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OPERATORS THAT COMMUTE WITH A
UNILATERAL SHIFT ON AN INVARIANT

SUBSPACE

LAVON B. PAGE

A co-isometry on a Hubert space £%f is a bounded opera-
tor having an isometric adjoint. If V is a co-isometry on
£έf and Λ € is an invariant subspace for V, then every
bounded operator on ^ ^ that commutes with V on ^J? can
be extended to an operator on £ίf that commutes with V,
and the extension can be made without increasing the norm
of the operator. This paper is concerned with unilateral
shifts. The questions asked are these: (1) Do shifts enjoy
the above property shared by co-isometries and self-adjoint
operators? (The answer to this question is "rarely".) (2)
Why not? (3) If S is a shift, ^£ is an invariant subspace
for S, So is the restriction of S to f̂f, and T is a bounded
operator on ^ satisfying TS0 = SQT, how tame do T and
^f have to be in order that T can be extended (without
increasing the norm) to an operator in the commutant of >S?
Extension is possible in a large number of cases.

The result mentioned above for co-isometries is due to Sz.-Nagy
and Foias [8]. (An excellent exposition on the problem is found in
[3]; see Theorem 4 in particular.) For self-adjoint operators the state-
ment is trivial for the simple reason that every invariant subspace is
then reducing and any commuting operator on a subspace can be ex-
tended by simply requiring it to be zero on the orthogonal complement
of the subspace.

Recall that a unilateral shift S is an isometry having the pro-
perty that Πn=oSnβ^ = {0}. The Hubert space dimension of the
subspace {S^f)L is called the multiplicity of S. Within the class of
partial isometries on έ%f the unilateral shifts are in a sense as far
removed as possible from the co-isometries and the self-adjoint partial
isometries. For shifts have no self-adjoint part, and far from being
co-isometric if S is a shift S*n goes strongly to zero. (These and
other simple properties of shifts may be deduced from problem 118
and the surrounding material in Halmos [5].)

II. We begin with a complex Hubert space 3ίf (not necessarily
separable) and a unilateral shift S on £%f. It is well known that shifts
decompose the underlying Hubert space in the following way:

= Θ Σ $nr^ where <g>
91 = 0
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(See for example Halmos [5], problem 118).
We also fix an invariant subspace ^€ of S. By So we denote

the restriction of S to ^/f, SQ = S\^C The commutant of S is the
algebra of bounded operators on £ίf which commute with S and is
denoted by j^J.

The invariant subspaces of S are known to the following extent.
Every invariant subspace of S is the range of a partial isometry in
jtfs whose initial space reduces S. (This well known result appears
in many forms. The particular form cited here appears in [7], see
proof of Theorem 1.) Particularly when a function space model is
used these operators are often referred to as inner functions or rigid
functions.

Finally we will fix a bounded operator T on ^/S which commutes
with So. As indicated earlier the problem being considered is that of
extending T to an operator on S(f lying in sfs and having norm
equal to

THEOREM 2.1. If S is the simple shift, i.e., if d i m ^ = 1, then
T has an extension in s/s whose norm is equal to \\T\\.

Proof. This theorem will follow from a later result. (See Remark
2.4 below.) The simple shift can be represented as the usual shift on
the Hardy space H2 of complex valued functions on the unit circle
(Helson [6], chapter 1). It is instructive to sketch a proof in this
setting where ^€ — BH2 with B an inner function in H2. Also Be
^T, and T:B->Bg for some g in H2. The fact that TS0 = SQTallows
one to argue that T: Bf—> Bfg for all fe H°°, and finally using stand-
ard techniques one shows that g e H00, that T is multiplication by g
on j f , and hence that T has an obvious extension to an operator on
H2 which commutes with S. The extension does not increase the
norm.

EXAMPLE 2.2. T does not necessarily have a bounded extension
which commutes with S if S is a shift of multiplicity two, i.e., if
dim <Sf = 2.

Proof. Here we let £%f = H2 0 H2. Vectors in 3^ will be written
as ordered pairs (/, g). Let χ be the identity function on the unit
circle, χ(eu) — eιt, and then the shift S of multiplicity two on gff is
S:(f,g)-*(χf,χg).

