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AN INTERESTING COMBINATORIAL METHOD IN THE
THEORY OF LOCALLY FINITE SEMIGROUPS

T. C. BROWN

Let X be a finite set, X* the free semigroup (without
identity) on X, let M be a finite semigroup, and let ¢ be an
epimorphism of X* upon M. We give a simple proof of a
combinatorial property of the triple (X, ¢, M), and exploit
this property to get very simple proofs for these two theorems:
1. If ¢ is an epimorphism of the semigroup S upon the
locally finite semigroup 7 such that ¢~'(e¢) is a locally finite
subsemigroup of S for each idempotent element ¢ of T, then
S is locally finite, 2. Throughout 1, replace “locally finite”’
by “‘locally nilpotent”’,

The method is simple enough, and yet powerful enough,
to suggest its applicability in other contexts.

1. Theorem 1 below was first proved by the author in [1] by a
circuitous and laborious method. In the present paper it drops out
easily from Lemma 2 below, as does Theorem 2, which is new. Lemma
2 was first discovered by J. Justin ([3]) as a generalization of Lemma
1, which is the author’s ([2]). The proof given here, however, is
new, and is conceptually quite transparent, though apparently non-
trivial. Justin has used Lemma 2 in an alternative proof of his
generalization of Van der Waerden’s Theorem (on Arithmetic Progres-
sions), using Van der Waerden’s Theorem in the course of the proof.
The author is inclined to believe that a refined or more powerful ver-
sion of Lemma 2 would yield a proof of Van der Waerden’s Theorem
itself.

The construction of a sequence “in the regular way”, given below,
has been formalized by R. Rado in [4].

2. Notation and definitions. The symbol X will always denote
a finite set, and X* denotes the free semigroup without identity on
X. Thus X* is the semigroup of nonempty “words” in the “letters”
of the “alphabet” X, with juxtaposition as multiplication. If w =
2, oo+ 2,€ X*, where the x;,¢ X, then the length of w, denoted by
[w], is k. The symbol X“ denotes the set of sequences on X, regarded
as “infinitely long words” in the alphabet X. If z,y,2¢€ X* and s X,
then x, y, and z are each factors (x is a left factor) of the word zyz
and of the sequence xyzs.

Let H be an infinite subset of X*. We indicate now how to
construct a sequence s = a,a, +++ € X such that each left factor of s
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is a left factor of infinitely many of the words of H. Such a sequence
is used several times in the proofs that follow, and is said to be con-
structed in the regular way from H.

We choose the a;’s inductively. In view of the fact that H is
infinite and X is finite, we choose a, to be an element of X which
occurs infinitely often as the first letter in the words of H, and we
denote by H, the (infinite) set of those words of H which have a, as
first letter. Thus a, is a left factor of infinitely many of the words
of H. Now suppose that a,, ---,a,¢ X have been chosen so that
a,a, -+ a, 1s a left factor of each word in an infinite subset H, of H.
We choose a,,, to be an element of X which occurs infinitely often
as the (n + 1)st letter in the words of H,, and denote by H,., the
(infinite) set of those words of H, which have a,., as (n + 1)st letter.
Thus a,a, <+« a,,, 18 a left factor of infinitely many of the words of H.

3. Two lemmas.

LEMMA 1. Let s = q,a,+--€X”. Then there exist an element
ve X and o fived integer k such that for any w there are integers
6, < 1y < +++ < 1, (these depend on n) with ¢ = a; = a;, = +++ = a;
and i, —i; =k, 155 <n— 1.

n

Proof. We proceed by induction on |X|, the cardinal of X. If
| X| =1, we are through. Assume the result for |X| =k, and sup-
pose now that | X| =k + 1, X={z, +++, %.}. Let s=aua,---cX".
If x,., is not missing from arbitrarily long factors of s we are done,
hence we may assume that there is an infinite set H of factors of s
from which z,., is missing. Thus Hc{x, ---, 2,}*, and we construct
a seyuence t = bb, -+ {x, -+, 2,}° from H in the regular way. By
the induction hypothesis, there exist an element xze{z, ---,z,} and
an integer & such that for any n there are integers 7, < i, < «-+ < i,
with ¢ =10, =b;,, = +-- =0b; and T —i; =k, 1<j<mn—1. But
every left factor of ¢ is a left factor of words in H, and each word
in H is a factor of s, therefore every left factor of ¢ is a factor of
s, and hence every factor of ¢ is a factor of s, in particular the factor
b «++b;«++ +++b; . By a translation of indices (perhaps a different
translation for each n) we are done.

LEMMA 2. Let @ be an epimorphism of X* upon a finite semi-
group M, and let s€ X“. Then there exist an idempotent ec M and
a fized integer k such that for amy m there are m consecutive factors
g, *++, g, (these depend on #n) of s (i.e., s=agg,++* ¢,8, where
a, gy, o, g, € X*, '€ X°) with e= p(g) = P(gs) = - = Plg.) and
lg;l <k, 1<5 < n.
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Proof. We proceed by induction on |M|. If |[M|=1, we are
done, so now let M be fixed with | M| = 2 and assume the result for
all semigroups with cardinal smaller than that of 4. Now with this M
we proceed by induction on |X|. If |X|=1 we are through, so we
may assume the result for | X| =k and now let | X| =k + 1.

Let s = a,a, -+ € X*, and let « be a fixed element of X. If x is
missing from arbitrarily long factors of s, then constructing in the
regular way a new sequence from the set of these factors, and argu-
ing as in the proof of Lemma 1, we are done by the induction hy-
pothesis on | X|. Thus we may assume that there is an integer m
and integers i, i, +++ such that z = a;, = a;, = «+- and 0<%, — 4, =
for j =1,2,---. To simplify the notation, let us assume without
loss of generality that 7, = 1.

Next, we take a new (finite) alphabet B = {a; @+, *+* @i;, ] =
1,2, ---} and write s as a sequence in B*. Let o(x) = p. Then
P(a;;) = p for j=1,2, -+, so the restriction of ¢ to B* is an epi-
morphism of B* upon the semigroup pM. If |pM| < |M|, then we are
done by the induction hypothesis on | M|, since we can easily find our
way back to s regarded as a sequence in X“. (Indeed, if the length
of a factor ¢ of s in the alphabet B is <k, then the length of g in
the alphabet X is <mik.)

Thus we may assume that |pM| = | M|, and similarly that | Mp| =
| M|, for all pe M (since the fixed element x chosen above was an
arbitrary element of X). Since M is finite, this amounts to saying
that M is a (finite) group.

All we have to do now is to regard M temporarily as a set only,
and apply Lemma 1 to the sequence p,p,+« - eM*, where p; = @(a,a, * « - a;),
4 =1,2, «+-. Thus there exist an element pc M and a fixed integer %
such that for any » there are integrs ¢, <1, < +.- <4, with p = p; =
Dy = p;, and iy, — 4, <k, 1<j<n—1. Setting g, =a,-++a;, g,=
Qiprm @iy =v oy o = Qi 4, o7 @, this says 9(g) = @(9.9)) = -++ =
P99+ +* 9a)y 8N 80 €= P(g,) = P(gs) = +++ = P(g,) (Where e is the
identity of the group M), which is the conclusion we seek.

4. Two theorems.

THEOREM 1. Let @ be an epimorphism of the semigroup S upon
the locally finite semigroup T such that ®7'(e) 1s a locally finite sub-
semigroup of S for each idempotent element ¢ of T. Then S 1is
locally finite.

Proof. First we note that if suffices to consider the case where T
is finite. (For suppose the theorem is true in this case, and let @ be



288 T. C. BROWN

an epimorphism (with the required properties) of S onto an arbitrary,
that is, possibly infinite, locally finite semigroup 7’. Let X be a finite
subset of S, and let <X denote the subsemigroup of S generated
by X. It is required to show that (X) is finite. Now {(@p(X)>T
is a finite subsemigroup of 7' since T’ is locally finite, hence restricting
® to ™(T) we get an epimorphism (with the required properties) of
@ YT) onto the finite semigroup 7. By our assumption, 7 (T) is
locally finite, hence, since X c ¢7(T'), (X is finite, as required.)

Therefore we assume that 7 is finite, and we let X denote a
finite subset of S, (X the subsemigroup of S generated by X.

To show that {X) is finite, it is convenient to introduce some
additional notation. Let X = {x,, ---,,}, and let X = {z,, ---,%,} be
a set. If W= -+, eX* let w denote the element #; ---x; of
{X». Thus “removal of bars” is a homomorphism of X* upon (X).
We shall call a word we X* contractible if there is another word
#e X* such that |#| < |w| and w = w. A sequence 5§¢ X” is contrac-
tible if § has a contractible factor. Now (X will be finite provided
every sufficiently long word of X* is contractible, and this will be the
case provided that every sequence in X“ is contractible; for otherwise
we could take an infinite set of noncontractible words of X* and, by
then constructing a sequence in the regular way from this set, obtain
a non-contractible sequence.

Thus it remains to show that every sequence in X is contractible.

Let 5¢ X, and define the homomorphism & from X* into T by
setting @(w) = ¢(w) for we X*. Applying Lemma 2, we obtain an
idempotent ec T and a fixed integer k such that for any n there are
n consecutive factors g, +--,g, of § with ¢ = (g) = +++ =&(g) and
|§;|=k, 1<j <n. By the definition of &, we have g,, -+, g, all in
»~(e), which is locally finite by assumption. Since |g,; < k| there are
only finitely many possibilities for the elements g¢,, ----, g,, hence
the element ¢, ---g, always belongs to a certain fixed finite subsemi-
group of ®7'(¢), no matter how large »n is. Thus if »n is taken suffi-
ciently large, the factor g, --- g, of § will be contractible. Thus the
sequence S is contractible. This completes the proof.

THEOREM 2. Let @ be an epimorphism of the semigroup S wpon
the locally milpotent semigroup T such that ®7'(e) is a locally mnil-
potent subsemigroup of S for each idempotent element ¢ of T. Then S
1s lozally milpotent.

Proof. The proof of Theorem 2 is practically the same as the
proof of Theorem 1. Here instead of showing that every sequence §
in X“ (same notation as in the proof of Theorem 1) has a contractible
factor, one shows that every sequence § has a factor w with w = 0.
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