MINIMAL FIRST COUNTABLE HAUSDORFF SPACES

R. M. STEPHENSON, JR.

If \mathscr{P} is a property of topologies, a \mathscr{P} -space (X, \mathscr{T}) is called a \mathscr{P} -minimal space if there exists no \mathscr{P} -topology on X properly contained in \mathscr{T} . Throughout the following, $\mathscr{H} =$ first countable and Hausdorff and $\mathscr{C} =$ first countable and completely Hausdorff (a space X is called completely Hausdorff if the continuous real valued functions defined on X separate the points of X).

In this paper we give examples of \mathcal{H} -minimal \mathcal{C} -spaces that are (i) not regular and (ii) regular but neither completely regular nor countably compact.

Two other results obtained are the following. (a) Every locally pseudocompact zero-dimensional \mathcal{H} -space can be embedded densely in a pseudocompact zero-dimensional \mathcal{H} space. (b) Let $\mathscr{P} = \mathscr{C}$, completely regular \mathcal{H} , or zerodimensional \mathcal{H} , and suppose that X is a \mathscr{P} -space such that for every \mathscr{P} -space Y and continuous mapping $f: X \to Y, f$ is closed. Then X is countably compact.

N will denote the set of natural numbers, and C(X, Y) will denote the family of continuous mappings of X into Y. For definitions, see [4].

1. An embedding theorem and some examples. Recall that a space (X, \mathcal{T}) is said to be *semiregular* if $\{\overset{\circ}{T}|T \in \mathcal{T}\}$ is a base for \mathcal{T} . If (X, \mathcal{T}) has a property \mathcal{P} , then (X, \mathcal{T}) is said to be \mathcal{P} -closed provided that it is a closed subset of every \mathcal{P} -space in which it can be embedded.

For many properties \mathscr{P} , it is known that \mathscr{P} -minimal and \mathscr{P} closed spaces are closely connected. For the case $\mathscr{P} = \mathscr{H}$, the following two results, established in [11], will be used below. An \mathscr{H} -space X is \mathscr{H} -closed if and only if every countable open filter base on X has nonempty adherence. An \mathscr{H} -space is \mathscr{H} -minimal if and only if it is semiregular and \mathscr{H} -closed.

We shall now describe constructions which can be used to densely embed certain \mathscr{C} -spaces in \mathscr{H} -minimal (\mathscr{H} -closed) \mathscr{C} -spaces. As special cases, we shall obtain examples with the properties mentioned in the introduction. First some terminology is needed.

A space X is said to be *locally pseudocompact* (W. W. Comfort) if every point of X has a pseudocompact neighborhood.

A filter base \mathscr{F} is said to be *pseudocompact* if for every $F \in \mathscr{F}$ and $G \in \mathscr{F}$, F - G is pseudocompact. \mathscr{F} is called *zero-dimensional* if the sets belonging to it are open- and-closed.

Notation. (B. Banaschewski). Let \mathscr{M} be a family of open filter bases on a space X. Let $\{p(\mathscr{F}) | \mathscr{F} \in \mathscr{M}\}$ be a new set of distinct points, and let $X(\mathscr{M})$ be the space whose points are the elements of $X \cup \{p(\mathscr{F}) | \mathscr{F} \in \mathscr{M}\}$ and whose topology has as a base sets of the form $V^* = V \cup \{p(\mathscr{F}) | V$ contains some member of $\mathscr{F}\}$, where V is any open subset of X.

THEOREM 1.1. Let X be an \mathcal{H} -space containing a point a such that X-{a} is a zero-dimensional locally pseudocompact space. Let $\mathcal{N} = \{\mathcal{F} | \mathcal{F} \text{ is a free, countable, pseudocompact, zero-dimensional$ $filter base on X}, and denote by <math>\mathcal{M}$ a maximal subset of \mathcal{N} such that whenever $\mathcal{F}, \mathcal{G} \in \mathcal{M}$ with $\mathcal{F} \neq \mathcal{G}$, then there exist disjoint sets $F \in \mathcal{F}$ and $G \in \mathcal{G}$.

Then the space $X(\mathcal{M})$ is an \mathcal{H} -closed \mathcal{C} -space in which X is embedded as a dense subset, and $X(\mathcal{M})$ is \mathcal{H} -minimal if and only if X is semiregular.

Proof. $X(\mathcal{M})$ is clearly an \mathcal{H} -space. Furthermore, it follows from the hypothesis that each point of $X(\mathcal{M}) - \{a\}$ has a fundamental system of feebly compact open neighborhoods. Thus the characteristic functions of open-and-closed subsets of $X(\mathcal{M})$ separate the points of $X(\mathcal{M})$ and $X(\mathcal{M})$ is a \mathcal{C} -space.

