ON A SIX DIMENSIONAL PROJECTIVE REPRESENTATION OF PSU_{4} (3)

J. H. Lindsey, II

In the course of an investigation of six-dimensional complex linear groups, it was discovered that a central extension of Z_{6} by $P S U_{4}(3)$ has a representation of degree six. In fact, this representation has as its image the unimodular subgroup $X(G)$ of index 2 of the following 6 -dimensional matrix group: <all 6 by 6 permutation matrices; all unimodular diagonal matrices of order $3 ; I_{6}-Q / 3$ where Q has all its entries equal to one \rangle. This matrix group leaves the following lattice invariant: $\left\{\left(a_{1}, \cdots, a_{6}\right) \mid a_{i} \in Z(\omega)\right.$ where throughout this paper ω is a primitive third root of unity; $a_{i}-a_{j} \in \sqrt{\overline{-3}} Z(\omega)$ for all $\left.i, j ; \sum_{i=1}^{6} a_{2} \in 3 Z(\omega)\right\}$. The generators of the matrix group are similar to the following generators for an 8 -dimensional complex linear group with Jordan-Holder constituents Z_{2}, the nontrivial simple constituent of $0_{8}(2), Z_{2}$: \langle all 8 by 8 permutation matrices, all unimodular diagonal matrices of order $2, I_{8}-P / 4$ where P has all entries equal to 1\rangle.

The projective representation of $P S U_{4}(3)$ can be used to construct a 12 -dimensional representation $Y(H)$, a central extension of Z_{6} by the Suzuki group, which leads to the known 24 -dimensional projective representation of the Conway group. In fact, H has a subgroup K isomorphic to a central extension of $\left(Z_{6} \times Z_{3}\right)$ by $P S U_{4}(3)$. Also, $Y \mid H$ has two six-dimensional constituents coming from the above matrix group where the constituents are related by an outer automorphism of $P S U_{4}(3)$ which does not lift to the central extension of Z_{6} by $P S U_{4}(3)$ with the six-dimensional representation. We obtain two commuting automorphisms, α and β respectively, of G from I_{6} $Q / 3$ and complex conjugation. For $\operatorname{PSU}_{4}(3)$, the outer automorphism group is dihedral of order eight with its center corresponding to complex conjugation of $X(G)$. The entire automorphism group lifts to K. We may take the center of K to be $\langle a, b, c\rangle$ with a and b of order 3 and c of order 2, with $G \cong K / b$, and with $\alpha(\alpha)=a, \alpha(b)=b^{-1}, \beta(a)=a^{-1}, \beta(b)=$ b^{-1}. We can also find an automorphism γ of K with $\gamma(a)=b$ and $\gamma(b)=a$. We give the character table of K giving only one representative of each family of algebraically conjugate characters and classes. Irrational characters and classes are underlined. Only one class in each coset of $Z(K)$ is represented by the character tables. The characters in the table $\widetilde{U_{4}(3)}$ give the characters with $Z(K)$ in the kernel. The succeeding five character tables in order give the following linear characters, respectively, on $Z(K): \theta(a)=\theta(b)=1, \theta(c)=-1$; $\theta(a)=\omega, \theta(b)=\theta(c)=1 ; \theta(a)=\omega^{-1}, \theta(b)=1, \theta(c)=-1 ; \theta(a)=$
$\theta(b)=\omega, \theta(c)=1 ; \theta(a)=\theta(b)=\omega, \theta(c)=-1$. The characters
with other actions are obtained by applying elements of the
outer automorphism group. The automorphism α transposes
π_{7} with $\pi_{7}^{-1} ;$ and N_{1} with N_{1}^{-1} in the character tables. The The
automorphism β transposes N_{1} with $N_{1}^{-1} ;$ and N_{2} with N_{2}^{-1}.
The automorphism γ transposes T_{1} with $T_{2} ; J T_{1}$ with $J T_{2} ; N_{1}$
with $N_{2} ; N_{1}^{-1}$ with $N_{2}^{-1} ;$ and possibly π_{7} with π_{7}^{-1}. As $S U_{4}(3) /$
$\Omega\left(Z S U_{4}(3)\right)$ has the centralizer of some central involution iso-
morphic to the centralizer of some central involution J in G,
presumably $S U_{4}(3) / \Omega_{1}\left(Z S U_{4}(3)\right) \cong G / 0_{3}(Z(G))$.

The first four character tables give the characters of the central extension of $\langle d\rangle=Z_{6}$ by $\operatorname{LF}(3,4)$ with a six dimensional, complex representation. Respectively, they give the following linear characters on $\langle a\rangle: \theta(a)=1, \theta(\alpha)=\omega, \theta(\alpha)=-1, \theta(\alpha)=-\omega$. The characters with $\theta(a)=\omega^{-1}$ or $\theta(a)=-\omega^{-1}$ come from complex conjugation of the second and fourth table respectively.

We let $\overparen{U_{4}(3)}=P S U_{4}(3)$ and let S_{p} be a p-Sylow subgroup of whatever group is in question. The term "Blichfeldt" refers to the theorem in [1] that no primitive complex linear group contains an element with some eigenvalue within 60 degrees of all the other eigenvalues of the element. Where clear, we use χ_{n} to refer to the previously discussed character of G of degree n. Finally, $a(X, Y, Z)$ is the coefficient of the conjugacy class containing Z in the product of the classes containing X and Y.

This paper fills a gap in [9] concerning groups G with a faithful unimodular representation X with character χ of degree six and \bar{G} simple of order $2^{7} 3^{6} 35$ where $Z=Z(G)$ and $\bar{G}=G / Z$. We also know by $[9, \S 8]$, that $C\left(S_{5}\right)=S_{5} Z, C\left(S_{7}\right)=S_{7} Z, 4 / t_{5}=\left[N\left(S_{5}\right): C\left(S_{5}\right)\right]=4$, and $6 / t_{7}=\left[N\left(S_{7}\right): C\left(S_{7}\right)\right]=3$. Also, the principal 7-block $B_{0}(7)$ has degree equation $1+729=640+90$. Finally, by $[9, \S 8], \chi(G) \subseteq Q(\omega), 3\|Z\|$, and we may take $X\left(S_{3}\right)$ to be

$$
\left\langle\operatorname{diag}\left(1,1, \omega, 1,1, \omega^{-1}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \oplus I_{3}, I_{3} \oplus\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\right\rangle
$$

I learned from the referee that this representation was discovered earlier by Mitchell, [10]. Mitchell also showed that this linear group and the first orthogonal group on six indices with modulus three have isomorphic nonsolvable Jordan-Holder constituents. Hammill, [6] and Todd, [12] also worked on this linear group with the latter constructing the character table of $\widetilde{U_{4}(3)}$.
2. The character table. By the above, $|Z|=6$ since χ_{20}, the character of the skew-symmetric tensors of $X \otimes X \otimes X$, does not have a constituent of degree 90 or 640 . There is a character χ_{640}, completing the 2-block of χ_{640} in G / Z_{3}. Since $\chi_{643^{\prime}}$ is the 7-exceptional character in the block $B_{1}(7)$ with characters whose kernel is Z_{3}, and G / Z_{3} does not have a character of degree $6, \chi_{20}$ is irreducible. Degrees divisible exactly by 2 or 4 and $\equiv \pm 1(\bmod 7)$ and $\equiv 0$ or $\pm 1(\bmod 5)$ are 6,36 , 90,20 , and 540. The possibilities are $660-36=624,660+90=750$, $660+20=680$, and $660-540=120$. The degree equation is $20+$ $640=120+540$. By [5], 3-7 block separation in G / Z_{3}, these characters are in the same 3-block of G / Z_{3}. Let $T \in Z\left(S_{3}\right), \chi(T)=-3$. Then (mod 3) $|G| \chi_{540}(T) /(540)|C(T)| \equiv|G| \chi_{22}(T) /(20)|C(T)| \equiv(-7)|G| /(20)|C(T)|=$ some 3 -unit, so $\chi_{540}(T)$ is divisible exactly by 27 and $|C(T)| /|Z|>3^{6}$.

