We now consider two TF*-algebras J^ and j%f2. For j = 1 or 2
let μj and v, be elements of Σ^r We want to prove the following:

(2.2) ρ(μλ <g) μi9 v, (g) v2) - [p(μίf ι>d

LEMMA 2.2. Suppose that for j = 1 or 2, μ3- = (v3)τ. for some
e Siff. Then (2.2) holds.

Proof. ft®^2 = (^i)Γ l® (2̂2)7-2 which is easily seen to be equal to
(vx ® v^TL®T2* The result now follows from a direct calculation, using
Lemma 2.1,

LEMMA 2.3, For any 0 ^ δ <; 1, let v'ά = (1 - 8)vά + δμd, j = 1

or 2. Then
(a) I p(μ, ® μif v1 (g) 2;2) - p(μt (g> ft, ^ ® i# | ^ /bδ1/2,
(b) \p{μifvs) -p(μ,-, V3)\ ^kδ1'*,

where k is a constant independent of δ.

Proof. From ([1], Proposition 1.8 (A))
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d{Vx 0 V2, V, 0 V'2)

= d{vί 0 2Λ>, [(1 - δ ) ^ (g)

^ 2δ 1 / 2 .

Similarly, d{vx 0 24 1̂ 0 ^) ^ 2<51/2 so by the triangle inequality

and (a) follows from ([1], Proposition 1.9 (B)). Part (b) follows in a
similar manner.

THEOREM 2.4. Formula (2.2) Λoϊds w general.

Proof. For any 0 < δ < 1, let y} be defined as in Lemma 2.3.
Then for n > 1/5, ^-(A) ^ nvJ(A) for all Aes^+. By Sakai's Radon-
Nikodym Theorem ([3], Chapt. 1, §4, Th. 5), μά = (v))τ. for some
Tjes$fj+. From Lemma 2.3

By taking δ suflSciently small and applying Lemma 2.3, we have that
for any ε > 0

(P(βι ® A» 1̂ ® 2̂) - [/o(ft, IΊJHPO"*, ̂ 2)]) < e

which completes the proof.

REMARK. We can of course remove the normalizing condition and
define d and p for any positive, normal linear functionals, as was done
in [1]. Since a vector x induces the functional μ if and only if the
vector kll2x induces kμ, we have that p(kμ, v) = kιlzρ(μ, v) for all k > 0.
Moreover we can still define μ ® v and the mapping (μ, v) to (μ 0 v)
is bilinear. It follows that Theorem 2.4 will hold for positive, normal,
linear functionals.

3* Application to infinite tensor products* In ([1], Th. 4.1),
the main result of that paper, the only need of the semi-finiteness re-
striction was to invoke the product formula. We can now appeal to
Theorem 2.4 to conclude that this result holds in general. We will
however present an alternate proof here, which at the same time extends
the product formula to the case of infinite product states.

We begin by reviewing some basic definitions. See [2] for a
complete discussion of the following concepts.

Let / be an arbitrary indexing set and let (.J^)<e/ be a family of
PF*-algebras.

A product for this family is an object (,J ,̂ {a%)ieI), where Sf is
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a TF*-algebra and for each ί e I a{ is a one-to-one homomorphism from
S^i into Szf satisfying:

(a) (Xii^i) and aά{j^3) commute pointwise for i Φ j
(b) {(XiiJ&'i): ί 6 /} generates J ^ as a ΐF*-algebra.
We say that the products ( j ^ , (<x$) and (.^, (&)) are product is-

omorphic if there exists an isomorphism ^ from J%f onto ^ such
that φcii = /9i for all i e J.

Let Λί = Λ((j^i)) denote the set of all families {μ^)iQl where fte
Σsy. for all i e I. We say that μ is a product state of the product

, (α^)) if μeΣSY, and for some fa) e A (necessarily unique),

for all finite Fa I and all Atβs^. We denote such a state by

DEFINITION 3.1. For any fa) e A we define a product, denoted by
ύ, as follows.

For each i e /, let ja< be represented as a von Neumann algebra
on a Hubert space Hi such that xζ e Hi induces μ{. Let

H= <g)iei(ffi, &i)

be von Neumann's incomplete tensor product of (iί*) with respect to
the C0-sequence (x%) [5]. For any ike/ and AkeHk let A* denote the
unique element of £f(H) such that Άk{®yϊ) = ®yfι where y'k = Afe?/fc

and 2/J = y{ for % Φk. Let j y be the von Neumann algebra on H
generated by the j ^ . Then the product ® ίeiCJ^> i"<) is defined to be
the algebra .jy, together with the injections a{ given by cc^Ai) ~ At

for all Ai e , j ^ .
See [2] for an alternative method of defining ® ( J ^ , μ*) and a

justification of the above definition. It is shown that the product
constructed as above is unique up to product isomorphism ([2], Th.
4.7).

Note that the product state ® ^ exists on ®(J^<, μ<) I n ^ a c t i n

the construction above it is induced by the vector ®Xι. It will follow
from the results in this section that the converse holds. That is, if a
product constructed as above from an element of A admits (g)^ as a
product state, then this product is product isomorphic to ®(jvί, μ{).

If I is a finite set it is well known that the ®(j^J, μζ) are all
product isomorphic for any choice of fa) e A, and the resulting product
is simply 0 ί 6 7 J ^ , the usual TΓ*-tensor product of a finite family.