Let ^f be the subspace of <%f consisting of all vectors of the
form (/, χg) where f,ge H2. Clearly S^ S Λ. Define T o n y /
by T: (/, g) —> (χg, 0), the bar denoting complex conjugate. It is trivial
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to verify that T is a bounded operator mapping ^ into ^^, and
that TS — ST on ^ C But it is equally easy to see that T can have
no extension in j^J. For if T is an extension of T to βίf, then we
must have TS: (0,1)—> (1, 0), whereas everything in the range of ST
must be orthogonal to (1, 0).

It becomes apparent in the discussion which follows that the re-
ason we obtain different answers in the case of the simple shift as
opposed to nonsimple shifts is that the simple shift is the only shift
having an abelian commutant. Recall that ^-£ — B^f where B is a
partial isometry in jzfs and B*3ίf reduces S. Let Aτ be the operator
on £ί? defined by

Aτ = B*TB .

Since BB* is the orthogonal projection onto ^-/f we have

BB*TBS = TBS = STB = SBB*TB = BSB*TB ,

or BATS = BSAT. Now the range of Aτ is contained in the range of
J5* which is a reducing subspace for S. Since B is isometric on the
range of J3* we can infer from the last equation that ATS = SAT.
Thus Aτ satisfies the three conditions

( i ) Aτ e As

(ii) TB = BAT

(i i i) H A r l l ^ l l Γ I I .
Clearly an operator A in s/s is an extension of T if and only if
AB = TB. Thus it follows that T has an extension in ,s^s if and only
if there exists an operator Ae s>/s such that AB — BAT, i.e., the pro-
blem is now one of solving the operator equation AB = BAT for A e
J^fs. (B and Aτ are already in J ^ . )

A hyperίnvariant subspace for S is a subspace which is invariant
under every operator which commutes with S.

PROPOSITION 2.3. If ^/ί is a hyperinvariant subspace of S, then
T has an extension in s/s whose norm is \\T\\.

Proof. The fact that ^/ί is hyperinvariant guarantees that B
can be chosen so as to have the additional property that B commutes
with every operator in s$fs. (Douglas and Pearcy [2], Theorem 5).
Thus ATB — BAT1 and Ύ possesses the desired extension by the re-
marks above.

REMARK 2.4. Since every invariant subspace for the simple shift
is hyperinvariant, the above proposition contains Theorem 2.1.
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There is a relationship between T having an extension in s^s and
a factorization of a familiar type. From the definition of Aτ it is
clear that range A* £ range J3*. Thus by a standard factorization
result (Douglas [1]) there exists a bounded operator D on ^f such
that Aτ = DB.

PROPOSITION 2.5. If Aτ = DB where ΰ e j / 5 , then T has an ex-
tension in

Proof. Suppose ΰ e j / s and Aτ = DB. Then BAT = JKDJ3. Sett-
ing A = BD it follows from the remarks made preceeding Proposition
2.3 that T has an extension in

III. In order that an operator A on έ%f commute with the shift
S it is necessary that every subspace Sn<%?(n ^ 0) be invariant under
A. The proposition below is a slight generalization of this statement.
For n ^ 0, let Pn — I — SnS*n, the orthogonal projection onto the
orthogonal complement of

PROPOSITION 3.1. If Aej%?s, then there is a constant a such that
| |PnA/|| ^ a\\Pnf\\ for every n^ 0 and every fe έ%f. In fact a can
he chosen to he \\A\\.

Proof. If n ^ 0 and fe <%* write / = Sng + h where g = S*nf
and h - PJ. Then since S*«Sn = I and PnA* - PnA*Pn, \\PnAf\\ =
I I P A H I I A I I H Λ I ^ | | A | | | | P / | |

With T defined initially on ^ Proposition 3.1 indicates that it
is fruitless to look for an extension of T in s*fs unless T initially
satisfies a similar condition on ^ . Henceforth we assume that there
exists a constant a such that

for all fe ^f and n ^ 0.

It is easy now to see that in Example 2.2 T could have no ex-
tension in stfs because condition (*) is not satisfied. If in that example
we take / = (0, χ), then \\PJ\\ = 0 but | |Pn2y|| = 1 when n = 1.