A 7-block whose characters have kernel Z_{2} contains χ_{15} from the skew-symmetric tensors (irreducible since G / Z_{2} has no representation of degree 6) and $\chi_{729^{\prime}}$ completing a 3 -block of defect 1 . There is another degree divisible exactly by 3 which must be $384,24,15,60,120,480$, or 960 . The degree 24 is impossible since

$$
\chi_{24}\left(\pi_{7}\right) \overline{\chi_{24}\left(\pi_{7}\right)}=2,
$$

but $\chi_{24} \bar{\chi}_{24}$ cannot fit $\chi_{0}+\chi_{729}$ in $B_{0}(7)$ inside. The possibilities are $729+15-384=\underline{360}, 744+15=759,744+60=804,744+120=\underline{864}$, $744+480=1224$, and $744+960=1704$. Since G / Z_{2} has no representation of degree $6, \chi_{21}$ corresponding to the symmetric tensors of $X \otimes X$, is irreducible. In the case of 864 there is a 5 -block with degree equation $864+864+729=21+\cdots$ and the fifth degree is too large. Therefore, the 7 -block has degree equation $15+729=384+360$. Suppose that G has an element J with $X(J)$ having eigenvalues $i, i, i,-i,-i$, $-i$. Then $\chi_{15}(J)=\left(0^{2}-(-6)\right) / 2=3$. Also χ_{384} has 2 -defect 0 and $\chi_{384}(J)=0$. Since $t_{7}=2, a_{J, J, \bar{\sigma}_{7}}=0$ in G / Z and G / Z_{2}, so

$$
3^{2} / 15+\chi_{729^{\prime}}(J)^{2} / 729-\chi_{360}(J)^{2} / 360=0
$$

and $3+\chi_{729^{\prime}}(J)=\chi_{360}(J)$. Then $9\left|\chi_{729}(J), 3\right| \chi_{300}(J), 27 \mid \chi_{729^{\prime}}(J)$, and $4 \mid \chi_{360}(J)$; so $\chi_{729}(J) \equiv-27(\bmod 108)$. Then $\chi_{729}(J)=-27$, otherwise $\left|\chi_{729^{\prime}}(J)\right|>80$ and the sum is negative. Then in $B_{0}(7)$,

$$
\chi_{0}(J)=1, \chi_{729}(J)=-27, \chi_{640}(J)=0, \chi_{90}(J)=1-27=-26,
$$

and $1^{2} / 1+27^{2} / 729-26^{2} / 90 \neq 0$, a contradiction. Therefore, J cannot exist. We have a character $\chi_{384^{\prime}}$ faithful on Z completing a 2 -block containing χ_{344}. Then a 5 -block faithful on Z contains characters of degree 6 and 384. Now $1=\left(\chi_{15}, \chi_{6} \chi_{6}\right)=\left(\bar{\chi}_{6} \chi_{15}, \chi_{6}\right)$ so $\bar{\chi}_{6} \chi_{15}$ contains χ_{6} as a constituent. Also $\bar{\chi}_{6} \chi_{15}-\chi_{6}$ has an irreducible constituent of degree $\equiv-1(\bmod 5)$ and divisible by $6: 84$ or 24 . By the previous
$\chi_{24} \bar{\chi}_{24}\left(\pi_{7}\right)$ argument, 24 is impossible and the 5 -block contains the degree 6,384 , and 84 . We have another degree divisible exactly by $2: 6,486$, 126 , or 1134 . The possibilities are

$$
384+84-6-6=456,486-462=24
$$

already shown to be an impossible degree,

$$
462-126=\underline{336}, \text { and } 462+113 \underline{4}=1596
$$

The degree equation is $6+126+336=84+384$. As with $84, \bar{\chi}_{6} \chi_{21}-\chi_{6}$ is a character. Since $\left(\bar{\chi}_{6} \chi_{21}, \chi_{6}\right)=1, \bar{\chi}_{6} \chi_{21}-\chi_{6}$ has no constituent of degree 6. Therefore, from the 5 -block, all its constitcents have degrees divisible by 30 , and must be 120,90 , or 60 . The degree 90 would imply the impossible degree 30 . If 60 , then a 7 -block has degree equation $6+384=60+330$, impossible. Therefore, it is irreducible, and the 7 -block is $6+384=120+270$. If J gives an involution in G / Z, then possibly replacing J by $-J, X(J)$ has eigenvalues $1,1,1,1,-1,-1$ as $\chi(G) \cong Q(\omega)$ and eigenvalues $i, i, i,-i,-i,-i$ are impossible. In $\bar{G}=G \mid Z,\left\langle\pi_{5}\right\rangle$ is self-centralizing and $a_{J, J, \pi_{5}}=0$ or 5. Now $\left|C_{G}(J)\right|=$ $\left|C_{\bar{G}}(\bar{J})\right||Z|$ and $a_{J, J, \tau_{5}}=0$ or 5 in $G / Z, G / Z_{2}, G / Z_{3}$, and G. Then looking successively at $G, G / Z_{2}, G / Z_{3}$, and G we see that $\sum \chi_{i}(J)^{2} \chi_{i}\left(\pi_{5}\right) / \chi_{i}(1)$ over each 5 -block is 0 or $5\left|C_{\bar{G}}(\bar{J})\right|^{2} /|\bar{G}|$. By 2 -block orthogonality on $(I, J), \chi_{34^{4}}(J)=0 . \quad$ Also $\chi_{6}(J)=2, \chi_{84}(J)=2(4-6) / 2-2=-4$. Then $\chi_{126}(J)+\chi_{336}(J)=-4-2=-6$. Let $a=\chi_{336}(J)$. We may find some J in $Z\left(S_{2}\right)$ with $2^{7} \mid \sum=4 / 6+a^{2} / 336+(6+a)^{2} / 126-16 / 84$. Then $4 \mid a$ and we may let $a=4 b$. Multiply the sum by 63 :

$$
2^{7} \mid 42+3 b^{2}+8 b^{2}+24 b+18-12=11 b^{2}+24 b+48 .
$$

Then $4 \mid b$ and if $c=b / 4$, then $8 \mid 11 c^{2}+6 c+3$. Then c is odd. since $|6+16 c|<126$, we have $c= \pm 1, \pm 3, \pm 5$, or ± 7. Also $11 c^{2} \equiv 11 \equiv 3$ $(\bmod 8)$, so $6 c \equiv 2(\bmod 8)$ and $c \equiv 3(\bmod 4)$. The possibilities are $11-6+3=8,99+18+3=120$ impossible by the factor 5 since $5 \nmid\left|C_{\bar{G}}(\bar{J})\right|, 275-30+3=248$ divisible by 31 and impossible, $539+$ $42+3=584$ divisible by 73. Therefore,

$$
c=-1,5\left|C_{\bar{G}}(\bar{J})\right|^{2} /|\bar{G}|=(8)(4)(4) / 63,
$$

and $\left|C_{\bar{G}}(\bar{J})\right|=2^{79}$. Then J inverts a 5 -element and there is only one such class of such $J \bmod Z$. If another involution J_{1} does not invert a 5 -element, then $2^{7}, 0=\sum \chi_{i}\left(J_{1}\right)^{2} \chi_{i}\left(\pi_{5}\right) / \chi_{i}(1)$, and the above leads to a contradiction. Therefore, G / Z has a unique class of involutions. Suppose that there is an element F with $X(F)$ having eigenvalues 1, 1, $1,1, i,-i$. Then

$$
\chi_{15}(F)=\left(4^{2}-2\right) / 2=7, \chi_{21}(F)=\left(4^{2}+2\right) / 2=9, \chi_{84}(F)=28-4=24,
$$