DEFINITION 3.2. Let (.j^, (a{)) be a product for the family
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Let φ be any represention of Jzf and let μeΣ^. Then for any non-
void Jczl we let J^J = the W*-algebra generated by

( e J, A{

and we let φJ, μJ denote respectively the restrictions of φ, μ to

LEMMA 3.3- Let Sz? = the algebra ®iei(<S$?i, j"<). Let μ =
and let v be any element of Σ^. Then there exists Jczl with finite
compliment such that p(μJ, vJ) > 0.

Proof. Suppose to the contrary that p(μJ, vJ) = 0 for all J c I
with finite compliment. Let (Hi), {x%) and H be as in Definition 3.1.
It is well known that we can choose an orthonormal basis of H with
the property that every basis element x' is of the form 0 i e /^> where
for all but a finite number of iel x't = xt. See ([5], Lemma 4.14).
Fix such a basis element x' and let J — {iel: xf = #<}. Obviously x'
induces μJ on SzfJ. Then by our assumption and Lemma 1.2,

Since v(S(vJ)) = vJ(S(vJ)) = 1 we have S(v) ̂  S(vJ), and therefore
S{v)x' = 0.

Since this is true for all a?' in some basis of H we have S{v) = 0,
a contradiction.

REMARK. We next recall some elementary facts about infinite
products of numbers. If (r^i9l is family of nonnegative numbers,
Jliei^i is said to converge if and only if for some Jczl with finite
compliment, linv (TlίsF f») as F runs over the finite subsets of J exists
as a positive number. The value of I L e i ^ is then defined to be
lirnp YlieF r% as F runs over the finite subsets of /. It follows that
Π i e / n converges if and only if Σie/11 — r«| < oo.

THEOREM 3.4. Suppose that the product state v = ®ieIvi exists

on ® ί ei(j*Σ, μt). Let μ = <g)iejA*i Then Hieipfai, vd converges, and

Proof. Choose any [φ, x, y] e Q(μ, v) and let F be any finite subset
of /. It is evident that [φF, x, y] e Q(μF, vF) so that ρ(μF, vF) ^ | (x | y)).
Taking the supremum over all elements of Q(μ, v) we obtain

(3.1) p{μ, v) £ p(μF, VF) .

It is obvious that μF = ® ί e ^ i and vF = ® ί e ^ i on (g) i e irJ^. So by
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Theorem 2.4 which extends to any finite number of factors by an
obvious induction and the associativety properties of tensor products,
we obtain that

Then from (3.1) we have

(3.2) ρ(μ, v) S inΐ{UieFP(μi, v»): F a finite subset of 1} .

Now by Lemma 3.2 choose Jal with finite compliment such that
p(μJ, vJ) > 0. By applying the above argument to the algebra

i) we see from (3.2) that

(3.3) 0 < inf {ίlieFpiPi* »*)• F a finite subset of J) .

Since the value of p is ^ 1 , (3.3) shows that ΐ[ieip(μi, v<) converges
and (3.2) shows that

(3.4) p(μ,v) ^ Iίieip(βi,Vi)

We now prove the other direction. Let k be any positive number
< 1 and choose a sequence (kn) of positive numbers < 1 such that
Π?=i K = k. Let IQ= {ie I: d(μif v,) > 0}. From the convergence of
Π p(μi9 Vi) and formula (1.1) we see that Io is at most countable. Let
7 be an injection from Io into the positive integers, and let g(i) = krii)

for i e IQ, g(i) = 1 for i e I — I o . Then choose for each i e / a n element
[ΦiiXnVi] of Q(βi,Vi) such that | ( ^ | ^ ) | ^ g(i)[p(βi, ^)] (This is
certainly possible by the definition of p and the fact that μ{ = i^ for
iel — Io). By multiplying the vectors by suitable scalars of absolute
value 1 we may assume

(3.5) l^(Xi\Vi)^g(i)[p(μi,ι>i)].

Evidently ΐίieIg(i) converges and its value is ^ΐln=1kn = k. So
from (3.5) Π*e/(«*|2/ ) converges and

(3.6) Uiei(Xi\yi)^kUieip(μi^i) .

We have then that Σ»ez 11 — (E. 12/<) I < °° which shows that for the
family of Hubert spaces (Hi), where Hi is the underlying space of φi9

(Xi) and (yi) are equivalent C0-sequences ([5], Definition 3.3.2). There
exists therefore a vector in <8)ieI(Hi, x{) of the form (g)^ and this
obviously induces the state v. Using (3.6),

p ( μ , v) ^ I ( ® X i 102/,) I = Π (Xi \ V i ) ^ k U p ( μ i f

Since k was chosen arbitrarily we have that

p(μ, v)^U p(μif v^
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which together with (3.4) completes the proof.

COROLLARY 3.5. Let ( j ^ ) be a family of W*-algebras and let
(fjti) and (Vi) e Λ. Then the following conditions on (μ^ and (x̂ ) are
equivalent:

(a) Σ ; e / [ d ( ^ , ^ ) ] 2 < oo;
(b) &ie/C-&1> fa) and ®;e/G^> v€) are product isomorphic;
(c) ®ieiVi exists as a product state on ® i e / ( J ^ , μ*).

Moreover if any of these conditions holdf

p(μ, v) = TlieiP(βi9 v%)9 & convergent product .

Proof. By Theorem 3.4 and formula (1.1), (c) implies (a). It
follows easily from the second part of the proof of Theorem 3.4 that
(a) implies (b). This is also proved in ([1], Lemma 3.6). It is im-
mediate that (c) implies (a) and the final statement is immediate from
Theorem 3.4.
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