APPROXIMATION BY ARCHIMEDEAN LATTICE CONES

Jorge Martinez

A root system A is a partially ordered set having the property that no two incomparable elements λ and μ have a common lower bound. $\Pi\left(\Lambda, \mathbf{R}_{\lambda}\right)$ will denote the direct product of copies of R, the set of real numbers, one for each $\lambda \in \Lambda . \quad V\left(\Lambda, \mathbf{R}_{\lambda}\right)$ is the following subgroup: $v \in V=V\left(\Lambda, \mathbf{R}_{\lambda}\right)$ if the support of v has no infinite ascending sequences. We put a lattice order on v by setting $v \geqq 0$ if $v=0$ or else every maximal component of v is positive in \mathbf{R}.

This paper has two main results: we first show that the cone of any finite dimensional vector lattice G can be obtained as the union of an increasing sequence $P_{1}, P_{2} \cdots$ of archimedean vector lattice cones on G such that $\left(G, P_{1}\right) \cong$ $\left(G, P_{2}\right) \cong \cdots$, as vector lattices. Next, generalizing this, we show that for any root system A the cone of the ℓ-group $V=V\left(\Lambda, \mathbf{R}_{\lambda}\right)$ can be obtained as the union of a family of archimedean vector ζ-cones $\left\{P_{\gamma}: \gamma \in \Gamma\right\}$ on V, where (V, P_{γ}) \cong (V, P_{δ}), as vector lattices, for all $\gamma, \delta \in \Gamma$.

It is proved in [1], Theorem 2.2, that $V\left(\Lambda, \mathbf{R}_{2}\right)$ is indeed an $<-$ group when Λ is a root system. In an ℓ-group $K, x \in K$ is a strong order unit if $x \geqq 0$, and for each $0<\alpha \in K$ there is an $n=1,2, \cdots$ such that $n x \geqq a$. The symbol \boxplus will denote the cardinal sum of $<-$ groups; that is, if $K_{i}(i \in I)$ are ℓ-groups then $K=\boxplus\left\{K_{i}: i \in I\right\}$ means that K is the direct sum of the K_{i}, as groups, and $0 \leqq x \in K$ if and only if $0 \leqq x_{i} \in K_{i}$, for each $i \in I$. Finally, if r is a real number, $\langle r\rangle$ will denote the smallest integer exceeding r.

Throughout the paper the pair (G, P) will denote an abelian $\ell-$ group; that is, G is an abelian group, and P is the cone for a lattice-group order on G. An ℓ-group (G, P) is said to be archimedean if for any pair $a, b \in P$ there is a positive integer n such that $n a \not \leq b ; P$ is then called an archimedean l-cone. We restrict our considerations to abelian groups since archimedean ℓ-groups are necessarily abelian (see [2]).

Let (G, Q) be an ℓ-group; we say that Q can be approximated by the archimedean l-cone P if there is a family $\left\{P_{\gamma}: \gamma \in \Gamma\right\}$ of archimedean ℓ-cones on G, such that (i) $\left(G, P_{\gamma}\right) \cong\left(G, P_{\dot{o}}\right)$, for all $\gamma, \delta \in \Gamma$, (ii) $Q=\bigcup\left\{P_{\gamma}: \gamma \in \Gamma\right\}$ and (iii) $P=P_{r}$, for some $\gamma \in \Gamma$. The ℓ-group (G, Q) is then called a limit A-group. If the approximating family is directed by set inclusion (resp. a chain under set inclusion) we call
(G, Q) a directed (resp. linear) limit A-group. If $\Gamma=\{1,2, \cdots\}$ and $P_{n} \subseteq P_{n+1}$ for all $n=1,2, \cdots$, we call (G, Q) a sequential limit A group.
(G, Q) is a vector lattice if G is a real vector space, and in addition to being an ℓ-cone, P is closed under scalar multiplication by positive real numbers. The vector lattice (G, Q) can be approximated by the archimedean vector lattice cone P if there is a family $\left\{P_{\gamma}: \gamma \in \Gamma\right\}$ of archimedean vector ℓ-cones on G, such that (i) $\left(G, P_{\gamma}\right) \cong\left(G, P_{\delta}\right)$, as vector lattices, for all $\gamma, \delta \in \Gamma$, (ii) $Q=\bigcup\left\{P_{\gamma}: \gamma \in \Gamma\right\}$ and (iii) $P=P_{r}$, for some $\gamma \in \Gamma$. In this case we call (G, Q) a limit A-space. By a directed (resp. linear, resp. sequential) limit A-spase (G, Q) we mean one where the approximating vector ℓ-cones form a directed set (resp. a chain, resp. an increasing sequence.)

It will be useful to denote a limit A-group (G, Q) by (G, Q, P), where $P \cong P_{\gamma}$, for all $\gamma \in \Gamma$; this way we can keep track of what approximation is being used.

Let (G, Q, P) be a limit A-group (resp. limit A-space); we call it a strong limit A-group (resp. strong limit A-space) if Q is essential over each P_{r}. (Let (G, P) be an $<$-group, Q be an extension of the cone P. Q is an essential extention of P if every ι-ideal of (G, Q) is an ℓ-ideal of (G, P). For further discussion on essential extensions see [3]). Suppose the family $\left\{P_{\gamma}: \gamma \in \Gamma\right\}$ has a smallest member (which is once again denoted by P); it follows from a remark in [3] concerning essential extensions, that (G, Q, P) is a strong limit A group if and only if Q is essential over P.