and $\chi_{120}(F)=36-4=32$. However, $32^{2}+24^{2}>2^{7} 9=\left|C_{\bar{G}}\left(\bar{F}^{2}\right)\right| \geqq \mid C_{\bar{G}}(\bar{F})$, a contradiction.
3. The centralizer of an involution. Let J be an involution with $X(J)=I_{4} \oplus-I_{2}$. Then $X \mid C(J)=U \oplus V$ and $\chi \mid C(J)=\theta+\phi$ where θ corresponds to U and $\theta(J)=4$. If α is a field automorphism fixing ω, then $\theta^{\alpha}+\phi^{\alpha}=\theta+\phi, \theta^{\alpha}=\theta$, and $\phi^{\alpha}=\phi$ since θ^{α} and θ are the sums of irreducible characters of $\chi \mid C(J)$ with J in the kernel. Therefore, $\theta(C(J))$ and $\varphi(C(J))$ are contained in $Q(\omega)$. Let K be the subgroup of $C(J)$ of elements k such that $(\operatorname{det} V(k))^{2 n}=1$ for some m. Then $|K|=2^{7} 9|Z| / 3=2^{89}$. Suppose $x \in \operatorname{ker} U$. Then x is a 2 -element, otherwise, some power y of v has order 3 with $\theta(y)=4, \phi(y)=-1$, and Jy contradicts Blichfeldt. If x has order 4, then $X(x)$ has eigenvalues $1,1,1,1, i,-i$; already shown impossible. Therefore, ker $U=$ $\langle J\rangle$ and $|U(K)|=2^{7} 9$.

Suppose U has 2-dimensional spaces S and T as spaces of imprimitivity or invariant spaces. Then H of index 1 or 2 in $U(K)$ has $\theta \mid H=\mu+\nu$ corresponding to the 2 -dimensional spaces S and T. Let L be a 2-Sylow subgroup of $U(K)$. Unless $[U(K): H]=2$ and $\mu \mid L \cap H$ and $\nu \mid L \cap H$ are irreducible, H has an abelian subgroup A of order 2^{5}, impossible (if A has an element of order 8, the linear characters of $\theta \mid A$ are algebraic conjugates and faithful, so $|A|=8$. Therefore, irrational characters of $\theta \mid A$ occur in pairs and have image of order 4. Rational characters have image of order 2. Therefore, $|A| \leqq 16$). Therefore, μ and ν are irreducible and a 2 -element $x \in C(J)$ transposes S and T. If $\mu \nsubseteq Q(\omega)$, then μ and ν are algebraic conjugates, μ is faithful on H, and $H \cap L$ has an abelian subgroup of index 2 and order at least 2^{5}, impossible. Therefore, $\mu, \nu \subseteq Q(\omega)$ and $\mu \mid L \cap H$, $\nu \mid L \cap H$ are rational. Then

$$
|\mu(L \cap H)|, \mid \nu(L \cap H \mid \leqq[2 /(2-1)]+[2 / 2]+\cdots=3 .
$$

Since $|L \cap H|=2^{6}, L \cap H=\operatorname{ker} \nu \times \operatorname{ker} \mu$. In 2 by 2 matrix blocks let $U(x)=\left(\begin{array}{cc}0 & W \\ Y & 0\end{array}\right)$. Then $U\left(x^{2}\right)=\left(\begin{array}{cc}W Y & 0 \\ 0 & Y W\end{array}\right)$ is contained in a conjugate in H of $\operatorname{Ker} \nu \times \operatorname{Ker} \mu=L \cap H$, a 2 -Sylow subgroup of H. Therefore, $\left(\begin{array}{cc}W Y & 0 \\ 0 & I_{2}\end{array}\right)=U(y)$ is contained in H. Now $U\left(y^{-1} x\right)=\left(\begin{array}{cc}0 & Y^{-1} \\ Y & 0\end{array}\right)$. Changing coordinates by conjugation with $\left(\begin{array}{ll}I_{1} & 0 \\ 0 & Y\end{array}\right)$ and replacing x by $y^{-1} x$, we may take $U(x)=\left(\begin{array}{cc}0 & I_{2} \\ I_{2} & 0\end{array}\right)$. Since $\mu \mid L \cap H$ is irreducible and $L \cap H=\operatorname{Ker} \nu \times \operatorname{Ker} \mu$, there is a 2 -element y with $U(y)=-I_{2} \oplus I_{2}$. Then $U\left((x y)^{2}\right)=-I_{4}$, so $V\left((x y)^{2}\right) \neq-I_{2}$. However, $\dot{\phi}$ is rational and $1=\operatorname{det} U(x y)=\operatorname{det} V(x y)$. Therefore, $\phi(x y) \pm 2$. If Ker ν has an element T of order 3, then $\mu(T)=-1, \nu(T)=2$, and $X\left(J(x y)^{-1} T x y T^{-1}\right)$ has eigenvalues $\omega, \bar{\omega}, \omega, \bar{\omega},-1,-1$; contrary to

Blichfeldt. Therefore, the representation corresponding to μ has image of order 72. Then $\mu \subseteq Q(\omega)$ implies that there is a 3-element g with $\mu(g)=2 \omega$. Then $\nu(g)=1+\omega$, otherwise, $\nu(g)=2 \bar{\omega}$ and $X\left(J(x y)^{-1} g x y g^{-1}\right)$ contradicts Blichfeldt. Now $\dot{\phi}(g)=\omega+\bar{\omega}$, otherwise, $\dot{\phi}(g)=2$ and $X\left(J(x y)^{-1} g x y g\right)$ has eigenvalues $\omega, \bar{\omega}, \omega, \bar{\omega},-1,-1$ and contradicts Blichfeldt. There exists a 2 -element z with $\mu(z)=i+(-i), \mu\left(z^{2}\right)=$ -2 , and $\nu(z)=2$. Then $\phi(z)=i+(-i)$ and $\phi\left(z^{2}\right)=-2$, otherwise, $X(z)$ or $X(z J)$ has eigenvalues $i,-i, 1,1,1,1$. Then $\theta\left(z^{-1} g^{-1} z g\right)=4$ implies that $z^{-1} g^{-1} z g \in\langle J\rangle$. As $J z^{-1} g^{-1} z$ has order 6 , it cannot equal g^{-1}, and $z^{-1} g^{-1} z g$ is the identity in G. Then $V(z)$ with eigenvalues $i,-i$ commutes with $V(g)$ with eigenvalues $\omega, \bar{\omega}$ contrary to $\phi \subseteq Q(\omega)$.

Now suppose that U is monomial, but not imprimitive on 2 -dimensional subspaces. Then there exists a 3 -element g corresponding to a permutation of order 3 . As before, $U(K)$ has no abelian subgroup of order 32 , so the image of $U(K)$ under ρ, the natural permutation representation on four letters has order eight and must be S_{4}. Then $U(K)$ has an element T of order 3 in $\operatorname{Ker} \rho$ and conjugates of some commutator of T with a transposition show that $U(K)$ contains all diagonal matrices of order 3 and determinant 1. Then $27 \| U(K) \mid$, a contradiction.

Now by Blichfeldt's classification of groups of degree 4, $U(K)$ modulo $Z(U(K))$ has a subgroup N of the tensor product of 2-dimensional representations W of $M=G L(2,3)$. Also, N has index 2 or 1 in $U(K)$. Now $Z(U(K)) \subseteq\left\langle-I_{4}\right\rangle$ since $\operatorname{det} U(k)$ for $k \in K$ is a 2^{m}-th root of 1 and $\theta \cong Q(\omega)$. Let $U \mid N=A \otimes B$. Now $W(M) \otimes I_{2}$ does not appear as a subgroup modulo scalars of $U(K)$ since eigenvalues $\gamma, \gamma, \gamma^{-1}, \gamma^{-1}$ with $\gamma^{2}=i$ or $i, i, 1,1$ contradict 2 -rationality of θ. Therefore, the image under A of $\operatorname{Ker} B$ in $M / Z(M)$ has order at most 12. The image of N under B in $M / Z(M)$ has order at most 24. This gives $|N| \leqq|Z(N)|(12)(24) \leqq 2^{6} 9$. We must have equality. Then an element x takes $A \otimes B$ to $B \otimes A$. Therefore, $N \supset W(S L(2,3)) \otimes I_{2}$, $I_{2} \otimes W(S L(2,3))$ after elements of $W(S L(2,3))$ are changed by scalar multiplication. Also, the quaternions $Q=S L(2,3)^{\prime}$ can have $W(Q)$ taken as the matrices in $[1, \S 57]$. Since $\operatorname{det} U$ is a 2^{m}-th root of 1 we may also use the matrix in $\S 57$ for a 3-element S in $W(S L(2,3))$. Let g be a 3 -element with $U(g)=S \otimes I_{2}$. Then $V(g)$ has eigenvalues $\omega, \bar{\omega}$; otherwise $\dot{\phi}(g)=2$ and $g J$ has eigenvalues $\omega, \bar{\omega}, \omega, \bar{\omega},-1,-1$; contrary to Blichfeldt. If h is a 3-element with $U(h)=I_{2} \otimes S$, then, similarly, $\dot{\phi}(h)=-1$. Also $U(g)$ and $U(h)$ commute, $V(g)$ and $V(h)$ commute modulo $\langle J\rangle$, and $V(g)$ and $V(h)$ commute. Both may be taken as diagonal. There exists $E \in W(M)$ with $E^{-1} S E=S^{-1}$. Let $V(g)=\omega \oplus \bar{\omega}$. If necessary, we may replace h with h^{-1} and change coordinates of U by conjugation with $I_{2} \otimes E$ to take $V(h)=\omega \oplus \bar{\omega}$. If $x \in C(J)$ with $U(x) \in W(Q) \otimes I_{2}$ and $U(x)$ of order 4, then $U(x)$ has
eigenvalues $i, i,-i,-i$ and $V(x)$ cannot have eigenvalues $i,-i$. Possibly replacing x by $J x$, we may take $\phi(x)=2$. Because of equality in $|N| \leqq 2^{69}, U(K)$ contains a tensor product of elements in

$$
W(G L(2,3))-W(S L(2,3))
$$

By [1, §57], we may take this element $U(y)$ as $\alpha\left(\left(\gamma \oplus \gamma^{-1}\right) \otimes\left(\gamma \oplus \gamma^{-1}\right)\right)$ where $\gamma^{2}=i$. Then $U(y)$ has eigenvalues $\alpha i, \alpha, \alpha,-\alpha i$. By 2-rationality, $\alpha= \pm 1$ and $U(y)$ is determined. The action of $U(y)$ on the group of order 3: $W(S L(2,3)) \otimes W(S L(2,3)) /\left\langle W(Q) \otimes W(Q), S \otimes S^{-1}\right\rangle$ is nontrivial. Therefore,

$$
V(y)^{-1} V(g) V(y)=V(y)^{-1} V(h) V(y)=V(g)^{-1}
$$

(since $-V(g)^{-1}$ is not a 3 -element). Since $1=\operatorname{det} U(y)=\operatorname{det} V(y)$, we may choose coordinates so that $V(y)=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)$. The element x flipping $W(S L(2,3)) \otimes I_{2}$ to $I_{2} \otimes W(S L(2,3))$ is determined modulo $W(M) \otimes$ $W(M) /\langle U(y), W(S L(2,3)) \otimes W(S L(2,3))\rangle$ and modulo scalars to be $1 \oplus$ $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \oplus 1$. We may take x as $\alpha\left(1 \oplus\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \oplus 1\right)$ or $\alpha\left(1 \oplus\left(\begin{array}{cc}0 & 1 \\ i & 0\end{array}\right) \oplus i\right)$. As θ is rational on 2-elements, $2 x$ or $\alpha(1+i)$ is rational. Therefore, $\alpha= \pm 1$, and we are in the first case, so $U(x)$ is determined. Then $-1=\operatorname{det} U(x)=\operatorname{det} V(x)$ and $V(x)$ has eigenvalues $1,-1$. Since the action of $U(x)$ on $W(S L(2,3)) \otimes W(S L(2,3)) /\left\langle W(Q) \otimes W(Q), S \otimes S^{-1}\right\rangle$ is trivial, $V(x)$ and $V(g)$ commute. Possibly replacing x by $x J$ we may take $V(x)=1 \oplus-1$. Therefore, $C(J)$ and $X(C(J))$ are completely determined. In fact $C(J) / Z$ is isomorphic to $\widehat{C\left(I_{2} \oplus-I_{2}\right)}$ in $\widetilde{U_{4}(3)}$: $\left(W(S L(2,3)) \otimes I_{2}\right) \oplus \cdots \rightarrow S L(2,3) \oplus I_{2} ;\left(I_{2} \otimes W(S L(2,3))\right) \oplus \cdots \rightarrow I_{2} \oplus$ $S L(2,3) ;\left(\left(\begin{array}{ll}i & 0 \\ 0 & 1\end{array}\right) \otimes\left(\begin{array}{rr}1 & 0 \\ 0 & -i\end{array}\right)\right) \oplus\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right) \rightarrow\left(\begin{array}{ll}i & 0 \\ 0 & 1\end{array}\right) \oplus\left(\begin{array}{rr}1 & 0 \\ 0 & -i\end{array}\right)$ here both elements have the same action on the central product of $S L(2,3)$ with itself, the square of the left element is $\left(\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right) \otimes\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right) \oplus-I_{2} \approx\right.$ $\left(\left(\begin{array}{rr}-i & 0 \\ 0 & i\end{array}\right) \otimes\left(\begin{array}{rr}i & 0 \\ 0 & -i\end{array}\right)\right) \oplus I_{2}$. The square of the right element is $-i\left(\left(\begin{array}{rr}-i & 0 \\ 0 & i\end{array}\right) \oplus\left(\begin{array}{rr}i & 0 \\ 0 & -i\end{array}\right)\right) ; 1 \oplus\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \oplus 1 \oplus 1 \oplus-1 \rightarrow\left(\begin{array}{cc}0 & I_{2} \\ I_{2} & 0\end{array}\right)$. Here both elements have order 2. Both elements have identical action on the central product of $S L(2,3)$ with itself. The commutator of $X(x)$ with $X(y)$ is $I_{4} \oplus-I_{2}$. The corresponding commutator in $\widetilde{U_{4}(3)}$ is $i \oplus$ $i \oplus-i \oplus-i$. This shows that $C(J) / Z$ is isomorphic to the centralizer of an involution in $\mathrm{PSU}_{4}(3)$. By Phan's characterization of $P S U_{4}(3)$, $P S U_{4}(3) \cong G / Z$.
4. The normalizer of $Z\left(S_{3}\right)$. Earlier, for

$$
T=\operatorname{diag}(\omega, \omega, \omega, \bar{\omega}, \bar{\omega}, \bar{\omega}),
$$

we showed that $|C(T) / Z|>3^{6}$ and T is centralized by an involution in $\bar{G}=G / Z$. We may take T in $C(J)$ and \bar{J} in the center of a Sylow-2-subgroup of $C(T) / Z$. As $\chi(T)=-3, U(T)=S^{ \pm 1} \otimes I_{2}$ or $I_{2} \otimes S^{ \pm 1}$, say the former. Then

$$
U(C(T J))=\left\langle U(T), U(Z), I_{2} \otimes S L(2,3)\right\rangle,|C(T)|=3^{6} 8|Z|
$$

