BEHAVIOR OF GREEN LINES AT THE KURAMOCHI BOUNDARY OF A RIEMANN SURFACE

MITSURU NAKAI AND LEO SARIO

We shall establish necessary and sufficient conditions, in terms of Green lines, for a point of the Kuramochi boundary Γ^k of a hyperbolic Riemann surface R to be of positive harmonic measure.

Explicitly, let \mathfrak{B} be the bundle of all Green lines l issuing from a fixed point of R. It forms a measure space with the Green measure. We call a subset \mathfrak{A} of \mathfrak{B} a distinguished bundle if it has positive measure and there exists a point pin Γ^k such that almost every l in \mathfrak{A} terminates at p. The point p will be referred to as the end of \mathfrak{A} .

Our main result is that a point p of Γ^k has positive measure if and only if there exists a distinguished bundle \mathfrak{A} whose end is p.

We shall also give an intrinsic characterization of the latter property, without reference to points of Γ^{u} : A bundle \mathfrak{A} is distinguished if and only if it has positive measure and for every *HD*-function *u* there exists a real number c_u such that *u* has the limit c_u along almost every *l* in \mathfrak{A} .

1. Green lines

1. Let R be a hyperbolic Riemann surface, the hyperbolicity characterized by the existence of Green's functions. Fix a point $z_0 \in R$ and denote by $g(z) = g(z, z_0)$ the Green's function on R with singularity z_0 . Consider the differential equations

(1)
$$\frac{dr(z)}{r(z)} = -dg(z), \quad r(z_0) = 0,$$

$$d\theta(z) = -*dg(z) .$$

Equation (1) has the unique solution $r(z) = e^{-g(z)}$ on R with $0 \le r(z) < 1$. In any simply connected subregion of $R - z_0$ where $dg(z) \ne 0$, equation (2) also has a solution $\theta(z)$, unique up to an additive constant. The global solution $\theta(z)$, however, is a multivalued harmonic function.

Set $G_{\rho} = \{z \in R \mid r(z) < \rho\}, C_{\rho} = \partial G_{\rho}(0 < \rho < 1)$. For a sufficiently small ρ , the analytic function $w = \varphi(z) = r(z)e^{i\theta(z)}$ is single-valued and gives a univalent conformal mapping of G_{ρ} onto the disk $|w| < \rho$. Denote by ρ_0 the supremum of all ρ with this property.

2. An open arc α is called a Green arc if $dg(z) \neq 0$ for all $z \in \alpha$,

and a branch of θ is constant on α . The set of Green arcs is partially ordered by inclusion. A maximal Green arc in this partially ordered set is called a *Green line*.

A Green line l is said to *issue from* z_0 if $z_0 \in \overline{l}$. We denote by \mathfrak{B} the set of Green lines issuing from z_0 and use the suggestive term *bundle* for a subset \mathfrak{A} of \mathfrak{B} , with the case $\mathfrak{A} = \mathfrak{B}$ not excluded.

For a fixed $\rho \in (0, \rho_0)$ and a given $p \in C_{\rho}$ let l(p) be the Green line in \mathfrak{B} passing through p. Making use of the function $w = \varphi(z) = r(z)e^{i\theta(z)}$ we see that the mapping $p \to l(p)$ is bijective; let p(l) be the inverse mapping. We call a bundle $\mathfrak{A} \subset \mathfrak{B}$ measurable if $p(\mathfrak{A})$ is measurable in C_{ρ} , and define the *Green measure* of \mathfrak{A} by

(3)
$$m(\mathfrak{A}) = \frac{1}{2\pi} \int_{\mathfrak{p}(\mathfrak{A})} d\theta(z) = -\frac{1}{2\pi} \int_{\mathfrak{p}(\mathfrak{A})} * dg(z) .$$

The space (\mathfrak{B}, m) is a probability space, i.e., a measure space of total measure unity. The definition is independent of the choice of $\rho \in (0, \rho_0)$.