Proposition 1. The cardinal sum of (strong) sequential limit A groups is a (strong) sequential limit A-group. The same statement holds for (strong) sequential limit A-spaces.

Proof. Let $(G, Q)=\boxplus\left(G_{i}, Q_{i}\right), i \in I$. Suppose each Q_{i} is the limit of the sequence $\left\{P_{n, i}: n=1,2, \cdots\right\}$ of archimedean ℓ-cones on G_{i}, and $\left(G_{i}, P_{1, i}\right) \cong\left(G_{i}, P_{2, i}\right) \cong \cdots$, for all $i \in I$. Fix n, and let P_{n} be the ℓ-cone of the cardinal sum of the $\left(G_{i}, P_{n, i}\right)$. Since each $P_{n, i}$ is archimedean, so is P_{n}; clearly $P_{n} \subseteq P_{n+1}$, for each $n=1,2, \cdots$, and $P_{n} \cong Q$.

So let $y \in Q$ and $i_{1}, i_{2}, \cdots, i_{k}$ be the nonzero components of y. Then each $y_{i_{m}}$ is in $Q_{i_{m}}$, for $m=1,2, \cdots, k$, and there exists an $n(m)$ such that $y_{i_{m}} \in P_{n(m), i_{m}}$. Let $n=\max \{n(m): m=1,2, \cdots, k\}$; then each $y_{i_{m}} \in P_{n, i_{m}}$, which implies that $y \in P_{n}$. This show that $Q=\bigcup_{n=1}^{\infty}$ P_{n}; it is obvious that $\left(G, P_{1}\right) \cong\left(G, P_{2}\right) \cong \cdots$. It follows therefore that $\left(G, Q, P_{1}\right)$ is a sequential limit A-group.

Now suppose Q_{i} is essential over each $P_{n, i}, i \in I$. (This is equi-
valent to saying that each ι-ideal of $\left(G_{i}, Q_{i}\right)$ is an <-ideal of $\left(G_{i} P_{n, i}\right)$.) Let K be an ℓ-ideal of (G, Q); then $K=\boxplus\left\{K_{i}: i \in I\right\}$, where $K_{i}=K \cap G_{i}$. Each K_{i} is an ℓ-ideal of (G_{i}, Q_{i}), and hence an ℓ-ideal of $\left(G_{i}, P_{n, i}\right)$. Thus K is an ℓ-ideal of $\left(G, P_{n}\right)$, proving that Q is esssential over P_{n}, that is, $\left(G, Q, P_{1}\right)$ is a strong sequential limit A-group.

The above proposition can be generalized, in a sense:
Proposition 2. The cardinal sum of (strong) directed limit Agroups is a (strong) directed limit A-group. The same statement holds for cardinal products.

Proof. Let $(G, Q)=\boxplus\left(G_{i}, Q_{i}\right), i \in I . \quad$ Suppose $\left(G_{i}, Q_{i}\right)=\left(G_{i}, Q_{i}, P_{i}\right)$ is a directed limit A-group, and $\left\{P_{\gamma_{i}}: \gamma_{i} \in \Gamma^{(i)}\right\}$ is the approximating family. Let $\Gamma=\pi\left\{\Gamma^{(i)}: i \in I\right\}$ and consider the family $\left\{P_{r}: \gamma \in \Gamma\right\}$ of ℓ-cones defined by: $x \in P_{r}$ if for each $i \in I x_{i} \in P_{r_{i}}\left(\gamma_{i} \in \Gamma^{(i)}\right)$. Each P_{r} is clearly an archimedean ℓ-cone for G, and $\left(G, P_{\gamma}\right) \cong\left(G, P_{\delta}\right)$, for $\gamma \neq \delta$. The P_{γ} obviously form a directed system, and finally, if $y \in Q$ then $y_{i}=0$ or $y_{i} \in Q_{i}$; in either case $y_{i} \in P_{\dot{\delta}_{i}}$, for some $\delta_{i} \in \Gamma^{(i)}$, and therefore $y \in P_{\delta}$, where $\delta=\left(\cdots, \delta_{i}, \cdots\right) \in \Gamma$. Thus Q is the join of the P_{r} and we're done.

Notice that the above proof works for the cardinal product of directed limit A-groups. If each $\left(G_{i}, Q_{i}, P_{i}\right)$ is a strong limit A-group then one uses the technique of the proof of Proposition 1 to show that (G, Q, P) is also a strong limit A-group. We should also point out once more, that a similar version of this theorem holds for directed limit A-spaces.

It is not known whether the cardinal sum (resp. product) of linear limit A-groups is again a linear limit A-group. By Proposition 2 it is certainly a directed limit A-group.

Theorem 3. Let $\left(G, Q, P_{1}\right)$ be a strong sequential limit A-space having a strong order unit. Let $K=\mathbf{R} \oplus G$ and $Q^{\prime}=\{r+g: r>0$, or else $r=0$ and $g \in Q\}$. Then $\left(K, Q^{\prime}, \mathbf{R}^{+} \oplus P_{1}\right)$ is a strong sequential limit A-space.

Proof. Let $u \in G$ be a strong order unit relative to Q; without loss of generality we can assume $u \in P_{n}$ for each $n=1,2, \cdots$. Let v be any positive real number and define

$$
v^{(n)}=\left(\frac{1}{n}\right) v+\left(\frac{1-n}{n}\right) u, \quad \text { for } n=1,2, \cdots
$$

Let $V^{(n)}=\left\{r v^{(n)}: r \in \mathbf{R}\right\} ; V^{(n)}$ is a one-dimensional space, and clearly $V^{(n)} \cap G=0$, so $K=V^{(n)} \oplus G$. Now let $P_{n}^{\prime}=\left\{r v^{(n)}+g: 0 \leqq r\right.$ and $\left.g \in P_{n}\right\}$; then $\left(K, P_{n}^{\prime}\right)$ is the cardinal sum of $V^{(n)}$, ordered as the reals, and $\left(G, P_{n}\right)$. Since each P_{n} is archimedean it follows that each P_{n}^{\prime} is also. Notice that $V^{(1)}=\mathbf{R}$ and $P_{1}^{\prime}=\mathbf{R} \boxplus P_{1}$. If H is an ℓ-ideal of (K, Q^{\prime}) then either $H=K$ or $H=G$, or else H is a proper \langle-ideal of (G, Q); in any case H is an ℓ-ideal of (K, P_{1}^{\prime}), since Q is essential over P_{1}. Notice also that $\left(K, P_{n}^{\prime}\right) \cong\left(K, P_{n+1}^{\prime}\right)$, for all n.

We must show (1) $P_{n}^{\prime} \cong P_{n+1}^{\prime} \cong Q^{\prime}$ and (2) $Q^{\prime}=\bigcup_{n=1}^{\infty} P_{n}^{\prime}$.
(1) We show first that $P_{1}^{\prime} \subseteq P_{k}^{\prime} \subseteq Q^{\prime}$, for all $k=1,2, \cdots$. The first inequality will follow if we can prove that $v \in P_{k}^{\prime}$, the second, if $v^{(k)} \in Q^{\prime}$, because we know that $P_{1} \subseteq P_{k} \subseteq Q$. That $v^{(k)}$ is in Q^{\prime} is clear since $(1 / n) v>0$. One can easily show that

$$
v=k v^{(k)}+(k-1) u,
$$

proving that $v \in P_{k}^{\prime}$.
But now observe that for each $n=1,2, \cdots$ we have

$$
v^{(n)}-v^{(n+1)}=\frac{1}{n(n+1)}(v+u) \in P_{1}^{\prime} \sqsubseteq P_{n+1}^{\prime}
$$

so $v^{(n)}$ is the sum of two elements in P_{n+1}^{\prime}, and hence $v^{(n)} \in P_{n}^{\prime}, \ldots$ That is enough to show that $P_{n}^{\prime} \cong P_{n+1}^{\prime}$.
(2) Let $y \in Q^{\prime}$; we have the following expressions for $y: y=$ $s v+y_{0}=s^{(n)} v^{(n)}+y^{(n)}$, with $s, s^{(n)} \in \mathbf{R}$ and $y_{0}, y^{(n)} \in G$. This forces certain relations:

$$
\begin{equation*}
s^{(n)}=n s \geqq 0 \tag{1}
\end{equation*}
$$

(since $y \in Q^{\prime}$),
and

$$
\begin{equation*}
\left(\frac{(1-n)}{n}\right) s^{(n)} u+y^{(n)}=y_{0} \tag{2}
\end{equation*}
$$

Thus each $s^{(n)} \geqq 0$; moreover, the above equations give

$$
y^{(n)}=(n-1) s u+y_{0}
$$

Writing y_{0} as the difference of its positive and negative parts relative [to Q, we obtain

$$
y^{(n)}=(n-) s v_{0}+y_{0}^{+}-y_{0}^{-} .
$$

Observe that since u is a strong order unit of (G, Q), then so is $s u$. Therefore if n is large enough, $(n-1) s u>y_{0}^{-}($rel. $Q)$. But since the P_{n} form a chain we can certainly find an n_{0} such that $y_{0}^{+}, y_{0}^{-} \in P_{n_{n}}$ and $\left(n_{0}-1\right) s \varepsilon>y_{0}^{-}\left(\right.$rel. $\left.P_{n_{0}}\right)$. Thus $y_{0}^{(n)} \in P_{n_{0}}$; together with the fact that $s_{0}^{(n)} \geqq 0$ this impies that $y \in P_{n_{0}}$. This proves the theorem.

Corollary 3.1. Every finite dimensional vector lattice is a strong sequential limit A-space.

Proof. Note at the outset that every finite dimensional vector lattice has a strong order unit. For if (V, Q) is a t-dimensional vector lattice, we may regard (V, Q) as $V\left(\Lambda, \mathbf{R}_{2}\right)$, where Λ is a root system of t elements, and for each $\lambda \in \Lambda, \mathbf{R}_{\lambda}=\mathbf{R}$. ([1], Theorem 5.11) Then $x=(1,1, \cdots, 1)$ is a strong order unit.

We proceed by induction on t :
Case I. Λ has a largest element λ_{0}. Let $\Lambda^{\prime}=\Lambda \backslash\left(\lambda_{0}\right\}$; then (V, Q) is a direct lexicographic extension of $V\left(\Lambda^{\prime}, \mathbf{R}_{\lambda}\right)$ by \mathbf{R}. But $V\left(\Lambda^{\prime}, \mathbf{R}_{\lambda}\right)$ has dimension $t-1$, so it is a strong sequential limit A-space. By Theorem $3(V, Q)$ is also a strong sequential limit A-space.

Case II. Λ has no largest element. Then Λ can be written as the union of two nonempty, disjoint subsets Λ_{1} and Λ_{2} having the property that λ is incomparable to μ, for all $\lambda \in \Lambda_{1}$ and $\mu \in \Lambda_{2}$. It follows that $(V, Q)=V\left(\Lambda_{1}, \mathbf{R}_{\lambda}\right) \boxplus V\left(\Lambda_{2}, \mathbf{R}_{\lambda}\right)$, and both these summands have dimension less than t; thus they both are strong sequential limit A-spaces, and by Proposition 1 so is (V, Q).

Let Λ be a root system, $\Pi=\Pi\left(\Lambda, \mathbf{R}_{\lambda}\right), \quad V=V\left(\Lambda, \mathbf{R}_{\lambda}\right)$ and $P=$ $V \cap I^{+}$, where $\Pi^{+}=\left\{x: x_{\lambda} \geqq 0\right.$, for all $\left.\lambda \in \Lambda\right\}$. The following discussion will establish that V is a limit A-space. (Of course we consider V as a vector lattice relative to the cone $V^{+}=\{v$: all the maximal nonzero components of v are positive\}.) Notice that (V, P) is an ℓ subgroup of Π. For each $x \in P$ let $s(x)$ denote the support of $x, m(x)$ the set of maximal nonzero components of x. Choose a family $\left\{n_{\lambda}: \lambda \in m(x)\right\}$ of positive integers, and define a map $\theta_{x,\left[n_{2}\right\}}$ on Π by:
$\left(y \theta_{x},,_{n_{\lambda} \lambda}\right)_{\lambda}=\left\{\begin{array}{l}y_{\lambda} \\ y_{\lambda}-n_{\lambda\langle x\rangle}^{\langle\langle\lambda\rangle} y_{\lambda(x)} \\ y_{\lambda}-n_{\lambda\langle x\rangle}^{\langle\langle\lambda\rangle} y_{\lambda-1}\end{array}\right.$ if $\lambda \notin s(x)$ or $\lambda \in m(x)$; if $\lambda \in s(x) \backslash m(x)$ and λ has no successor in $s(x)$;
if $\lambda \in s(x) \backslash m(x)$ and $\lambda-1$ is the seccessor of λ in $s(x)$.
(Note: $\lambda(x)$ is the maximal component of x that exceeds λ.) This map has an inverse $\theta_{x,\left\langle n_{i}\right|}^{-1}$:

Clearly then $\theta_{x,\left\langle n_{\lambda}\right\rangle}$ is a vector space isomorphism of Π onto itself. Let $P_{x,\left\{n_{\lambda}\right\}}=P \theta_{x,\left\{n_{2}\right\}}$; we claim first that, restricted to V, each $\theta_{x,\left\{n_{2}\right\}}$ is an isomorphism of V onto itself. This is due to the fact that for all $y \in \Pi$

$$
s(y) \cong s(x) \cup s\left(y \theta_{\left.x, \mid n_{2}\right\}}\right) \quad \text { and } \quad s\left(y \theta_{\left.x, \mid n_{n_{k}}\right)}\right) \subseteq s(y) \cup s(x) .
$$

A quick look at the definition of $\theta_{x,\left\langle n_{2}\right\}}^{-1}$ readily shows that $P \theta_{x,\left\{n_{\lambda}\right\}} \subseteq P$, that is: $P \cong P_{x,\left\{n_{n}\right\}}$. Thus $P_{x,\left\{n_{\lambda}\right\}}$ is an archimedean vector lattice order on V, and $(V, P) \cong\left(V, P_{x,\left\{n_{\lambda}\right\}}\right)$, for all $x \in P$ and $\left\{n_{\lambda}: \lambda \in m(x)\right\}$.

Now if $y \in V^{+}$then consider $x=|y|_{p}$; of course $s(x)=s(y)$ and $m(x)=m(y)$. We proceed by induction on the maximal chains of $s(x)$. Let μ be a fixed maximal component of x; of course $\left.\left(y \theta_{x}^{-1}, \mid n_{\lambda}\right)\right)_{\lambda}=y_{\lambda}$ for all $\lambda \geqq \mu$ and every choice of integers $\left\{n_{\lambda}: \lambda \in m(x)\right\}$. So assume $\lambda<\mu$ and $\lambda \in s(x)$; if λ has no successor in $s(x)$, let n_{μ} be the smallest positive integer $\geqq 2$ such that $n_{\mu} x_{\mu} \geqq 2$. If $y_{\lambda}>0$ then $n_{\left.\mu^{\mu} \lambda_{\lambda}\right\rangle}^{\mu_{\mu}}+y_{\lambda} \geqq 1$, since $x_{\mu}=y_{\mu}$. If $y_{\lambda}<0$ then $y_{\lambda}=-x_{\lambda}$; now if $x_{\lambda}>1$ we get $n_{\mu}^{\left\langle x_{\lambda}\right\rangle-1} \geqq x_{\lambda}$, for all $n_{\mu} \geqq 2$. This implies that $n_{\mu}^{\left\langle x_{\mu}\right\rangle} y_{\mu} \geqq 2 x_{\lambda} \geqq x_{2}+1$. If $0>y_{\lambda} \geqq-1$ then $n_{\mu}^{\langle x\rangle} y_{\mu}=n_{\mu} y_{\mu} \geqq 2=1+1 \geqq x_{\lambda}+1$. Hence in any of the above cases $n_{\mu}^{\langle x\rangle} y_{\mu}+y_{\mu} \geqq 1$, for large enough n_{μ}. Notice that n_{μ} is independent of λ.