and T is conjugate to T^{-1}. As the constituents of $X \mid C(T)$ are not algebraically conjugate, $X(C(T))=\left\langle-I_{6}\right\rangle \times H$ where $H=$ the subgroup of $X(C(T))$ whose action on the homogeneous ω-space of $X(T)$ has determinant $=$ to a third root of 1 . A Sylow-2-subgroup of H is Q, the quaternions. Let -1 have order 2 in $Z(G)$. Now $\langle \pm J\rangle=$ $Z(Q)$ is represented faithfully in the ω or the $\bar{\omega}$ space of H, say the ω space with $\zeta=$ the corresponding constituent of $X \mid H$. If ζ is monomial, then $\pm J$, being a square in H, is diagonal and conjugating with $\left(\begin{array}{lll}0 & a & 0 \\ 0 & 0 & b \\ c & 0 & 0\end{array}\right) \oplus I_{3}$ (the first component is taken to correspond to ζ), we have $C(T) / Z$ contains an elementary abelian subgroup of order 4, a contradiction. Therefore, the representation corresponding to ζ is the Hessian group in [1, §79], except that $\omega \oplus 1 \oplus 1$ has been changed by a scalar. As an element inverting T flips the constituents of $X \mid C(T)$, taking $H \supset S_{3}$ with $X\left(S_{3}\right)$ in the normal form given at the start of this chapter, $X(C, T) \subset\left\{M_{1} \oplus M_{2} \mid M_{i}\right.$ appears in the Hessian group in [1], except that diag $(1,1, \omega)$ replaces $\left.\omega^{-1 / 3} \operatorname{diag}(1,1, \omega)\right\}$. As the normal sabgroup K of order 27 of the Hessian group appears independently in each component, we may examine the components of $X(H)$ modulo K. Let i be the image of $\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \bar{\omega} \\ 1 & \bar{\omega} & \omega\end{array}\right) /(\omega-\bar{\omega})$ in this homomorphism. Since Q is represented faithfully in the top component and some element in $X\left(C_{\vee}^{\prime} T\right)$) flips the components, Q is represented faithfully in the bottom component. By changing coordinates by conjugating with a power of $\operatorname{diag}(1,1,1, \omega, 1,1$, , we may assume that $X(C(T))$ contains $i \oplus \pm \bar{i}(i$ stands for a coset of 3 by 3 matrices and \bar{i} is obtained by complex conjugation of the entries) where

$$
j=(\operatorname{diag} 1,1, \bar{\omega})) i(\operatorname{diag}(1,1, \omega)),-1=i^{2}
$$

and $k=i j$. If $X(C(T))$ contains $i \oplus-\bar{i}$, then, conjugating with $T_{1}=$ $\operatorname{diag}(1,1, \omega, 1,1, \bar{\omega}) \in S_{3}$, we have $j \oplus-\bar{j}$ and $k \oplus-\bar{k} \in X(C(T))$ and

$$
(i \oplus-\bar{i})(j \oplus-\bar{j})(k \oplus-k)=-1 \oplus 1 \in X(C(T)),
$$

contrary to $8 \||H|$. Since $\operatorname{diag}(1,1, \omega), i$, and K generate the Hessian group, $H=\left\langle K \oplus I_{3}, I_{3} \oplus K, M \oplus \bar{M}\right.$ where M is any matrix in the Hessian group changed as shown by scalars \rangle. $X(N(\langle T\rangle))$ is obtained from $X(C(T))$ by addition of a 2-element
$X(x)=\left(\begin{array}{cc}0 & E \\ F & 0\end{array}\right)$ where E and F are 3 by 3 matrices normalizing the Hessian group, and, hence, in the Hessian group modulo scalar multiplication. By multiplication with an element in $C(T)$ we may take E as scalar and, changing coordinates by conjugation with a direct sum of 3 by 3 scalar matrices, we may take $E=I_{3}$. Again, we are only interested in F modulo K. If F is scalar, then by determinant, $F=$ $-I_{3}$ and $X\left(x^{2}\right)=-I_{6}$, impossible. The other possibilities are $F=$ some scalar times $-1, \pm i, \pm j$, or $\pm k$ in the notation of the previous paragraph. If not -1 , then replace x by $T_{1}^{a} x T_{1}^{a}$ to take $F=$ some scalar times $\pm i$. The scalar is $-I_{3}$ by determinant $=1$. Then

$$
\left(-I_{6}\right) X\left(x^{2}\right)=\left(\begin{array}{rr}
\pm i & 0 \\
0 & \pm i
\end{array}\right)
$$

Possibly replacing this by its third power, we have $\left(\begin{array}{ll}i & 0 \\ 0 & i\end{array}\right)\left(\begin{array}{ll}i & 0 \\ 0 & \frac{0}{i}\end{array}\right)=$ $\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$, contrary to $8 \||H|$. Therefore, $F=$ some scalar times -1 and the scalar is -1 by determinant $=1$. This completely determines $X(N(\langle T\rangle))$.
5. The correlation between $X(C(J))$ and $X(N(\langle T\rangle))$ for $T \in C(J)$. Take $X(T)=\left(S \otimes I_{2}\right) \oplus \omega \oplus \omega^{-1}$ in our normal form for $X(C(J))$. Let $G L(2,3)$ and $S L(2,3)$ be the 2 -dimensional matrix groups in [1, §57] and ϕ be an isomorphism from $S L(2,3)$ to $S L(2,3) / 0_{2}(S L(2,3)) \cong Z_{3}$ with $\phi(S)=1$ and $0_{2}(S L(2,3))$ isomorphic to the quaternions. Then $X(N(\langle J T\rangle))=\left\langle X(J T)=\left(S \otimes I_{2}\right) \oplus-\omega \oplus-\omega^{-1} ;\left(I_{2} \otimes u\right) \oplus\left(\omega \oplus \omega^{-1}\right)^{\phi(u)}\right.$ for $u \in S L(2,3) ; Y=\left(y \otimes\left(\begin{array}{cc}\gamma & 0 \\ 0 & \gamma^{-1}\end{array}\right)\right) \oplus\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$ for some

$$
y \in\left(\begin{array}{ll}
\gamma & 0 \\
0 & \gamma^{-1}
\end{array}\right) 0_{2}(S L(2,3))
$$

with $\left.y^{-1} S y=S^{-1} ;-\omega I_{6}\right\rangle$. We get a subgroup of order at least $2^{7} 3^{6}$ of $X(G)$ generated by our normal form for $N(\langle T\rangle)$ and the image under conjugation by a matrix R of our normal form for $X(C(J))$ where R conjugates $X(J T)$ and $X(N(\langle J T\rangle)$), in our normal form for $X(C(J))$, to $X(J T)$ and $X(N(\langle J T\rangle))$, respectively, in our normal form for $X(N(\langle T\rangle))$. Therefore, R is determined modulo multiplication on the left by a matrix P fixing $X(J T)$ and $X(N(\langle J T\rangle))$ in the normal form for $X(C(J))$. As we are only interested in the image of $X(C(J))$ under conjugation by R. We are only interested in P modulo multiplication on the left by a matrix fixing $X(J T), X(N(\langle J T\rangle))$, and $X(C(J))$. As $\left.0_{2}\left(0^{2}(X(N \backslash\langle J T\rangle))\right)\right)=\left\langle\left(I_{2} \otimes u\right) \oplus I_{2}\right.$ such that $\left.u \in 0_{2}(S L(2,3))\right\rangle$, by [7, Satz 3] and [1], $P=(A \otimes B) \oplus C$ where $B \in G L(2,3), A \in C_{G L(2, C)}(S)$, and $C \in G L(2, C)$ where C is the complex number field. If $B \notin S L(2,3)$,
then P conjugates $\left(S \otimes S^{-1}\right) \oplus I_{2}$ to $(S \otimes S v) \oplus I_{2}$ for some

$$
v \in 0_{2}(S L(2,3)),
$$

a contradiction, since the former, but not the latter is in $X(N(\langle J T\rangle))$. Therefore, multiplying P by an element in $X(N(\langle J T\rangle))$, we may take $B=I_{2}$. Also,

$$
\begin{aligned}
\left(A^{-1} y A\right)^{-1} S\left(A^{-1} y A\right) & =\left(A^{-1} y A\right)^{-1}\left(A^{-1} S A\right)\left(A^{-1} y A\right) \\
& =A^{-1} y^{-1} S y A=A^{-1} S^{-1} A=S^{-1} .
\end{aligned}
$$