3. Fix an $l \in \mathfrak{B}$. The number $a(l) = \sup_{z \in l} r(z)$ is in (0, 1]. If a(l) < 1, then l terminates at a point of R at which dg = 0. Such an l is called *singular*. If a(l) = 1, then l tends to the ideal boundary of R and is called *regular*. The bundle \mathfrak{B}_r of regular Green lines "almost" comprises \mathfrak{B} , that is, $m(\mathfrak{B}_r) = 1$. This is a result of Brelot-Choquet [1] (cf. [7], [8]).

2. Compactifications.

4. Let R° be a compactification of R, i.e., a compact Hausdorff space containing R as its open dense subspace. For a bounded continuous function φ on the ideal boundary $\Gamma^{\circ} = R^{\circ} - R$ of R, denote by $U_{\circ}^{R^{\circ}}$ the class of superharmonic functions s on R such that

$$\liminf_{z \in R, z \to p} s(z) \ge \varphi(p)$$

for every $p \in \Gamma^c$. The function

$$H^{R^{\sigma}}_{\varphi}(z) = \inf_{s \in U^{R^{\sigma}}_{\varphi}} s(z)$$

is harmonic on R. We assume that R° is a resolutive compactification (cf. Constantinescu-Cornea [2]), that is, $\varphi \to H_{\varphi}^{R^{\circ}}(z)$ is a continuous linear functional. Then for $z_0 \in R$ there exists a measure μ° , called the harmonic measure on Γ° , and a function $P^{\circ}(z, p)$ on $R \times \Gamma^{\circ}$ with properties $P_{\circ}(z_0, p) \equiv 1$,

(4)
$$H_{\varphi}^{R^{\bullet}}(z) = \int_{\Gamma^{e}} P^{\circ}(z, p) \varphi(p) d\mu^{\circ}(p) ,$$

This representation extends to bounded Borel measurable functions φ on Γ^{c} .

Let $\widetilde{HD}(R)$ be the class of harmonic functions $u \ge 0$ on R such that there exists a decreasing sequence $\{u_n\} \subset HD(R)$ with $u = \lim_n u_n$ on R. A function $u \in \widetilde{HD}(R)$ is said to be \widetilde{HD} -minimal if for every $v \in \widetilde{HD}(R)$ with $v \le u$ on R there exists a constant c_v such that $v = c_v u$ on R. We shall call the compactification R^c \widetilde{HD} -compatible if the following condition is satisfied: $u \in \widetilde{HD}(R)$ is \widetilde{HD} -minimal if and only if there exists a point $p_0 \in \Gamma^c$ with $\mu^c(p_0) > 0$ and a number k > 0 such that

(5)
$$u(z) = k \int_{p_0} P^{\circ}(z, p) d\mu^{\circ}(p) .$$

5. The Royden compactification R^* of R, with the Royden boundary $\Gamma = R^* - R$, is a typical example of an \widetilde{HD} -compatible compactification (see [6], [8]). We let μ and P stand for μ^c and P^c corresponding to R^* .

A compactification R° is said to *lie below* R^{*} if there exists a continuous mapping $\pi = \pi^{\circ}$ of R^{*} onto R° such that $\pi | R$ is the identity and $\pi^{-1}(R) = R$. Clearly π is unique and we have

$$(6) \qquad \qquad \int_{\Gamma^c} P^{\circ}(z, p) \varphi(p) d\mu^{\circ}(p) = \int_{\Gamma} P(z, p^*) \varphi(\pi(p^*)) d\mu(p^*)$$

for every bounded Borel function φ on Γ° .

6. We are interested in the behavior of $l \in \mathfrak{B}_r$ in \mathbb{R}^c . We set

$$e^{\mathfrak{c}}(l) = \overline{l}^{\mathfrak{c}} - l \cup \{z_0\},$$

with \overline{l}° the closure of l in R° , and call $e^{\circ}(l)$ the *end part* of l in R° . It is a compact set in Γ° . If

 $\mathfrak{B}^{\mathfrak{o}} = \{l \in \mathfrak{B}_r | e^{\mathfrak{o}}(l) \text{ is a single point}\}$

is of measure $m(\mathfrak{B}^{e}) = 1$, then we call R^{e} Green-compatible.

We shall make use of a result of Maeda [4]: A metrizable compactification R° which lies below R^{*} is Green-compatible.