Whether condition (*) is sufficient to guarantee that T has an
extension in As we have been unable to determine (see Remark 3.6).
We have been able to show, Example 3.5 below, that such an extension
cannot always be made without increasing the norm.

The next theorem indicates the existence of a certain subspace
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*W between ^€ and ^f and also invariant under £ to which T, if
T satisfies condition (*), can always be extended without increasing
the norm and so as to commute with S. Two corollaries indicate that
frequently W * is all of £ίf.

If fe £έf, l e t p(f, ^ ) = inf {||/ - g\\:ge Λ).

THEOREM 3.2. Let Ύ/^ be the set of all fe £ίf such that

p(S% ^f) -> 0

as n —> co. Then "W" is a (closed) subspace of £έf which is invariant
under S, and if T satisfies condition (*) on ^ then T has an ex-
tension to an operator Tf on <W~ satisfying T'S = ST' on W~ and

Proof. It is easy to verify that 'W" is a linear manifold and that
S W~. To see that "W is closed, suppose that / is in the closure

of W. Then for g e Λ#7

By choosing g sufϋciently near to / and n sufficiently large, the two
terms on the right can be made as small as desired.

We next describe the manner in which T extends to W. Sup-
pose / is in W". Let {gn} be a sequence in ^/S such that lim 11 Snf —
gn\\ = 0, and set hn — Snf — gn. Now if m ^ n,

\\S^Tgn - S*mTgm\\ - \\S^TSm~ngn - S*™Tgm\\

^ \\T\\ \\S"-*gn - gm\\ = \\T\\ \\S—hn - hm\\

and the last expression goes to zero as n, m —> co. Thus we have
shown that the sequence {S*nTgn} is a Cauchy sequence. To extend
T to <W~, if fe ?/^ we select a sequence {gn} in ^ such that

as n—+ oo and set Ύf — lim S*nTgn. In light of the earlier remarks
in this paragraph it is easy to see that the way in which Tf is de-
fined here is independent of the sequence {gn} chosen and coincides
with the original operator T in case fe ^f. It is also clear that the
extension does not increase the norm.

To see that Tf<W S ^ 7 we assume fe ^ Let {gn} be a sequ-
ence in ^/f such that \\Snf— gn\\—> 0. Now making use of the fact
that T satisfies condition (*) we have 11PnTgn|| ^ a\\Pngn\\, and the
right-hand side here goes to zero. Furthermore,



792 LA VON B. PAGE

ρ(SnT'f, ^€) ^ \\SnT'f- S*S**Tgn\\ + p(S*S**Tgn, ^f) .

The first term on the right goes to zero by the definition of Tf, and
the second goes to zero because Tgne^/t and \\PnTgn\\—>0. Thus
T'fe w:

Finally we show tha t T'S = ST' on 5 ^ If fe ^ 7 let {<?J be
a sequence in ^ # such tha t \\Snf— <7W|| —>0. Then

\\T'Sf- ST'f\\ ^ lim sup \\S*nTSgn - SS*nTgn\\
= lim sup \\S*^]Tgn - SS**Tgn\\
g lim sup WS^S^^Tg,- Tgn\\+\imsup\\Tgn- SnS*nTgn\\
g a lim sup HP^gJI + a lim sup | | P^J | - 0 .

Frequently the subspace "W of Theorem 3.2 will be all of Sίf.
The two corollaries below give examples of this occurrence.

COROLLARY 3.3. // dim ^ L < °o, and if T satisfies (*), then T
has an extension in St?s tvhose norm is \\T\\.

Proof. Let W^ be the subspace of Theorem 3.2. Assume that
x is an eigenvector for the operator on W~ι obtained by compressing
S to 2 ^ \ the operator (I-P)S\Ύ^L where P is the orthogonal
projection of £$f onto ^ Γ Let λ be the corresponding eigenvalue,
so |λ| 5̂  1 and Sx — y + Xx where y — PSx.

Then S2x = Sy + XSx = (% + λ?/) + \2x. In general

S%x = yn + Xnx

where yne W: Now if |λ| - 1 then | |S^| | 2 - | |^| |2 + ||α;|!2, implying
that y ~ 0 since S is a contraction. But this would imply that λ is
an eigenvalue of S, and since S is a shift S has no eigenvalues.