Therefore, $A^{-1} y A \in N_{G L(2,3)}(\langle S\rangle)-C_{G L(2,3)}(\langle S\rangle)$ where

$$
N_{G L(2,3)}(\langle S\rangle)=\langle y, S, Z G L(2,3)\rangle .
$$

Multiplying P on the left by a power of $X(T)$, we may take $A^{-1} y A$ in $\langle y, Z G L(2,3)\rangle$ of order 4 and $A^{-1} y A \in y Z G L(2,3)=y\left\langle-I_{2}\right\rangle$. Let $Q \in G L(6, C)$ be the matrix which acts as I_{3} on the space where $X(T)$ acts as ωI_{3}, and acts as $-I_{3}$ on the space where $X(T)$ acts as $\omega^{-1} I_{3}$. Then for $W \in N_{G L(G, C)}(X(\langle T\rangle)), W^{-1}(X(T)) W=X(T)^{a}$ and $Q^{-1} W^{-1} Q W=$ $(-1)^{[(a-1) / 2]} I_{6}$ with a equal to either 1 or -1 . Therefore, Q normalizes $X(N(\langle T\rangle)$) and $X(N(\langle J T\rangle)$. Also, $Q \in C(J), C(T)$, and

$$
C\left(\left(I_{2} \otimes 0_{2}(S L(2,3))\right) \oplus I_{2}\right),
$$

and $Q^{-1} Y^{-1} Q Y=-I_{6}$. If we are allowed the possibility of replacing P by $Q P$, then we may take $A^{-1} y A=y$. Then, as $\langle y, S\rangle$ is an irreducible two dimensional group on which A acts trivially, A and $A \otimes I_{2}$ are scalar. As the homomorphism $C(J) \rightarrow U(C(J))$ has kernel J, and $A \otimes I_{2}$ centralizes $U(N(\langle J T\rangle)), C$ centralizes $V(N(\langle J T\rangle)) /\left\langle-I_{2}\right\rangle$. Then C centralizes $V(T)=w \oplus w^{-1}$, and C is diagonal. Let

$$
F=1 \oplus\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \oplus 1 \oplus 1 \oplus-1
$$

Then $V(F)$ is centralized by C. As $V(C(J))=\langle V(N(\langle J T\rangle)), V(F)\rangle, C$ centralizes $V(C(J)) /\left\langle-I_{2}\right\rangle$, and P normalizes $X(C(J))$.

Therefore, $X(J T)$ and $X(N(\langle J T\rangle))$ determine $X(C(J))$ except possibly for conjugation of $X(C(J))$ by a matrix U which is $\pm I_{3}$ on the homogeneous spaces of $X(T)$. Now $\langle C(J), N(\langle T\rangle)\rangle$ has index in G dividing 35. As $B_{0}(7)$ has only $\bar{\chi}_{0}$ with degree <35,

$$
G=\langle C(J), N(\langle T\rangle)\rangle .
$$

We put $X(N(\langle T\rangle))$ in our normal form. Then $X(J T)$ and $X(\langle N J T\rangle))$ determine $X(C(J))$ within conjugation by U. However,

$$
\begin{aligned}
U^{-1}\langle X(C(J)), X(N(\langle T\rangle))\rangle U & =\left\langle U^{-1} X(C(J)) U, U^{-1} X(N(\langle T\rangle)) U\right\rangle \\
& =\left\langle U^{-1} X(C(J)) U, X(N(\langle T\rangle))\right\rangle
\end{aligned}
$$