7. A compactification R^c of R is said to be of type G if R^c is metrizable, \widetilde{HD} -compatible, and lies below R^* . Note that R^c is then Green-compatible. An important example:

PROPOSITION. The Kuramochi compactification R^k of R is of type G.

In fact, metrizability and HD-compatibility of R^{k} are immediate

consequences of related results of Constantinescu-Cornea [2, pp. 171 and 169]. That R^{k} lies below R^{*} follows from the definition of the Kuramochi compactification given in [2, p. 167].

 R^k is actually the only significant compactification of type G known thus far. For a general discussion of its properties we also refer to [5].

3. Distinguished bundles.

8. Let R^{e} be a compactification of R of type G. We call a bundle $\mathfrak{A} \subset \mathfrak{B} R^{e}$ -distinguished if $m(\mathfrak{A}) > 0$ and there exists a point $p \in \Gamma^{e}$ such that $e^{e}(l) = p$ for almost every $l \in \mathfrak{A}$. The point p will be referred to as the end of \mathfrak{A} . In the case $R^{e} = R^{k}$ we simply say that \mathfrak{A} is distinguished.

We shall characterize points $p \in \Gamma^{\circ}$ of positive measure in terms of R° -distinguished bundles:

THEOREM. Let R° be a compactification of type G of a hyperbolic Riemann surface R. A point $p \in \Gamma^{\circ} = R^{\circ} - R$ has positive harmonic measure if and only if there exists an R° -distinguished bundle \mathfrak{A} with end p.

The proof will be given in 9-13.

9. Let $\Gamma = R^* - R$ be the Royden boundary of R. For $l \in \mathfrak{B}_r$ denote by e(l) the set $\overline{l} - l \cup \{z_0\}$ in Γ , with \overline{l} the closure of l in R^* . Given a subset $S \subset \Gamma$ we write

$$(8) \qquad \qquad \widetilde{S} = \{l \in \mathfrak{B} | e(l) \cap S \neq \emptyset\}, \qquad \widecheck{S} = \{l \in \mathfrak{B} | e(l) \subset S\}.$$

We shall employ the following auxiliary result ([7], [8]): For every F_{σ} -set K (resp. G_{δ} -set U) in Γ

(9)
$$\tilde{m}(\tilde{K}) \leq \mu(K), \quad \underline{m}(\tilde{U}) \geq \mu(U),$$

where \overline{m} and \underline{m} are the outer and inner measures induced by m.

Let p^* be on the Royden harmonic boundary \varDelta of R. The set

$$\Lambda_{p^*} = \{q^* \in \Gamma \,|\, u(q^*) = u(p^*) \text{ for all } u \in HBD(R)\}$$

is called a *block* at p^* . It is known ([7], [8]) that it has a measurable \widetilde{A}_{p^*} ,

(10)
$$m(\widetilde{A}_{p^*}) = \mu(p^*) ,$$

and that

(11)
$$u(p^*) = \lim_{z \in l, r(z) \to 1} u(z)$$

for every $u \in HD(R)$ and almost every $l \in \overline{A}_{p^*}$.

10. Suppose \mathfrak{A} is an R° -distinguished bundle with end $p \in \Gamma^{\circ}$. We are to prove that $\mu^{\circ}(p) > 0$. Take the projection $\pi = \pi^{\circ}$ of R^{*} onto R° (see 5). The set $K = \pi^{-1}(p)$ is compact and clearly $\mathfrak{A} \subset \tilde{K}$. By (9),

$$0 < m(\mathfrak{A}) \leq \overline{m}(\widetilde{K}) \leq \mu(K)$$
.

From (6) it follows that $\mu(K) = \mu(\pi^{-1}(p)) = \pi^{\circ}(p)$. Therefore

$$0 < m(\mathfrak{A}) \leq \mu^{c}(p)$$
.