Thus |λI < 1, and Xnx —> 0 as w —> ©o, implying that .τ e ^ T This
too is a contradiction and we have shown that in fact (I— P)S\"WL

can have no eigenvalues and hence since (WL is finite demensional we
must have dim W^L = 0. The proof is now complete in light of
Theorem 3.2.

There is a special type of invariant subspace for nonsimple shifts
which is encountered frequently in the literature. Such subspaces are
the ones which, in the Hardy space model (Helson [6], chapter 6),
correspond to operator valued analytic functions on the unit disk as-
suming unitary values on the boundary. For a general invariant
subspace the corresponding rigid function (see Halmos, [4]) can be
required only to assume partially isometric values.

There is an equivalent abstract formulation of the condition that
an invariant subspace correspond to a unitary valued function. First
of all it is evident that the minimal unitary extension of a unilateral
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shift is a bilateral shift of the same multiplicity. If we continue to
let S and Sίf denote respectively a unilateral shift and the space on
which it acts and now let U and 3ίΓ denote respectively the minimal
unitary extension of S and the space JίΓ on which U acts, then for
each subspace ^//S of 3ίf invariant under S it is clear that ^/£ is
invariant under U as well. It can be shown without great difficulty
that in the Hardy space model ^ corresponds to a unitary function
if and only if the smallest reducing subspace for U containing ^€ is

itself.

COROLLARY 3.4. / / the smallest reducing subspace for U which
contains ^f is JyΓ {where U and 3ίΓ are as in the preceeding par-
agraph) then every operator T on ^ίS satisfying (*) has an extension
in s/'s whose norm is \\T\\.

i

Proof. Recall that ^// — B£^ where B is a partial isometry in
j#%. From the folklore of the field we know that B has a unique
extension to an operator on J?Γ, call it B', which commutes with U.
(This also can be deduced from the lifting theorem of Sz-Nagy and
Foias, Theorem 4 of [3].) Now the range of Br reduces U and con-
tains ^ C Hence by assumption Br5ίΓ = ^ Γ

Let fe §ίf. Since the subspaces U*n3ίf, n^Q, span J>Γ, for each
ε > 0 there is an integer n ^ 0 and age U^^f such that

\\B'g-f\\<e.

We have UnB'g = BrUngeBβ^ = ^£, and | | S * / - UnB'g\\ < ε. Thus
we have shown that "W — βίf in Theorem 3.2 and therefore that T
has the desired extension.

Our final task will be to show that in general condition (*) on T
and ^£ is not sufficient to guarantee an extension in sfs with norm
equal to || T\\. Because the condition is sufficient in the rather inclusive
instances already considered, it is not surprising that some care must
be exercised in constructing the following example.

EXAMPLE 3.5. We take S to be a shift of multiplicity 7 on
Let {βJLi be an orthonormal basis for {S£έf)L. We take the subspace
^f of £ίf to be the smallest invariant subspace for S containing the
following vectors:

Wi = ex + Se2i u2 — e3 + Seά1 u3 = eδ + Se6, u4 — e5 + Se7 .

The operator T is defined on a dense linear manifold in ^ by
requiring that
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Tut = Us, Tu2 — u4, and Tu3 — Tu4 = 0

and by requiring that TS — ST. (The linear manifold referred to is
the linear span of the vectors P(S)uk, k — 1, 2, 3, 4, where P(S) is a
polynomial in S.)

Some elementary calculations show that T is in fact bounded on
this linear manifold, and that moreover || T| | <£ i/3/i/2 . Further-
more it can be shown that T on Λ€ satisfies condition (*) where the
constant a can be taken to be V 2 .

Finally one shows that any extension of T to £έf which is to
commute with S on £έf must map e1 + e3 to 2β6, and must hence have
norm not less than V 2 . Thus T cannot be extended to an operator
which commutes with S on έ%f without increasing the norm.

REMARK 3.6. It is peculiar in the above example that we could
show only that any extension of T to an operator in s/s must have
norm not less than a where a is the constant in (*). This leads
naturally to the following conjecture.

CONJECTURE. If T on ^ satisfies (*) then T has an extension
in s/s having norm less than or equal to a.
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