so the similarity class of the representation is not affected by replacing $X(C(J))$ by $U^{-1} X(C(J)) U$. Therefore, there, is at most one unimodular, 6 -dimensional, complex, linear group projectively representing a simple group of order $2^{7} 3^{6} 35$.
6. Existence of $X(G)$. We shall show that $G_{1}=\langle x, D, P\rangle$, where $x=V \oplus \bar{V}$ and $V=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \bar{\omega} \\ 1 & \bar{\omega} & \omega\end{array}\right) /(\omega-\bar{\omega}), D=\langle$ all diagonal matrices of order 3 and determinant 1\rangle, and $P=\langle$ all permutation matrices〉 has a central extension of Z_{6} by $U_{4}(3)$ as a subgroup of index 2. First we show it is finite. In fact, $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \oplus I_{4}$ has a total of 126 conjugates, $C_{1} \cup C_{2}$, where C_{1} consists of 45 monomial matrices and C_{2} of 81 conjugates of $z=I_{6}-Q / 3$ where $Q=\left(q_{i, j}\right)$ and $q_{i, j}=1 .\left\langle C_{1}\right\rangle$ has no invariant subspaces, so only scalars commute with all conjugates. If S_{i} are sets of matrices, define $S_{1}^{-1} S_{2} S_{1}=\left\{y \mid y=s_{1}^{-1} s_{2} s_{1}\right.$ for $\left.s_{i} \in S_{i}\right\}$. Then $C_{2}=D^{-1} z D$. Let $M=D P=P D$. Now $M^{-1} C_{1} M=C_{1}$ and $M^{-1} C_{2} M=$ $M^{-1}\left(D^{-1} z D\right) M=M^{-1} z M=D^{-1}\left(P^{-1} z P\right) D=D^{-1} z D=C_{2}$. It only remains show that $x^{-1}\left(C_{1} \cup C_{2}\right) x=C_{1} \cup C_{2}$. Let $\left\{U_{i}\right\}$ be the top 3 by 3 blocks of the 9 elements of C_{1} whose bottom 3 by 3 block is I_{3}. Then $\left\{U_{i}\right\}=$ $-I_{3}$ \{2-elements in the normal subgroup of order 54 of the Hessian group, $[1, \S 79]\}$. As the top left 3 by 3 block of x is contained in the Hessian group, conjugation by x permutes these 9 elements. We may reverse the roles of the top left and the bottom right to show that x permutes 9 more elements of C_{1}. As $x^{-1} z x$ is a permutation matrix transposing 1 and $4, x^{-1} z x$ has eigenvalues $-1,1,1,1,1,1$. Suppose that $d=\operatorname{diag}\left(d_{1}, \cdots, d_{6}\right) \in D$ with $d_{1} d_{2} d_{3}=1$. Then in each row and column of $d^{-1} x d$, and nonzero entries are distinct and have sum 0 , or are identical. Then $u_{d}=\left(d^{-1} x d\right)^{-1} z\left(d^{-1} x d\right)=I_{6}-C_{d}$ where nonzero entries of C_{d} are sixth roots of 1 . As z and u_{d} are unitary, u_{d} has entries 1 or 0 on the diagonal and third roots of 1 off the diagonal and is monomial. Then $u_{d} \in C_{1}$ since u_{d} has eigenvalues $-1,1$, $1,1,1,1$. Therefore, $x^{-1} d z d^{-1} x \in d C_{1} d^{-1}=C_{1}$ where d runs through 27 cosets of $\left\langle w I_{6}\right\rangle$. This gives the other $27=45-9-9$ elements in C_{1} and $x^{-1} C_{1} \cup C_{2} x \supset C_{1} ; C_{1} \cup C_{2} \supset x C_{1} x^{-1}=x^{-1}\left(x^{2} C_{1} x^{2}\right) x=x^{-1} C_{1} x$ as $-I_{6} x^{2} \in P$. It only remains to show that $x^{-1} d z d^{-1} x \in C_{2}$ where $d_{1} d_{2} d_{3}=\omega$ or $\bar{\omega}$, say $\bar{\omega}$ without loss of generality. We may find e in $\langle D$, $\operatorname{diag}(\omega, 1,1,1,1,1)\rangle$ with $(\omega-\bar{\omega}) d^{-1} x d e=\left(a_{i, j}\right) ;\left\{a_{1, j}, a_{2, j}, a_{3, j}\right\}=\{1, \bar{\omega}, \bar{\omega}\}$ counting multiplicity for $j=1,2,3$; and $\left\{a_{4, j}, a_{5, j}, a_{6, j}\right\}=\{-1,-\omega,-\omega\}$ for $j=4,5,6$. As $d^{-1} x d e$ is unitary, the ± 1 's appear in different rows. Then the product of the nonzero entries in the first and the fourth rows is still -1 , and $e \in D$. Now $(\omega-\bar{\omega}) d^{-1} x d e Q$ and $(\omega-\bar{\omega}) Q d^{-1} x d e$ have all their entries equal to $\bar{\omega}+\bar{\omega}+1=-\omega-\omega-1$. Then $z d^{-1} x d e=d^{-1} x d e z$, $d^{-1} x^{-1} d z d^{-1} x d=e z e^{-1}$, and $x^{-1} d z d^{-1} x=d e z e^{-1} d^{-1} \in D z D^{-1}=C_{2}$.
G_{1} is primitive since D contains any proper normal reducible suogroup of M and x does not preserve the monomial form of M. Furthermore, G_{1} may be made unimodular by replacing odd permutation matrices by their products with $i I_{6}$. As $3^{7}| | G_{1} \mid$, by [9]'s classification of groups of degree $6, G_{1}$ contains a central extension of Z_{6} by $U_{4}(3)$ as normal subgroup, G. However, G_{1} contains an element with eigenvalues $-1,1,1,1,1,1$ and G contains no element with eigenvalues $-i, i, i$, i, i, i. By [8], $7^{2} \nmid\left|G_{1} / Z\right|$. By [4], $3 F, S_{7}^{\prime}$ is self-centralizing in G_{1} / Z, otherwise G_{1} has a normal p-subgroup not contained in Z for some prime p, a contradiction. Since $\left[N_{G}\left(S_{7}\right) ; C_{G}\left(S_{7}\right]\right]=3$ and $\left[N_{G_{1}}\left(S_{7} ; C_{G_{1}}\left(S_{7}\right)\right] \leqq 6\right.$, $\left[G_{1}: G\right] \leqq 2$ and $\left[G_{1}: G\right]=2$. For any unimodular finite linear group normalizing $X(G)$, applying this argument to G_{2} in place of G_{1} shows that $\left[G_{2}: X(G)\right]=2$, so G_{1} is maximal among finite unimodular 6-dimensional complex linear groups normalizing $X(G)$.
7. $L F(3,4)$. From [9] we may have a six-dimensional group $\left.X_{(} G\right)$ with $G / Z_{i}(G)$ simple of order $2^{6} 3^{2} 35, \chi(G) \cong Q(w)$, and $B_{0}(5)$ with degree equation: $1+63=64$. As S_{5} is self-centralizing in $\bar{G}=G / Z$ and $B_{0}(5)$ does not contain the degree $6,|Z| \neq 1$. If $|Z|=2$, then $B_{1}(5)$ contains the degrees 6 and 64 from a 2 -block of defect 1 , impossible as $64-6=58$ cannot be a degree. If $|\boldsymbol{Z}|=3$, then $B_{1}(5)$ contains the degrees 6 and 63 from a 3 -block of defect 1, impossible as $63+6=69$. Therefore, $|Z|=6$. Let J be any involution in \bar{G}. Then 0 or $\left.5=a_{J, J, \tau_{5}}=|\bar{G}|\left(1+\chi_{63}(J)^{2} / 63-\chi_{64}(J)^{2} / 64\right) / \mid C_{\bar{G}} J\right){ }^{2}$. Now, χ_{64} has 2 -defect 0 , so $\chi_{64}(J)=0$ and $\chi_{63}(J)=1-\chi_{64}(J)=1$. Then $5\left|C_{\bar{G}}(J)\right|^{2}=2^{6} 3^{2} 35(1+1 / 63)=2^{12} 5$ and $\left.\mid C_{\bar{G}^{\prime}} J\right) \mid=2^{6}$. Therefore, $C(J)$ has a normal 2-Sylow-subgroup, and by [11], $\bar{G} \approx L F(3,4)$. As $\overparen{U_{4}(3)}$ has a subgroup isomorphic to $\operatorname{LF}(3,4)$ and $L F(3,4)$ has no projective representation of degree $\leqq 5$, by $\S 6, G$ exists with a representation of degree 6. By private communication with N. Burgoyne, G is unique, and the subgroup of the outer automorphism group with trivial action on Z has order 2. A group $G_{1} \triangleright G$ with $\left[G_{1}: G\right]=2$ comes from the product of a field and a graph automorphism.

Appendix.

$G=$ Some Central Extension of Z_{6} by $L F(3,4)$.								
		$\theta=(1+\sqrt{5}) / 2$		G / Z		$\phi=(1+\sqrt{-7}) / 2$		
Element	I	π_{5}	$\underline{\pi}$	T	J	F_{1}	F_{2}	F_{3}
Order	1	5	7	3	2	4	4	4
$C(g)$	g	5	7	9	64	16	16	16
	1	1	1	1	1	1	1.	1
	63	θ	0	0	-1	-1	-1	-1
	64	-1	1	1	0	0	0	0
	20	0	-1	2	4	0	0	0
	45	0	$-\phi$	0	-3	1	1	1
	35	0	0	-1	3	3	-1	-1
	35	0	0	-1	3	-1	3	-1
	35	0	0	-1	3	-1	-1	3
	G / Z_{2}							
	21	1	0	0	5	1	1	1
	$\underline{6} 3$	θ	0	0	-1	-1	-1	-1
	84	-1	0	0	4	0	0	0
	15	0	1	0	-1	3	-1	-1
	15	0	1	0	-1	-1	3	-1
	15	0	1	0	-1	-1	-1	3
	$\underline{45}$	0	$-\phi$	0	-3	1	1	1
	G / Z_{3}							
	I	π_{5}	π_{7}	T	J	F_{1}	F_{2}	F_{3}
	36	1	1	0	-4	0	0	0
	64	-1	1	1	0	0	0	0
	28	θ	0	1	4	0	0	0
	90	0	-1	0	-2	-2	0	0
	$\underline{10}$	0	$-\phi$	1	-2	2	0	0
	70	0	0	-2	2	2	0	0
	G							
	36	1	1	0	-4	0	0	0
	$\underline{42}$	$-\theta$	0	0	-2	2	0	0
	90	0	-1	0	-2	-2	0	0
	60	0	ϕ	0	4	0	0	0
	6	1	-1	0	2	2	0	0