If λ does have a successor in $s(x)$ there are two cases for $\left(y \theta_{x}^{-1},\left(n_{\lambda}\right)\right)_{\lambda}$.

Case I. $\quad\left(y \theta_{x}^{-1},\left\langle n_{\lambda}\right\rangle\right)_{\lambda}=n_{k}^{\left\langle x \lambda_{2}\right\rangle+\cdots+\left\langle x_{\left.\lambda_{k}\right\rangle}\right\rangle} y_{\lambda_{1}}+\cdots+n_{\mu_{k}}^{\left\langle x_{k}\right\rangle} y_{\lambda_{k-1}}+y_{\lambda_{k},}$, where $\lambda_{k}=\lambda, \lambda_{i-1}$ is the successor of λ_{i} in $s(x)$ and $\lambda_{1}=\mu$.
Thus
and by induction the sum in the square brackets is $\geqq 1$; so

$$
\left(y \theta_{x}^{-1},\left\langle n_{2}\right)\right)_{\lambda} \geqq n_{\left.\psi^{2 x} k_{k}\right\rangle}^{\left\langle y_{\lambda_{k}} \geqq\right.}
$$

(The last inequality holds since for any real number $r, n^{\langle | r| \rangle} \geqq r+1$, for all $n \geqq 2$.)

Case II.
$\left(y \theta_{x}^{-1},\left\{n_{\lambda}\right\rangle\right)_{\lambda}=n_{\mu}^{\left\langle x_{1}\right\rangle+\left\langle x_{\lambda_{2}}\right\rangle+\cdots+\left\langle x \lambda_{k}\right\rangle} y_{\mu}+n_{\mu}^{\left\langle x \lambda_{2}\right\rangle+\cdots+\left\langle x \lambda_{k}\right\rangle} y_{\lambda_{1}}+\cdots+n_{\mu}^{\left\langle x \lambda_{k}\right\rangle} y_{\lambda_{k-1}}+y_{\lambda_{k}}$,
where $\lambda_{k}=\lambda, \lambda_{i-1}$ is the successor of λ_{i} in $s(x)$ and λ_{1} has no successor in $s(x)$. Again

$$
\left(y: \theta_{x}^{-1},\left\{n_{\lambda}\right\rangle\right)_{\lambda}=n_{\mu}^{\left\langle x \lambda_{k}\right\rangle}\left[n_{\mu}^{\left\langle x_{1}\right\rangle+\cdots+\left\langle x_{2 k-1}\right\rangle} y_{\mu}+\cdots+y_{\lambda_{k-1}}\right]+y_{\lambda_{k}},
$$

and again by induction the bracketed sum is $\geqq 1$; so

$$
\left(y \theta_{x}^{-1},\left\langle n_{\lambda}\right\rangle\right)_{\lambda} \geqq n^{\left\langle x_{\lambda_{k}}\right\rangle}+y_{\lambda_{k}} \geqq 1
$$

Out of all of this we get that if $\lambda<\mu$ and $\lambda \in s(x)$ then there is an n_{μ} (independent of λ) such that $\left(y \theta_{x}^{-1},\left(n_{\lambda}\right)\right)_{\lambda} \geqq 1$. This works for every $\mu \in m(x)=m(y)$, and so we can find integers $\left\{n_{\lambda}: \lambda \in m(x)\right\}$ such that $y \theta_{x}^{-1},\left\{n_{\lambda}\right\} \in P$. (Remark: if $\lambda<\mu$ in the above arguments, but $x_{\lambda}=y_{\lambda}=0$, then there is no problem; any θ^{-1} will fix this component.) Putting it differently: we've discovered an x in P and integers $\left\{n_{\lambda}: \lambda \in m(x)\right\}$ such that $y \in P_{x,\left[n_{\lambda}\right.}$; hence

$$
V^{+} \cong \bigcup\left\{P_{x,\left\{n_{\lambda}\right\}}: x \in P,\left\{n_{\lambda}: \lambda \in m(x)\right\}\right\}
$$

To show the reverse containment we show a little bit more. The maps $\theta_{x,\left\{n_{\lambda}\right\}}$ all take V^{+}into itself. For if $a \in V^{+}$and $\mu \in m(a)$ then $\left(a \theta_{x,\left\{n_{\lambda}\right\}}\right)_{\mu}=a_{\mu}$. And if $\lambda>\mu$ then $\left(a \theta_{x,\left\{n_{\lambda}\right\}}\right)_{\lambda}=a_{\lambda}=0$; thus $m(a) \subseteq m\left(a \theta_{x,\left\{n_{\lambda}\right\}}\right)$. One shows in a similar fashion that $m\left(\alpha \theta_{x,\{n,\rangle}\right) \subseteq m(a)$, and hence equality holds. This clearly shows that $V^{+} \theta_{x,\left\{n_{2}\right\}}=V^{+}$and therefore $P_{x,\left\{n_{n}\right\}} \subseteq V^{+}$, for all $x \in P$ and $\left\{n_{\lambda}: \lambda \in m(x)\right\}$.

In addition V^{+}is essential over P, in view of Proposition 2.5 in [3]. We've thus proved the following theorem:

Theorem 4. If Λ is any root system, then $V=V\left(\Lambda, \mathbf{R}_{k}\right)$ is a strong limit A-space.

Again let Λ be a root system, and $F=F\left(\Lambda, \mathbf{R}_{\lambda}\right)=\{v \in V: s(v)$ is contained in the union of finitely many maximal chains; $\} F$ is then an ℓ-subgroup of V. In the above construction we can throw out quite a few of the $P_{x,\left\{n_{2}\right\}} ;$ in this case we take for each $x \in Q=P \cap F$ and $n=1,2, \cdots$, mappings $0_{x,\left\{n_{2}\right\}}$ where each $n_{\lambda}=n$. We abbreviate the notation to $\theta_{x, n}$ and $P_{x, n}$ respectively. (We mention in passing
that (F, Q) is an ℓ-subgroup of (V, P).) For each $a \in Q$ and each positive integer n, we denote by $Q_{a, n}$ the cone $P_{a, n} \cap F=(P \cap F) \theta_{a, n}=$ $Q \theta_{a, n}$. Notice that since $s(b) \sqsubseteq s(a) \cup s\left(b \theta_{a, n}\right)$ and $s\left(b \theta_{a, n}\right) \subseteq s(a) \cup s(b)$ it follows that $F \theta_{a, n}=F$. This means that $Q_{a, n}$ is an ℓ-cone for F and $(F, Q) \cong\left(F, Q_{a, n}\right)$.

If $y \in F^{+}=F \cap V^{+}$then $x=|y|_{T} \in F$; pick n_{c} to be the smallest integer $\geqq 2$ such that $n_{0} x_{\mu_{j}} \geqq 2$, for all $j=1, \cdots, k$, with $m(x)=$ $m(y)=\left\{\mu_{1}, \cdots, \mu_{k}\right\}$. With this notation, we can follow the technique oi the proof of Theorem 4 and show that $y \in Q_{i, n}$. We get therefore that $F=\bigcup\left\{Q_{x, n}: x \in Q, n=2,2, \cdots\right\}$, and we've proved the following:

Theorem 5. If Λ is a root system, then $F=F\left(\Lambda, \mathbb{R}_{\lambda}\right)$ is a strong limit A-space.

REMARK. Once again in view of 2.5 in [3] we can conclude that F^{+}is essential over Q.

Now let Λ be a root system having finitely many maximal chains and no infinite ascending sequences; note that in this case $V=I /$. Let $m(A)$ denote the set of maximal components of A. For each $: \in P$ define $\Psi_{x, n}$ on $I I$ by

$$
\left(y \Psi_{x, n}\right)_{\lambda}=\left\{\begin{array}{l}
y_{\lambda} \\
y_{\lambda}-n^{\left\langle x_{\lambda}\right\rangle} y_{\lambda^{*}} \\
y_{\lambda}-n^{\left\langle x_{\lambda}\right\rangle} y_{\lambda-1}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { if } \lambda \in m(\Lambda) \text {; } \\
& \text { if } \lambda \notin m(\Lambda) \text { and } \lambda \text { has no successor in } \\
& \Lambda \text {; } \\
& \text { if } \lambda \in m(\Lambda) \text { and } \lambda-1 \text { is its successor } \\
& \text { in } \Lambda \text {. }
\end{aligned}
$$

(Note: λ^{*} denotes the maximal entry of Λ exceeding λ_{0}) As before $\Psi_{x, n}$ is a vector space isomorphism on V, and $Q_{x, n}=P \Psi_{x, n} \supseteq P$, for all $x \in P$ and $n=1,2, \cdots$. Once again $(V, P) \cong\left(V, Q_{x, n}\right)$; and if $y \in V^{+}$ and $x=|y|_{P}$ we pick n_{0} to be the smallest integer $\geqq 2$ such that $n_{3} x_{\mu_{j}} \geqq 2$, for all maximal components $\mu_{1}, \mu_{2}, \cdots, \mu_{k}$ of x. Then as in the proof of Theorem 4, with the various cases, one shows that for all $\lambda<\mu_{j}(j=1, \cdots, k)$ we get $\left(y \Psi_{x, n_{0}}^{-1}\right) \geqslant 1$. (We have to assume here that $x_{\mu_{j}} \geqq 1$, for each j, but this can be done without loss of generality.) Therefore $V^{+}=\bigcup\left\{Q_{x, n}: x \in P, n=1,2, \cdots\right\}_{\text {。 }}$

But in this case we can say more: the system $\left\{Q_{x, n}: x \in P, n=\right.$ $1,2, \cdots\}$ is directed. To prove this we show that if $m \leqq n$ are positive integers then $Q_{x, m} \subseteq Q_{x, n}$; and if $0 \leqq x \leqq y$ (rel. p) then $Q_{x, n} \sqsubseteq Q_{y, n}$. First suppose $m \leqq n$; let $a \in P$ and consider $a \Psi_{x, m} \Psi_{a, n}^{-1}$: given $\lambda \in A$
there are four cases to consider.
(1) $\lambda \in m(\Lambda)$; then $\left(a \Psi_{x, m} \Psi_{x, n}^{-1}\right)_{\lambda}=a_{\lambda} \geqq 0$.
(2) $\lambda \notin m(\Lambda)$ and λ has no successor in Λ; then

$$
\begin{aligned}
\left(a \Psi_{x, m} \Psi_{x, n}^{-1}\right)_{\lambda} & =n^{\left\langle x_{\lambda}\right\rangle}\left(a \Psi_{x, m}\right)_{\lambda^{*}}+\left(a \Psi_{\chi, m}\right)_{\lambda} \\
& =n^{\langle x\rangle} a_{\lambda^{*}}+a_{\lambda}-m^{\left\langle x \lambda_{\lambda}\right\rangle} a_{2^{*}} \\
& =a_{\lambda}+\left(n^{\left\langle\left\langle\lambda^{\prime}\right\rangle\right.}-m^{\left\langle x_{\lambda^{\prime}}\right\rangle} a_{2^{*}} \geqq 0 .\right.
\end{aligned}
$$

(3) $\lambda \notin m(\Lambda)$ and λ_{i-1} is the successor of λ_{i}, where $\lambda_{k}=\lambda$ and $\lambda_{1} \in m(\Lambda)$. Then

$$
\begin{aligned}
& \left(a \Psi_{x, m} \Psi_{x, n}^{-1}\right)_{\lambda} \\
= & n^{\left\langle x_{\left.\lambda_{2}\right\rangle}\right\rangle+\cdots+\left\langle x_{\left.\lambda_{k}\right\rangle}\right\rangle}\left(a \Psi_{x, m}\right)_{\lambda_{1}}+\cdots+n^{\left\langle x_{2 k}\right\rangle}\left(a \Psi_{x, m}\right)_{\lambda_{k-1}}+\left(a \Psi_{x, m}\right)_{\lambda_{k}} \\
= & n^{\left\langle\lambda_{\left.\lambda_{2}\right\rangle}\right\rangle+\cdots+\left\langle x x_{k}\right\rangle} a_{\lambda_{1}}+\cdots+n^{\left\langle x_{2 k}\right\rangle}\left(a_{\lambda_{k-1}}-m^{\left\langle x_{2 k-1}\right\rangle} a_{\lambda_{k-2}}\right)+a_{\lambda_{k}}-m^{\left\langle x \lambda_{k}\right\rangle} a_{\lambda_{k-1}} \\
= & n^{\left\langle x_{\left.\lambda_{3}\right\rangle}\right\rangle+\cdots+\left\langle x_{\left.\lambda_{k}\right\rangle}\right\rangle}\left(n^{\left\langle x_{\lambda_{2}}\right\rangle}-m^{\left\langle x_{\left.\lambda_{2}\right\rangle}\right\rangle}\right) a_{\lambda_{1}}+\cdots+\left(n^{\left\langle x_{2 k}\right\rangle}-m^{\left\langle x \lambda_{k k}\right\rangle}\right) a_{\lambda_{k-1}}+a_{\lambda_{k}} \geqq 0 .
\end{aligned}
$$

(4) $\lambda \notin m(\Lambda)$ and λ_{i-1} is the successor of $\lambda_{i}, \lambda_{k}=\lambda$ and λ_{1} has no successor. As in (3) one shows that $\left(\alpha \Psi_{x, m} \Psi_{x, n}^{-1}\right)_{k} \geqq 0$. This proves that $P \Psi_{x, m} \Psi_{x, n}^{-1} \cong P$, or $Q_{x, m} \subseteq Q_{x, n}$.

Next, suppose $0 \leqq x \leqq y$ (rel. p) and n is a positive integer. Consider $\left(\alpha \Psi_{x, n} \Psi_{y, n}^{-1}\right)_{\lambda}$ with $\alpha \in P$; once again there are four cases.
(1) $\lambda \in m(\Lambda)$; then $\left(a \Psi_{x, n} \Psi_{y, n}^{-1}\right)_{\lambda}=a_{\lambda} \geqq 0$.
(2) $\lambda \notin m(1)$ and λ has no successor in A; then one can check that $\left(a \Psi_{x, n} \Psi_{y, n}^{-1}\right)_{\lambda}=a_{\lambda}+\left(n^{\left\langle y_{\lambda}\right\rangle}-n^{\left\langle x_{n_{\lambda}}\right\rangle}\right) \alpha_{\lambda^{*}} \geqq 0$, since $\left\langle y_{\lambda}\right\rangle \geqq\left\langle x_{\lambda}\right\rangle$.
(3) $\lambda \notin m(4)$ and λ_{i-1} is the successor of $\lambda_{i}, \lambda_{k}=\lambda$ and λ_{1} is a maximal component of Λ. One easily verifies that

$$
\begin{aligned}
& \left(a \Psi_{x, n} \Psi_{y, n}^{-1}\right)_{\lambda}=n^{\left\langle y_{\lambda_{3}}\right\rangle+\cdots+\left\langle y_{\left.\lambda_{k}\right\rangle}\right.}\left(n^{\left\langle y_{\lambda_{2}}\right\rangle}-n^{\left\langle x_{\left.\lambda_{2}\right\rangle}\right\rangle}\right) a_{\lambda_{1}}+\cdots \\
+ & \left(n^{\left\langle y_{\lambda_{k}}\right\rangle}-n^{\left\langle x_{\lambda_{k}}\right\rangle}\right) a_{\lambda_{k-1}}+a_{\lambda_{k}} \geqq 0 .
\end{aligned}
$$

(4) $\lambda \notin m(\Lambda)$ and λ_{i-1} is the successor of λ_{i}, where $\lambda_{k}=\lambda$ but λ_{1} has no successor in 1 . One checks as in the other cases that $\left(a \Psi_{x, n} \Psi_{y, n}^{-1}\right) \geqq 0$. Thus $P \Psi_{y, n} \Psi_{x, n}^{-1} \cong P$, that is $Q_{x, n} \cong Q_{y, n}$.