11. Conversely suppose that $p \in \Gamma^{\circ}$ and $\mu^{\circ}(p) > 0$. Since R° is \widetilde{HD} -compatible, the function $u(z) = \int_{p} P^{\circ}(z, q) d\mu^{\circ}(q)$ is \widetilde{HD} -minimal on R. By (6) we see that

(12)
$$u(z) = \int_{\pi^{-1}(p)} P(z, q^*) d\mu(q^*) .$$

Since R^* is also \widetilde{HD} -compatible and the integral representation (12) of the \widetilde{HD} -function u is unique up to a boundary function vanishing μ -almost everywhere on Γ ([6], [8]), we conclude that there exists a point $p^* \in \pi^{-1}(p)$ with $\mu(p^*) = \mu(\pi^{-1}(p)) > 0$. Observe that

(13)
$$m(\widetilde{A}_{p^*}) = \mu(p^*) > 0$$
.

In view of the Green-compatibility of R° , there exists a measurable subset $\mathfrak{A} \subset \widetilde{A}_{p^*}$ with $m(\widetilde{A}_{p^*}) = m(\mathfrak{A})$ and such that $e^{\circ}(l)$ is a single point in Γ° for each $l \in \mathfrak{A}$.

To conclude that \mathfrak{A} is an \mathbb{R}^e -distinguished bundle with end p, we must show that $\mathfrak{A}' = \{l \in \mathfrak{A} | e^e(l) \neq p\}$ is of *m*-measure zero. For this purpose take a sequence $\{U_n\}_1^\infty$ of open sets in Γ^e with

$$U_{n+1} \subset ar{U}_{n+1} \subset U_n, \qquad igcap_1^\infty \ U_n = \{p\} \ .$$

Let $\mathfrak{A}'_n = \{l \in \mathfrak{A}' | e^{\mathfrak{c}}(l) \notin U_n\}$. Since $\mathfrak{A}' = \bigcup_{n=1}^{\infty} \mathfrak{A}'_n$, it suffices to show that $m(\mathfrak{A}'_n) = 0$ for every n.

12. First we assume that $R \notin O_{HD}$. For an arbitrarily fixed *n* there exists a $u_n \in HBD(R)$ such that

(14)
$$0 \leq u_n | \varDelta \leq 1, u_n | \pi^{-1}(U_{n+1}) \cap \varDelta = 1, u_n | (\varDelta - \pi^{-1}(U_n)) = 0.$$

In view of (11), there exists a measurable subset $\mathfrak{A}''_n \subset \mathfrak{A}'_n$ with $m(\mathfrak{A}'_n - \mathfrak{A}''_n) = 0$ and

(15)
$$1 = u_n(p^*) = \lim_{z \in l, r(z) \to 1} u_n(z)$$

for every $l \in \mathfrak{A}''_n$. The set $E_n = \{q^* \in \Gamma \mid u_n(q^*) < \frac{1}{2}\}$ is open in Γ . By

(15), $e(l) \cap E_n = \emptyset$ for every $l \in \mathfrak{A}''_n$. Because of the definition of \mathfrak{A}'_n , it is also clear that $e(l) \cap \pi^{-1}(U_n) = \emptyset$ for every $l \in \mathfrak{A}''_n$. Since the set $K_n = \Gamma - \pi^{-1}(U_n) \cup E_n$ is compact and $\pi^{-1}(U_n) \cup E_n \supset \mathcal{A}$, we have $K_n \subset \Gamma - \mathcal{A}$ and a fortiori $\mu(K_n) = 0$.

On the other hand, $e(l) \subset K_n$ for every $l \in \mathfrak{A}''_n$. Therefore $\mathfrak{A}''_n \subset \check{K}_n \subset \check{K}_n$. In view of (9), we obtain

$$m(\mathfrak{A}_n'') \leq \overline{m}(\widetilde{K}_n) \leq \mu(K_n) = 0$$

and conclude that $m(\mathfrak{A}'_n) = m(\mathfrak{A}''_n) = 0$.

13. If $R \in O_{HD}$, then Δ consists of a single point and consequently $\Delta = \{p^*\}$. The set $F_n = \Gamma - \pi^{-1}(U_n)$ is compact in $\Gamma - \Delta$ and hence $\mu(F_n) = 0$. By the definition of \mathfrak{A}'_n we have $\mathfrak{A}'_n \subset \check{F}'_n \subset \check{F}_n$. Therefore $m(\mathfrak{A}'_n) \leq m(\check{F}_n) \leq \mu(F_n) = 0$. The proof of Theorem 8 is herewith complete.