$\widetilde{U_{4}(3)}, G / Z, \omega^{3}=1, v=\omega-\bar{\omega}$																	
Element	I	π_{5}	$\underline{\pi}_{7}$	J	T	F	T_{1}	JT	$F T$	$J T_{1}$	$J T_{2}$	\underline{N}_{1}	N_{2}	T_{2}	E	F_{1}	T_{3}
Order	1	5	7	2	3	4	3	6	12	6	6	9	9	3	8	4	3
$C(g)$	g	5	7	279	233^{6}	96	23^{5}	72	12	36	36	27	27	23^{5}	8	16	81
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	90	0	-1	10	9	-2	9	1	1	1	1	0	0	9	0	2	0
	640	0	$(-1+\sqrt{-7}) / 2$	0	-8	0	-8	0	0	0	0	1	1	-8	0	0	1
	729	-1	1	9	0	-3	0	0	0	0	0	0	0	0	-1	1	0
	35	0	0	3	8	3	8	0	0	0	3	-1	2	-1	-1	-1	-1
	189	-1	0	-3	27	5	0	3	-1	0	0	0	0	0	1	1	0
	896	1	0	0	32	0	-4	0	0	0	0	-1	-1	-4	0	0	-4
	21	1	0	5	-6	1	3	2	-2	-1	-1	0	0	3	-1	1	3
	$\underline{280}$	0	0	-8	10	0	10	-2	0	-2	1	1	$2 \bar{\omega}-\omega$	1	0	0	1
	35	0	0	3	8	3	-1	0	0	3	0	2	-1	8	-1	-1	--1
	140	0	0	12	5	4	-4	-3	1	0	0	-1	-1	-4	0	0	5
	280	0	0	-8	10	0	1	-2	0	1	-2	$2 \bar{\omega}-\omega$	1	10	0	0	1
	560	0	0	-16	-34	0	2	2	0	2	2	-1	-1	2	0	0	2
	315	0	0	11	-9	-1	-9	-1	-1	-1	2	0	0	18	1	-1	0
	315	0	0	11	-9	-1	18	-1	-1	2	-1	0	0	-9	1	-1	0
	420	0	0	4	-39	4	6	1	1	--2	-2	0	0	6	0	0	-3
	210	0	0	2	21	-2	3	5	1	-1	-1	0	0	3	0	-2	3

$G / Z_{3}, \omega^{3}=1, i^{2}=-1$.															
I	π_{5}	π_{7}	J	T	F	T_{1}	$J T$	FT	$J T_{1}$	$J T_{2}$	\underline{N}_{1}	N_{2}	T_{2}	E	T_{3}
20	0	-1	-4	-7	4	2	-1	1	2	2	-1	-1	2	0	2
640	0	$(-1+\sqrt{-7}) / 2$	0	-8	0	-8	0	0	0	0	1	1	-8	0	1
120	0	1	8	12	0	-6	-4	0	2	2	0	0	-6	0	3
540	0	1	-12	-27	4	0	3	1	0	0	0	0	0	0	0
896	1	0	0	32	0	-4	0	0	0	0	-1	-1	-4	0	-4
56	1	0	8	2	0	11	2	0	-1	2	-1	2	2	0	2
70	0	0	2	-11	2	7	-1	-1	-1	2	1	$1+3 \omega$	-2	0	-2
56	1	0	8	2	0	2	2	0	2	-1	2	-1	11	0	2
504	-1	0	8	18	0	-9	2	0	-1	2	0	0	18	0	0
504	-1	0	8	18	0	18	2	0	2	-1	0	0	-9	0	0
$\underline{70}$	0	0	2	-11	2	-2	-1	-1	2	-1	$1+3 \omega$	1	7	0	-2
70	0	0	2	16	2	7	-4	2	-1	-1	1	1	7	0	-2
210	0	0	-10	21	2	3	-1	-1	-1	-1	0	0	3	$2 i$	3
630	0	0	-14	-18	-6	9	-2	0	1	1	0	0	9	0	0
560	0	0	16	-34	0	2	-2	0	-2	-2	-1	-1	2	0	2

$G / Z_{2}, \omega^{3}=1, v=\omega-\bar{\omega}=\sqrt{-3}$.													
I	π_{5}	π_{7}	J	T	F	T_{1}	$J T$	${ }^{\prime} T$	$J T_{1}$	$J T_{2}$	N_{2}	E	F_{1}
15	0	1	-1	6	- 3	3	2	0	-1	2	-v	1	-1
21	1	0	5	3	1	6	-1	1	2	2	$\bar{\omega}$	-1	1
729	-1	1	9	0	-3	0	0	0	0	0	0	-1	1
105	0	0	-7	15	5	3	-1	-1	-1	2	$-\bar{\omega} v$	-1	1
105	0	0	9	15	1	3	3	1	3	0	$-\bar{\omega} v$	1	1
384	-1	-1	0	24	0	12	0	0	0	0	$-v$	0	0
360	0	$(-1+\sqrt{-7}) / 2$	8	-18	0	-9	2	0	-1	2	0	0	0
756	1	0	-12	27	-4	0	3	-1	0	0	0	0	0
336	1	0	16	-6	0	6	-2	0	-2	-2	ωv	0	0
210	0	0	2	3	-2	15	-1	1	-1	2	v	0	-2
105	0	0	9	-12	1	12	0	-2	0	0	$-\omega v$	1	1
420	0	0	4	33	4	-6	1	1	-2	-2	$-\omega v$	0	0
945	0	0	-15	-27	1	0	-3	1	0	0	0	1	1
315	0	0	-5	-36	3	9	4	0	1	-2	0	-1	-1
630	0	0	6	9	2	-9	-3	-1	3	0	0	0	-2

$G, v=\omega-\bar{\omega}=\sqrt{-3}$.												
I	π_{5}	π_{7}	J	T	F	T_{1}	JT	$F^{\prime} T$	$J T_{1}$	$J T_{2}$	N_{2}	E
6	1	-1	2	-3	2	3	-1	-1	-1	2	$-\omega v$	0
84	-1	0	-4	-15	4	6	-1	1	2	2	v	0
126	1	0	10	18	2	9	-2	2	1	-2	0	0
384	-1	-1	0	24	0	12	0	0	0	0	$-v$	0
336	1	0	-16	-6	0	6	2	0	2	2	ωv	0
120	0	1	8	-6	0	15	2	0	-1	2	$\bar{\omega} v$	0
$\underline{270}$	0	$(1+\sqrt{-7}) / 2$	-6	27	2	0	-3	-1	0	0	0	0
420	0	0	12	-21	-4	12	-3	-1	0	0	$\overline{=} \omega$	0
210	0	0	6	-24	6	-3	0	0	-3	0	ωv	0
840	0	0	-8	. -42	0	-3	-2	0	1	-2	$\bar{\omega} v$	0
630	0	0	18	9	2	-9	3	-1	3	0	0	0
840	0	0	-8	12	0	6	4	0	-2	-2	v	0
630	0	0	2	9	-2	-9	-1	1	-1	2	0	$2 i$

An Extension of Z_{3} by $\widetilde{U_{4}(3)}$ (faithful characters).

Bibliography

1. H. F. Blichfeldt, Finite Collineation Groups, University of Chicago Press, Chicago, 1917.
2. R. Brauer. Investigations on group characters, Ann. of Math. 42 (1941), 936-958. 3. \qquad On groups whose order contains a prime to the first power, I, II, Amer. J. Math. 64 (1942), 401-440.
3. Uber endlichen lineare Gruppen von Primzahlgrad, Math. Ann. 169 (1967), 73-96.
4. R. Brauer and H. F. Tuan, On simple groups of finite order, I, Bull. Amer. Math. Soc. 51 (1945), 756-766.
5. C. M. Hamill, On a finite group of order 6,531,840, Proc. London Math. Soc. 52 (1951), 401-454.
6. B. Huppert, Lineare auflosbare Gruppen, Math. Zeit. 67 (1957), 479-518.
7. J. H. Lindsey, II, A generalization of Feit's theorem, Trans. Amer. Math. Soc. 155 (1970), 250-271.
8. \qquad Finite Linear groups of degree six (to appear).
9. H. H. Mitchell, Determination of all primitive collineation groups in more than four variables which contain homologies, Amer. J. Math. 36 (1914), 1-12.
10. M. Suzuki, Finite groups in which the centralizer of an element of order 2 is 2closed, Amer. J. Math. (2) 82 (1965), 191-212.
11. J. A. Todd, The characters of a collineation group in five dimensions, Proc. Royal Soc. of London (A) 200 (1950).

Received January 28, 1970.
Harvard University