Suppose that \mathscr{F} is a countable open filter base on $X(\mathscr{M})$ and no point of X is an adherent point of \mathscr{F} . A slight modification of the proof of Lemma 2.17 in [11] shows that there exists a free, countable, pseudocompact, zero-dimensional filter base \mathscr{G} on X which is stronger than the filter base $\mathscr{F}|X$. By the maximality of \mathscr{M} , there exists $\mathscr{K} \in \mathscr{M}$ with $G \cap H$ nonempty for all $G \in \mathscr{G}$ and $H \in \mathscr{K}$. Thus $p(\mathscr{K})$ is an adherent point of \mathscr{F} .

To check semiregularity, it suffices to observe that if

$$a \in V = \operatorname{Int}_{X} Cl_{X} V$$
, then $V^* = \operatorname{Int}_{X(\mathscr{A})} Cl_{X(\mathscr{A})} V^*$.

THEOREM 1.2. Let X and a be as in Theorem 1.1, and suppose that $\{V_n | n \in N\}$ is a fundamental system of open neighborhoods for a such that $V_1 = X$ and each $V_n \supset Cl_X V_{n+1}$. Let \mathscr{M} be a maximal family of free, countable, pseudocompact, zero-dimensional filter bases on X such that (a) whenever $\mathscr{F}, \mathscr{G} \in \mathscr{M}$ with $\mathscr{F} \neq \mathscr{G}$, then there exist disjoint sets $F \in \mathscr{F}$ and $G \in \mathscr{G}$, and (b) for every $\mathscr{F} \in \mathscr{M}$ there exists $n \in N$ such that $\bigcup \mathscr{F} \subset V_n - V_{n+1}$.

Then $X(\mathscr{M})$ is a regular \mathscr{C} -space that is \mathscr{H} -minimal and contains X as a dense subspace. If each V_n is closed in X, then $X(\mathscr{M})$ is zero-dimensional.

Proof. Since $\{p(\mathcal{F})|\mathcal{F} \in \mathcal{M}\} - \{a\}$ is a closed discrete subset of $X(\mathcal{M}) - \{a\}$, it follows from (b) that $Cl_{X(\mathcal{M})}V_{n+1}^* = V_{n+1}^* \cup Cl_XV_{n+1}$. Thus $X(\mathcal{M})$ is regular, and if each V_n is closed in X, then $X(\mathcal{M})$ is zero-dimensional.

The proof that $X(\mathscr{M})$ is feebly compact is similar to the corresponding proof given for Theorem 1.1-one just notes that for some n, $\mathscr{F}|(Cl_X V_n - Cl_X V_{n+1})$ is a filter base, and so \mathscr{G} can be chosen with the property that $\bigcup \mathscr{G} \subset V_n - V_{n+1}$.

REMARK 1.3. In case the set I of isolated points of X is a dense subset of X, \mathscr{M} can be defined as follows. Let \mathscr{C} be a maximal family of countably infinite subsets of I such that (a) the intersection of any two members of \mathscr{C} is finite, and (b) each member of \mathscr{C} is a closed subset of X (for Theorem 1.2, a closed subset of some $Cl_X(V_n - V_{n+1})$). For each $E \in \mathscr{C}$ let $\mathscr{F}(E)$ be the complements in Eof finite subsets of E. Take $\mathscr{M} = \{\mathscr{F}(E) | E \in \mathscr{C}\}$.

REMARK 1.4. For the case X = N and \mathcal{M} infinite, the space $X(\mathcal{M})$ is due to J. Isbell (see [5, 51]).

REMARK 1.5. In general, the space $X(\mathscr{M})$ is not countably compact and hence not weakly normal, for each $\{p(\mathscr{F})|\mathscr{F} \in \mathscr{M}\} - V_n^*$ is a closed discrete subset of $X(\mathscr{M})$.

COROLLARY 1.6. Every locally pseudocompact zero-dimensional \mathcal{H} -space can be embedded densely in a pseudocompact zero-dimensional \mathcal{H} -space.

EXAMPLE 1.7. For the following X, the space $X(\mathcal{M})$ is an \mathcal{H} -minimal \mathcal{C} -space that is not regular.

Let $T = \{0\} \cup \{1/n \in N\}$, with the usual topology, choose a point a not in the product space $N \times T$, and let $X = \{a\} \cup (N \times T)$, topologized as follows: every open subset of $N \times T$ is open in X; a neighborhood of a is any set of the form $V_n = \{a\} \cup \{(x, y) \in X | x \ge n \text{ and } 1/y \text{ is an}$ even integer}, $n \in N$. (X is homeomorphic to $E - \{b\}$, where E is as in [13, p. 268].)