4. Characterization of distinguished bundles.

14. We next give necessary and sufficient conditions for a bundle to be distinguished, without referring to its end:

THEOREM. Let R° be a compactification of type G of a hyperbolic Riemann surface R. A bundle $\mathfrak{A} \subset \mathfrak{B}$ is R° -distinguished if and only if $m(\mathfrak{A}) > 0$ and for each $u \in HD(R)$ there exists a number c_u such that

(16)
$$\lim_{z \in l, r(z) \to 1} u(z) = c_u$$

for almost every $l \in \mathfrak{A}$.

The proof will be given in 15-18.

15. First suppose \mathfrak{A} is R^{e} -distinguished with end $p \in \Gamma^{e}$. Then by 10 and 11, there exists a point $p^{*} \in K = \pi^{-1}(p)$ such that

$$0 < \mu^{\circ}(p) = \mu(K) = \mu(p^{*})$$
 .

Fix a $u \in HD(R)$. By the Godefroid theorem [3] (see also [7], [8]),

(17)
$$u(l) = \lim_{z \in l, r(z) \to 1} u(z)$$

exists for almost every $l \in \mathfrak{B}_r$. On omiting from \mathfrak{A} a set of measure zero we may assume that u(l) in (17) exists for every $l \in \mathfrak{A}$. We may also suppose that $e^{\mathfrak{c}}(l) = p$ and a fortiori $e(l) \subset K$ for every $l \in \mathfrak{A}$.

Since $\mu(p^*) > 0$, $|u(p^*)| < \infty$ (cf. [6], [8]). Let

$$\mathfrak{A}' = \{l \in \mathfrak{A} \mid u(l) - u(p^*) \neq 0\}$$

and

$$K_n = \{q^* \in K | | u(q^*) - u(p^*)| \ge 1/n\}$$
.

Clearly K_n is a compact set. For $l \in \mathfrak{A}'$ and $q^* \in e(l)$, we have $u(l) = u(q^*)$ by (17) and the continuity of u on R^* . Therefore $|u(q^*) - u(p^*)| \ge 1/n$ for some n and a fortiori $e(l) \subset K_n$. It follows that

$$\mathfrak{A}' \subset \bigcup_{n=1}^{\infty} \widecheck{K}_n \subset \bigcup_{n=1}^{\infty} \widetilde{K}_n$$
 ,

which by (9) gives

$$m(\mathfrak{A}') \leq \overline{m}\left(\bigcup_{n=1}^{\infty} \widetilde{K}_n\right) \leq \sum_{n=1}^{\infty} \overline{m}(\widetilde{K}_n) \leq \sum_{n=1}^{\infty} \mu(K_n)$$
.

From $K_n \subset K - p^*$ and $\mu(K) = \mu(p^*)$, we obtain $\mu(K_n) = 0$. Consequently $m(\mathfrak{A}') = 0$ and, since

$$\lim_{z \in l, r(z) \to 1} u(z) = u(l) = u(p^*)$$

for every $l \in \mathfrak{A} - \mathfrak{A}'$, we have (16) for almost every $l \in \mathfrak{A}$.

16. Conversely suppose that, for a bundle $\mathfrak{A} \subset \mathfrak{B}$ with $m(\mathfrak{A}) > 0$, (16) is satisfied. We may assume that $e^{\circ}(l)$ is a single point in Γ° for every $l \in \mathfrak{A}$.

First consider the case $R \in O_{HD}$. The harmonic boundary \varDelta consists of a single point p^* and $\mu(p^*) > 0$. Let $p = \pi(p^*)$. Take a sequence $\{U_n\}_1^\infty$ of open sets in Γ° such that $\overline{U}_{n+1} \subset U_n$ and $\bigcap_1^\infty U_n = \{p\}$. For the bundles $\mathfrak{A}'_n = \{l \in \mathfrak{A} \mid e^\circ(l) \notin U_n\}, n = 1, 2, \cdots$, and

$$\mathfrak{A}' = \{l \in \mathfrak{A} \, | \, e^{c}(l) \neq p\}$$

we have $\mathfrak{A}' = \bigcup_{1}^{\infty} \mathfrak{A}'_{n}$. Set $K_{n} = \Gamma - \pi^{-1}(U_{n}) \subset \Gamma - \Delta$. Every $l \in \mathfrak{A}'_{n}$ has $e(l) \subset K_{n}$ and we obtain $\mathfrak{A}'_{n} \subset \check{K}_{n} \subset \check{K}_{n}$. Hence

$$m(\mathfrak{A}'_n) \leq \overline{m}(\widetilde{K}_n) \leq \mu(K_n) = 0$$

and therefore $m(\mathfrak{A}') = 0$, i.e., $e^{c}(l) = p$ for almost every $l \in \mathfrak{A}$. This proves that \mathfrak{A} is R^{c} -distinguished.

17. Next suppose $R \notin O_{HD}$. The family

$$T(\mathfrak{A}) = \{u \in HBD(R) | 0 \le u \le 1 \text{ on } R, u(l) = 1 \text{ for almost every } l \in \mathfrak{A}\}$$

is a Perron family and

(18)
$$s(z) = \inf \{u(z) \mid u \in T(\mathfrak{A})\}$$

is an \widetilde{HD} -minimal function on R (see [7], [8]). We can therefore choose a decreasing sequence $\{h_n\} \subset T(\mathfrak{A})$ such that

$$s(z) = \lim_{n \to \infty} h_n(z)$$

on *R*. Let \mathfrak{A}_0 be a measurables subset of \mathfrak{A} with $m(\mathfrak{A}) = m(\mathfrak{A}_0)$ such that $h_n(l)$ exists and equals unity for every $n = 1, 2, \dots$, and every $l \in \mathfrak{A}_0$. We set

$$\overline{s}(l) = \lim_{z \in l, r(z) \to 1} \sup_{s(z)} s(z)$$

and observe that

$$s(z_{\scriptscriptstyle 0}) = \int_{\mathfrak{B}} s(re^{il}) dm(l) \leq \int_{\mathfrak{B}} h_{\scriptscriptstyle n}(re^{il}) dm(l) = h_{\scriptscriptstyle n}(z_{\scriptscriptstyle 0})$$

for every $r \in (0, 1)$ (see [7], [8]). By Fatou's lemma

$$s(z_{\scriptscriptstyle 0}) \leq \int_{\mathfrak{B}} \overline{s}(l) dm(l) \leq \int_{\mathfrak{B}} h_n(l) dm(l) = h_n(z_{\scriptscriptstyle 0}) \; .$$

Let $h(l) = \lim_{n \to \infty} h_n(l)$. Since $h_n(l) \ge \overline{s}(l)$ and

$$0 \leq \int_{\mathfrak{B}} (h(l) - \overline{s}(l)) dm(l) \leq \lim_{n o \infty} \left(h_n(z_0) - s(z_0)
ight) = 0$$
 ,

we conclude that $\overline{s}(l) = h(l)$ almost everywhere on \mathfrak{B} . In view of h(l) = 1 for every $l \in \mathfrak{A}_0$ we may suppose that

(20)
$$\overline{s}(l) = 1$$
 $(l \in \mathfrak{A})$.

18. The remainder of the proof is analogous to that in 11-12. In fact, since s is \widetilde{HD} -minimal, there exist points p and p^* in Γ° and Γ respectively such that $\mu^{\circ}(p) = \mu(p^*) > 0$, $p^* \in \pi^{-1}(p)$, and

$$s(z) = \int_{p} P^{\circ}(z, q) d\mu^{\circ}(q) = \int_{p^{*}} P(z, q^{*}) d\mu(q^{*}) \; .$$

We wish to show that $e^{\circ}(l) = p$ for almost every $l \in \mathfrak{A}$, that is, \mathfrak{A} is R° -distinguished with end p. For this purpose set $\mathfrak{A}' = \{l \in \mathfrak{A} \mid e^{\circ}(l) \neq p\}$. To see that $m(\mathfrak{A}') = 0$ take a sequence $\{U_n\}$ of open sets in Γ° such that

$$ar{U}_{n+1} {\subset\,} U_n, \qquad igcap_1^\infty \ U_n = \{p\} \;.$$

For $\mathfrak{A}'_n = \{l \in \mathfrak{A} \mid e^c(l) \notin U_n\}$ we have $\mathfrak{A}' = \bigcup_{i=1}^{\infty} \mathfrak{A}'_n$ and it suffices to show that $m(\mathfrak{A}'_n) = 0$ for every $n = 1, 2, \cdots$. Take a function $u_n \in HBD(R)$ with

$$0 \leq u_n | \Delta \leq 1, u_n | \pi^{-1}(U_{n+1}) \cap \Delta = 1, u_n | (\Delta - \pi^{-1}(U_n)) = 0$$

We may suppose $u_n(l)$ exists for every $l \in \mathfrak{A}$. Since $1 \ge u_n \ge s$ on R, (20) implies that

(21)
$$u_n(l) = 1 \qquad (l \in \mathfrak{A}) .$$

Clearly $e(l) \subset \Gamma - \pi^{-1}(U_n)$ for every $l \in \mathfrak{A}'_n$. Moreover, if we set $E_n = \{q^* \in \Gamma \mid u_n(q^*) < \frac{1}{2}\}$, then $e(l) \subset \Gamma - E_n \cup \pi^{-1}(U_n) = K_n$ for every $l \in \mathfrak{A}'_n$. Since K_n is compact and contained in $\Gamma - \mathcal{A}$,

$$\mathfrak{A}'_n \subset \check{K}_n \subset \widetilde{K}_n$$

implies that

$$m(\mathfrak{A}'_n) \leq \overline{m}(\widetilde{K}_n) = \mu(K_n) = 0$$
.

The proof of Theorem 14 is herewith complete.

5. Conclusion.

19. Recall that a bundle $\mathfrak{A}\subset\mathfrak{B}$ is distinguished with end p on the Kuramochi boundary if $m(\mathfrak{A}) > 0$ and almost every Green line in \mathfrak{A} terminates at p. Since the Kuramochi compactification is of type G, Theorems 8 and 14 imply:

THEOREM. A point p of the Kuramochi boundary of a hyperbolic Riemann surface R has positive measure if and only if there exists a distinguished bundle \mathfrak{A} of Green lines with end p.

A bundle \mathfrak{A} of Green lines with $m(\mathfrak{A}) > 0$ is distinguished if and only if, for every $u \in HD(R)$, there exists a number c_u such that the "radial limit" $\lim_{z \in l, r(z) \to 1} u(z)$ exists and equals c_u for almot every $l \in \mathfrak{A}$.

REFERENCES

1. M. Brelot and G. Choquet, *Espace et lignes de Green*, Ann. Inst. Fourier **3** (1952), 199-263.

2. C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer-Verlag, 1963.

3. M. Godefroid, Une propriété des fonctions BLD dans un espace de Green, Ann. Inst. Fourier **9** (1959), 301-304.

F.-Y. Maeda, Notes on Green lines and Kuramochi boundary of a Green space,
 J. Sci. Hiroshima Univ. 28 (1964), 59-66.

5. F.-Y. Maeda, M. Ohtsuka, et al., *Kuramochi Boundaries of Riemann Surfaces*, Lecture Notes 58, Springer-Verlag, 1968.

6. M. Nakai, A measure on the harmonic boundary of a Riemann surface, Nagoya Math. J. 17 (1960), 181-218.

7. _____, Behavior of Green lines at Royden's boundary of Riemann surfaces, Nagoya Math. J. **24** (1964), 1-27.

8. L. Sario and M. Nakai, *Classification Theory of Riemann Surfaces*, Springer-Verlag, 1970.

Received April 13, 1970. The work was sponsored by the U.S. Army Research Office-Durham, Grant DA-AROD-31-124-G855, University of California, Los Angeles.

NAGOYA UNIVERSITY CHIKUSA-KU, NAGOYA, JAPAN

UNIVERSITY OF CALIFORNIA LOS ANGELES, CALIFORNIA