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RINGS OF QUOTIENTS OF Φ-ALGEBRAS

D. G. JOHNSON

Let <%f be a completely regular (Hausdorff) space. Fine,
Gill man, and Lambek have studied the (generalized) rings of
quotients of C(J^) = C{<%?\ R), with particular emphasis on
the maximal ring of quotients, QiJ^f). In this note, we start
with a characterization of Q(Jίf) that differs only slightly
from one of theirs. This characterization is easily altered
to fit more general circumstances, and so serves to obtain
some results on non-maximal rings of quotients of C ( ^ ) ,
and to generalize these results to the class of Φ-algebras.

We consider only commutative rings with unit. Let A be one
such, and recall that the (unitary) over-ring B of A is called a ra-
tional extension or ring of quotients of A if it satisfies the following
condition: given b e B, for every 0 Φ bf e B there is a e A with ba e A
and ί)'α ̂  0. A ring without proper rational extensions is said to be
rationally complete. For the rings to be considered here (all are
semi-prime), the condition above can be replaced by the simpler con-
dition: for 0 Φ be By there exists aeA such that 0 Φ bae A ([1], p.
5). Accordingly, we make the following

DEFINITION. If B is an over-ring of A and 0 Φ b e B, say that
b is rational over A if t h e r e is aeA w i t h 0 Φ bae A.

Let mβJ2f denote the minimal projective extension of β^ and
τ: mβ^* — > β ^ the minimal perfect map ([2]). In [1], it is shown
that Q(£f) is a dense, point-separating subalgebra of D{mβ£f), the
set of all continuous maps from mβ^f into the two-point compactiίi-
cation of the real line which are real-valued on a dense subset of
mβ^f (see, also, [3]). Since Q{<£?) contains every ring of quotients
of C(£f), this leads to

PROPOSITION 1. If B is any ring of quotients of C(£f), then there
exist a compact (Hausdorff) space %/ and minimal perfect maps a
and 7 such that B is a point-separating subalgebra of D{^/) and the
following diagram commutes:
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^/ is the obvious identification space, and the proof consists of a
routine argument to show that the quotient map a is closed, whence
& is Hausdorff. Since C(<%?) £ B, the existence of 7 follows im-
mediately. (Note that, although D(mβ<^f) is an algebra, D(f/) for
other spaces %/ is, in general, only a partial algebra.)

For our purposes, it is convenient to view C(<^f) as a subalgebra
of D(βjgf). This allows us to decree that all spaces are compact
(Hausdorff).

Let us say that any space ^ that is situated in a commutative
diagram of the form

where all maps are minimal perfect, is near to J2f. (Of course, the
existence of 7 automatically guarantees the existence of a.) Note
that we have already adopted the convention of identifying / e Ώ(<Sf)
with its image / o 7 in D(^/) whenever convenient. With this con-
vention, if A is a subalgebra of Ό(β/) and / e Ό(^/) then we may
consider / as an element of an over-ring of A—D(m^)—, even if
there is no subalgebra of Ό{W) containing both A and /.

Now let A be a Φ-algebra that is closed under bounded inversion;
i.e., an archimedean lattice ordered algebra with a multiplicative
identity that is a weak order unit, in which I/a e A whenever l ^ α e i .
Let gf — ̂ fέ(A), the space of maximal ideals of A with the hull-
kernel topology. It is shown in [4] that A is (isomorphic with) a
point-separating subalgebra of D(^f). If <?/ is any space that is
near to ^ let A?/ — {/ e D(W): for each nonempty open set ^ in
ĝ , there are a nonempty open set 3^ £ ^ and g eA such that
f\7/. = g\r). Note that Af/ is always a lattice. However, it need
not be an algebra:

EXAMPLE. Let <%f = ^/, the one-point compactification of the
countable discrete space, and let A = C(<£f). Then A?/ = D(%/), which
is not an algebra.