So if $Q_{a, m}$ and $Q_{b, n}$ are given, with $a, b \in P$, then we may assume $m \leqq n$ and so $Q_{a, m} \cup Q_{b, n} \cong Q_{a v_{P} b, n}$; this proves that the system of the $Q_{x, n}$ is directed. Hence:

ThEOREM 6. If Λ is a root system having finitely many roots and no infinite ascending sequences, then $V=V\left(\Lambda, \mathbf{R}_{2}\right)=\Pi\left(\Lambda, \mathbf{R}_{2}\right)$ and V is a strong directed limit A-space.

As an easy corollary of Theorem 4 we prove the following:
Proposition 7. Let 4 be a root system, and D be an l-subgroup of $V=V\left(\Lambda, \mathbf{R}_{\lambda}\right)$ having the property that
(a) D is an $<$-subgroup of $(V, P) ; P=\left\{x \in V: x_{\lambda} \geqq 0\right.$, all $\left.\lambda \in \Lambda\right\}$.
(b) And if $a, b \in D, c \in V$ and $s(c) \subseteq s(a) \cup s(b)$, this implies that $c \in D$.

Then $\left(D, D \cap V^{+}\right)$is a limit A-group.
Proof. Condition (a) guarantees, of course, that $(D, D \cap P)$ is an ι-group. Condition (b) says that for each $x \in D \cap P$ and each family $\left\{n_{\lambda}: \lambda \in m(x)\right\}$ the isomorphism $\theta_{\left.x, \mid n_{\lambda}\right\}}$ takes D onto D. Thus

$$
(D, D \cap P) \cong\left(D, D \cap P_{x,\left\{n_{\lambda}\right\}}\right)
$$

and

$$
D=\bigcup\left\{D \cap P_{x,\left\{n_{\lambda}\right\}}\right\}
$$

This completes the proof.
In particular $\Sigma=\Sigma\left(\Lambda, \mathbf{R}_{\lambda}\right)=\{x \in V: s(x)$ is finite $\}$ satisfies (a) and (b) in Proposition 7, and so ($\left.\Sigma, \Sigma \cap V^{+}, \Sigma \cap P\right)$ is a limit A-space.

In closing we point out that it is unknown whether the construction of Theorem 4 or 5 yields a directed system. Even if this should not be the case, some subsystem might be directed and still fill out V^{+}. A case in point is $\Sigma=\Sigma\left(\Lambda, \mathbf{R}_{2}\right)$; one can show (the proof being long, but in the spirit of that of Theorems 4 and 5) that Σ is a directed limit A-space, by taking an appropriate subsystem of the $\left\{P_{x,\left\{n_{\lambda}\right\}}\right\}$.

Suppose we have an 1-group (G, Q); if we knew under what conditions G admitted an archimedean ℓ-order P, of which Q was a very essential extension, we could perhaps make a construction on P along the lines of the construction of Theorem 4. It is doubtful that the construction of Theorem 4 applies to too many ℓ-subgroups of V. The reason being that the archimedean ℓ-cones $P_{x,\left[n_{\lambda}\right\}}$ are of a very special type, namely they have a basis.

A question which has some interest on its own: what groups G admit archimedean lattice orders? They must of course be abelian and torsion free, and if G is divisible then G does certainly admit such a cone. There is no guarantee however, that an archimedean l-cone on the divisible closure G^{*} of G will even induce an ℓ-cone on G.

In view of Corollary 3.1 one can ask of course: what ℓ-groups are (strong) sequential (or linear) limit A-groups. Let us give one example to show that 3.1 does not give all the strong sequential limit A spaces. This is also an example of a strong sequential limit A-space with infinite descending chains of ℓ-ideals; one can give examples of strong sequential limit A-spaces which have infinite ascending chains of ℓ-ideals. It is even possible to find strong sequential limit A-spaces with descending chains (or ascending chains) of arbitrary length.

Let $G=\mathbf{R} \boxplus \mathbf{R} \boxplus \mathbf{R} \boxplus \cdots=$ \{all finitely nonzero real sequences $\}.$ Let Q be the lexicographic total order by ordering from the left; let $P=G^{+}$. Let θ_{n} be a map defined by

$$
x \theta_{n}=\left(x_{1}, x_{2}-n x_{1}, \cdots, x_{n}-n x_{n-1}, x_{n+1}, x_{n+2}, \cdots\right) .
$$

In the notation of the proof of Theorem $5 \theta_{n} \equiv \theta_{x_{n}, n}$, where $x_{n}=$ $(1,1, \cdots, 1,0,0, \cdots)$; (the last 1 is the n-th position.) We therefore know that θ_{n} is an isomorphism of G onto itself, and $P_{n}=P \theta_{n} \supseteq P$. It can be shown further that $P_{n} \cong P_{n+1}$, for each $n=1,2, \cdots$, and finally $Q=\bigcup_{n=1}^{\infty} P_{n}$. Thus (G, Q, P) is a strong sequential limit A space, for Q is very essential over P.

Bibliography

1. P. Conrad, J. Harvey and C. Holland; The Hahn-embedding theorem for abelian lattice-ordered groups, Trans. Amer. Math. Soc., 108 (1963), 143-169.
2. L. Fuchs; Teilweise geordnete algebraische strukturen; Vandenhoeck and Ruprecht in Göttingen, (1966).
3. J. Martinez; Essential extensions of partial orders on groups; (Preprint-submitted to Trans. Amer. Math. Soc.).

Received February 3, 1970.
University of Florida