One can take \mathscr{M} to be a maximal family of infinite subsets of $X - ClV_1$ such that the following hold:

- (i) For all $M, M' \in \mathcal{M}, M \neq M'$ implies $M \cap M'$ is finite;
- (ii) For all $M \in \mathscr{M}$ and $n \in N$, $M \cap (\{n\} \times T)$ is finite.

EXAMPLE 1.8. For the following X, the space $X(\mathscr{M})$ (of Theorem 1.2) is an \mathscr{H} -minimal \mathscr{C} -space that is regular but not completely regular.

Let Y be the set of ordinal numbers less than the first uncountable ordinal, with the order topology, let M be the set of limit ordinals in Y, and denote Y - M by I. Let $Z = I \times \{0\} \cup Y \times N$, topologized as follows: $Y \times N$ has the product topology, and $Y \times N$ is open in Z; a neighborhood of a point $(i, 0) \in Z$ is any subset of Z that contains (i, 0) and all but finitely many elements of $\{i\} \times N$. Let L and R denote the product spaces $Z \times \{1\}$ and $Z \times \{2\}$, and set $U = L \cup R$, with the weak topology generated by $\{L, R\}$. Let S be the relation on U defined by the rule: (x, i, j)S(y, k, n) if (a) x = y, i = k, and j = n, or (b) $x = y \in M$ and i = k. Denote the quotient space U/S by T. We shall continue to use the symbols (x, i, j) for the points of T.

On the product space $T \times N$ define (t, n) W(t', n') if (a) t = t' and n = n', or (b) t = (x, 0, j), t' = (x, 0, j'), and n' - n = j - j' = 1 or n - n' = j' - j = 1. Let V be the quotient space $(T \times N)/W$. Choose a new point a and let $X = V \cup \{a\}$, topologized as follows: every open subset of V is open in X; a neighborhood of a is any set of the form $V_n = \{a\} \cup \{(t, m) \in V | m \ge n\}, n \in N$.

It is not difficult to see that X is a first countable regular space whose isolated points are dense, and $X - \{a\}$ is zero-dimensional and locally compact. X is not completely regular, because for every $f \in C(X)$ there exists $m \in Y$ such that f is constant on

$$\{(x, 0, j, n) | x \ge m, j = 1 \text{ or } j = 2, \text{ and } n \in N\}$$
.

Thus V_2 , for example, contains no zero set neighborhood of a.

REMARK 1.9. The construction above is a modification of Tychonoff's regular but not completely regular space [12].

In [7] F.B. Jones has constructed a C-space that is not com-

pletely regular but that is a Moore space. His space cannot be used here, however, because it is neither locally pseudocompact nor zerodimensional.

In the literature there are many less messy examples of \mathscr{C} -closed or \mathscr{H} -minimal spaces that are not regular; however, the author does not know of any \mathscr{C} -minimal space appearing elsewhere that is not regular (or completely regular).

REMARK 1.10. If one glues together (as in [2]) two copies of the space in Example 1.8, then one gets an example of a regular \mathcal{H} -minimal space that is not completely Hausdorff.

2. C-minimal spaces and closed mappings. If \mathcal{P} denotes any one of the usual separation properties, it is known that every \mathcal{P} -minimal completely Hausdorff space is compact (e.g., see [6]). Moreover C. T. Scarborough [9] has observed that a completely Hausdorff-minimal space is compact.

One might then expect C-minimal spaces to be well behaved, to be, say, at least countably compact. Of course, Isbell's example or Mrówka's [8] (or ours) shows that this is not the case. The following characterization theorems may, therefore, be of interest.

DEFINITION. (H. E. Hayes) An open filter base \mathscr{F} on a space X is said to be *completely Hausdorff* provided that for every $x \in X$, if x is not an adherent point of \mathscr{F} , then there exist $f \in C(X)$ and $F \in \mathscr{F}$ such that f(F) = 0 and f(x) = 1.

Using usual techniques, one can prove the following.

THEOREM 2.1. Let X be a C-space. The following are equivalent. (i) X is C-closed.

(ii) Every countable completely Hausdorff filter base on X has an adherent point.

(iii) For every \mathcal{C} -space Y and $f \in C(X, Y), f(X)$ is \mathcal{C} -closed.

In order to obtain a C-analogue of Theorem 2.4 of [11], we need a second definition.

DEFINITION. An open filter base \mathscr{F} on a space X is said to be almost completely Hausdorff if there exists $p \in X$ so that for every $x \in X - \{p\}$, if x is not an adherent point of \mathscr{F} , then there exist $f \in C(X)$ and $F \in \mathscr{F}$ such that f(F) = 0 and f(x) = 1. THEOREM 2.2. Let X be a C-space. The following are equivalent. (i) X is C-minimal.

(ii) Every countable completely Hausdorff filter base on X that has a unique adherent point is convergent.