REMARK. One readily shows that the open sets °Γ appearing in
the definition of A., can always be shown to have the form 7*~[ 5̂ ΓL
where 5^ is open in £f. It follows that

PROPOSITION 2. ( i ) Every element of AΨ is rational over A*
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{and, hence, over A).
(ii) Ay contains every rational extension of A and A* in D(?/).

Proof. ( i ) Let 0 Φ f eA?y, and let ^ be a nonempty open set
contained in coz/. Since feA^, there exist a nonempty open set
T = rr[^]£ U, where 3^ is open in Jg^ and fcei* such that
f\r = h\r* Choose 0 Φ g e A* with cozΊ? s 3*ί. Then 0 Φ fg=hg e A*.

(ii) Let f eD(%/)\Ay. Then, there is a nonempty open set ^
such that / agrees with no member of A on any nonempty open sub-
set of <%/. Choose ge A* with φ Φ cδzg £ <^.

There is no he A with hg Φ 0 while /fee A. For, such h would
agree with a unit ht of A on some nonempty open subset y of Ήf
(since A is closed under bounded inversion), whence

while (l/hjhf e i , a contradiction. Thus, / is contained in no rational
extension of A.

Although A^ may contain many different rational extensions of
A, it is not true that it is the union of such extensions, as is seen
in the example preceding Proposition 2. However, in those spaces if
for which A^ is an algebra, A^ is a Φ-algebra and is the largest ring
of quotients of A that "lives on" g/. In particular, this happens when
Ώ(β/) is an algebra (e.g., when g/ is basically disconnected or an F-
space). Hence, Am^ is a Φ-algebra, since m<%f is extremally discon-
nected, and we obtain the following generalizations of results in [1].

THEOREM 1. Am^ is rationally complete) thus, Amfr — &(A), the
maximal ring of quotients of A.

THEOREM 2. Am^ is uniformly dense in D(

THEOREM 3 ([1]). D{m<%f) is rationally complete.

The proofs of Theorems 1 and 3 are virtually identical, and are
related to one found on p. 30 of [1]; we prove 1. To do so, we will
employ the following characterization of rational completeness (see
[1], P. 7)

The commutative ring B is rationally complete if and only if it
satisfies: for any dense ideal I of B, every element of Hom5 (I, B) is
a multiplication by an element of B. (In the present setting, an
ideal I of Amar is dense if and only if U{coz f:fel} is dense in

Proof of Theorem 1. Let I be a dense ideal in A, and let
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φeΉ.omΛm^(I, AnΛr). By Zorn's lemma, choose a family
of open sets in m^ satisfying:

( i ) ^ = U ^ is dense in m ^ ;
(ii) the ^/κ are pairwise disjoint;
(iii) for each tc, there is fκ e I such that fκ is bounded away from

zero on <%sκ and both fκ and 0(/Λ) agree with members of A on ^ .
Let feD{mJί?) satisfy

for each fc G K. This is possible, since m^f is extremally disconnected,
so m<^f — β^/.

If g el and x e %fκ, then

(x) = φ(g)(x) .

It follows that φ is multiplication by /. Clearly, /G^4 m r , and the
proof is complete.

Proof of Theorem 2. Let / e D(mJ?f), ε > 0. By Zorn's lemma,
choose a family {%SK: iceK} of open sets in m&f which satisfies:

( i ) ^/ = \J %fκ is dense in m ^ ;
(ii) the ^/κ are pairwise disjoint;
(iii) for x, y e ^κ, \f(x) — f(y)\ < ε (in particular, / is real-valued

on ^ ) .
For each tceK, choose xκ e ^κ> and define g: ^ —+ R by

Since m , f = /9^, ^ can be extended to g e D{m<3f). Clearly, g e Am^,
and

Now the analogue of Proposition 1 for Φ-algebras is routinely
obtained.

In case & — m<^ and A — C{^) one readily translates the de-
finition of A2/ (using the fact that m ^ 7 is extremally disconnected,
and hence that every dense subspace is C*-embedded) as follows:

Am^ — lim {C(£f): Sf is a dense open subset of ^f) .

Thus, the Fine-Gillman-Lambek result that this direct limit is
follows from Theorem 1.
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It is easily seen that any Φ-algebra A is a rational extension of
its bounded subring A*, and hence that (A*)^ — Ay for any space ^/
near to ^f/{A). Thus, if A is closed under uniform convergence, then
&(A) = &(A*) = Q(^//(A)), since A* = C{^f/{A)). In the general
case, this may fail to hold. (So, more generally, A?/ Φ
even when A S C

EXAMPLE. Let A = Q(R). Then (see [1], p. 34),

A = &(A*) Φ D(mR) = D(M(A*)) - Q(M(A*)) .

For any Φ-algebra A and any space & near to ^ — ̂ /?{A), every
subalgebra of A?/ that contains A is a ring of quotients of A. Of
interest are those that separate points of ^/\ prime candidates are
the maximal subalgebras of A/y containing A, which are easily seen
to exist.

The results that follow are obtained using ideas and methods
employed by Nanzetta in [6] (see his 2.1, 2.3, 4.1). Conversion of his
arguments to the present setting is largely an exercise in careful
bookkeeping, and the details are omitted.

THEOREM 4. If B is a maximal subalgebra of Af/, then B is a
lattice (hence, a Φ-algebra).

We will use the term "maximal subalgebra of A,/' to denote
only those that contain A.

DEFINITION. Let B be a subalgebra of D($s). A function / e
is said to be locally in B if each point of W has a neighbor-

hood on which / coincides with some member of B. The subalgebra
B is said to be local (in D{%/)) if each member of Ό(^/) that is locally
in B is a member of B.

THEOREM 5. Every maximal subalgebra of A^ is local.

As in [6], this fact yields the following result.

THEOREM 6. Let B be a maximal subalgebra of AV1 and let £f
be a stationary set of B. If \6^\ > 1, then

( i ) £f is closed;
(ii) £/* is nowhere dense;
(iii) ,9* is connected.

COROLLARY. If ^/ is totally disconnected, then every maximal
subalgebra of Av separates points of %/. (Note that this may occur
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even when A^ is not an algebra: see the example preceding Proposi-
tion 2.)

It is not known whether every space ^/ near to <%f supports
(i.e., is the structure space of) a ring of quotients of C{gf). Ap-
parently, an answer to this question awaits a more systematic des-
cription of the collection of spaces near to

Note that (Ay)*, the set of bounded elements of A^, is always a
Φ-algebra. Hence, it is always a ring of quotients of A*—the largest
bounded ring of quotients of A* in D(^/). As mentioned above, it is
not known whether (A&)* always separates points of J^; it clearly
does so if and only if A^ does. However, the example that follows
shows that A& may separate points in ^/ even though ^/ supports
no ring of quotients of A.

EXAMPLE. Let £f = {(x, sin (1/x)); x e (0, 1]}, let g? denote the
one-point compactiίication of Sf, and let <%/ = ^ (j ({0} x [-1, 1]). Let
A denote the Φ-algebra of all functions / e D(<^f) that satisfy the
following condition:

There is a real number xQ, 0 < xQ < 1, and a real polynomial p
such that

fix, sin —) = p(—) for 0 < x < xQ

\ x/ \χ /

(cf. [4], 3.6). Then (A*)* = C&), whereas no subalgebra of
containing A separates points in ^/ ([6], Theorem 4.6).

In passing, it should be noted that the development here has
proceeded independently of [1]. The only results from that work
that have been employed in an essential way came from Chapter 1
of [1], which consists of standard facts about rings of quotients of
commutative rings (see, e.g., [5]). Thus, one can rapidly and ef-
ficiently reach the high points of the theory developed in [1] along the
lines suggested by this note.
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