(iii) X is semiregular, and every countable almost completely Hausdorff filter base on X has an adherent point.

The proof is somewhat similar to the proofs needed for Theorems 2.4 and 2.9 in [11].

The next result, to be contrasted with (iii) of Theorem 2.1, is a partial converse to the following well-known theorem: If X is a countably compact space, Y is an \mathcal{H} -space (or a space of the type E_1 studied in [1]), and $f \in C(X, Y)$, then f is closed.

We shall call an open filter base \mathscr{F} on X completely regular if for each $F \in \mathscr{F}$ there exist $G \in \mathscr{F}$ and $f \in C(X, [0, 1])$ such that f vanishes on G and equals 1 on X - F.

THEOREM 2.3. Let \mathscr{P} denote either completely Hausdorff, completely regular, or zero-dimensional, and suppose that X is a \mathscr{P} -space which is also an \mathscr{H} -space. The following are equivalent.

(i) X is countably compact.

(ii) For every \mathcal{H} -space Y and $f \in C(X, Y)$, f is closed.

(iii) For every \mathscr{P} -space Y that is an \mathscr{H} -space and $f \in C(X, Y)$, f is closed.

(iv) For every closed subset C of X and every countable \mathscr{P} -filter base \mathscr{F} on X, if $\mathscr{F}|C$ is a filter base and if $\cap \mathscr{F} = \cap \{\overline{F}|F \in \mathscr{F}\}$, then there is a point $c \in C$ which is in $\cap \mathscr{F}$.

Proof. (i) \Rightarrow (ii) is known. (ii) \Rightarrow (iii) is obvious. A proof not too different from one in [3] shows that (iii) \Leftrightarrow (iv). We shall prove that (iv) \Rightarrow (i) for the case \mathscr{P} = completely Hausdorff.

Let us suppose then that X is a \mathscr{C} -space which contains a countably infinite closed discrete subset C.

Consider a point $c \in C$. Since X is completely Hausdorff and $C - \{c\}$ is countable, there exists $f \in C(X)$ for which $f(c) \notin f(C - \{c\})$. Since $C - \{c\}$ is a closed subset of X and f is closed, we can choose $g \in C((-\infty, \infty))$ with g(f(c)) = 1 and $g(f(C - \{c\})) = 0$. Set $h_c = g \circ f$.

Let \mathcal{F} be the family of all finite intersections of

 $\{h_c^{-1}(-1/n, 1/n) | n \in N \text{ and } c \in C\}$.

Then it is easy to see that \mathscr{F} is a countable completely regular (and hence completely Hausdorff) filter base on X, that $\cap \mathscr{F} = \cap \{\overline{F} | F \in \mathscr{F}\}$, and that $\mathscr{F} | C$ is a filter base. On the other hand, one also has $C \cap \cap \mathscr{F} = \phi$. This contradicts (iv).

REMARK 2.4. There exists an \mathcal{H} -space X that is not countably compact but which has the property: for every Hausdorff space Y and $f \in C(X, Y)$, f is closed. See [3] and [14].

References

1. C. E. Aull, A certain class of topological spaces, Prace Mat. 11 (1967), 49-53.

2. M. P. Berri and R. H. Sorgenfrey, *Minimal regular spaces*, Proc. Amer. Math. Soc., **14** (1963), 454-458.

3. R. F. Dickman, Jr. and Alan Zame, Functionally compact spaces, Pacific J. Math., **31** (1969), 303-311.

4. J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966.

5. L. Gillman and M. Jerison, *Rings of continuous functions*, Van Nostrand, New York, 1960.

H. Herrlich, T₂-Abgeschlossenheit und T₂-Minimalität, Math. Z., 88(1965), 285-294.
F. B. Jones, Moore spaces and uniform spaces, Proc. Amer. Math. Soc., 9 (1958), 483-486.

8. S. Mrówka, On completely regular spaces, Fund. Math., 41 (1954), 105-106.

9. C. T. Scarborough and R. M. Stephenson, Jr., *Minimal topologies*, Colloq. Math., **19** (1968), 215-219.

10. C. T. Scarborough and A. H. Stone, *Products of nearly compact spaces*, Trans. Amer. Math. Soc., **124** (1966), 131-147.

11. R. M. Stephenson, Jr., *Minimal first countable topologies*, Trans. Amer. Math. Soc., **138** (1969), 115-127.

12. A. Tychonoff, Über die topologische Erweiterung von Räumen, Math. Ann., 102 (1930), 544-561.

13. P. Urysohn, Über die Machtigkeit der zusammenhängenden Mengen, Math. Ann., 94 (1925), 262-295.

14. Giovanni A. Viglino, C-Compact spaces, Duke Math. J., 36 (1969), 761-764.

Received February 17, 1970. This research was partially supported by a grant from the University of North Carolina.

UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL