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MONOTONE DECOMPOSITIONS OF IRREDUCIBLE
HAUSDORFF CONTINUA

G. R. GORDH, JR.

It is shown that a number of important results concern-
ing irreducible metric continua can be generalized to (non-
metric) irreducible continua. For example, if M is a (non-
metric) continuum which is irreducible between a pair of
points and which contains no indecomposable subcontinuum
with interior, then there exists a monotone continuous map
of M onto a generalized arc, such that each point inverse has
void interior. This result is applied to a study of hereditarily
unicoherent, hereditarily decomposable continua. Certain pro-
perties of trees follow as corollaries. Also, trees are charac-
terized as inverse limits of monotone inverse systems of den-
drites.

In recent years there has been a growing interest in the study
of (nonmetric) continua. It is well known (e.g., [6]) that some of
the most useful and important properties of metric continua do not
hold for (nonmetric) continua. It is the purpose of this paper to in-
dicate that a substantial number of theorems concerning irreducible
metric continua can be generalized to irreducible continua. These
results are then applied to a study of certain hereditarily unicoherent
continua.

In particular, § 2 contains generalizations of many of the results
about irreducible metric continua appearing in Chapter 1 of [11].
These results are applied in § 3 to obtain generalizations of a number
of theorems due to Miller [8] concerning hereditarily unicoherent con-
tinua. Section 4 contains several results about trees which follow as
corollaries of theorems in § 3. Also, it is proved that every tree can
be written as a monotone inverse limit of dendrites. In Chapter 2 of
[11], Thomas discusses metric continua which are hereditarily of type A'.
His definition is extended, in § 5, to (nonmetric) continua and several
characterizations of such continua are obtained.

The reader is referred to [3], [5], and [14] for general results
concerning continua (i.e., compact, connected Hausdorff spaces). It
will be necessary to refer to results which are stated in the literature
for metric continua; however, this will be done only when the proof
for continua is essentially the same as that for metric continua.

The author is indebted to Professor F. Burton Jones for his advice
and encouragement in the preparation of this paper.
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2* Continua of type A* We observe that Theorem 1 and
Theorem 7 of [11, Chapter 1] are true, as stated, for (non-metric)
continua. To prove Theorem 1, apply [9, Theorem 47, page 16] to
the proof as given in [11],

Let M be a continuum which is irreducible between a pair of
points x and y. A decomposition £gf of M is said to be admissible in
case each element of & is a nonvoid proper subcontinuum of Λf, and
each element of 3f which does not contain x or y separates M. Notice
that an admissible decomposition is not required by definition to be
upper semi-continuous. However, we will show that an admissible
decomposition must, in fact, be upper semi-continuous. Thus, for
metric continua, our definition is equivalent to the definition in [11].

A generalized arc is a continuum A with precisely two non-
separating points. It is well known that A can be totally ordered in
such a way that the order topology and the original topology coincide.
We will frequently denote A by [α, b] where a and b are the non-
separating points of A.

THEOREM 2.1. Let M denote a continuum. Let & — {D(x)} be a
decomposition of M such that (1) for each x e M, D(x) is a proper
subcontinuum of M, and (2) there exist elements D(a) and D{b) of 2$
such that every element D(x) of £3? distinct from D(a) and D(b) sep-
arates D(a) from D(b). Then & is an upper semi-continuous de-
composition, and M\3f is a generalized arc.

Proof. For each x in M - [D(a) + D(b)], M - D{x) = Ax + Bx

where ae Ax,be Bx, and Ax and Bx are connected. If x and y are
in I - [D(a) + D(b)] and D(x) Φ D(y), then D{y) c Ax if and only if
AydAχy also D(y) c Bx if and only if ByaBx. Define D{x) < (D(y)
whenever Ax c Ay, and let D(a) < D(z) < D(b) for all z in

M - [D(a) + D(b)] .

Then < is a total order on j ^ . If f: M-+ £Bf denotes the natural
map, then it is readily seen that / is continuous with respect to the
order topology on 2&. The conclusion of the theorem now follows.

COROLLARY 2.1. Let M be a continuum which is irreducible from
x to y. If £? is an admissible decomposition for M, then 2$ is upper
semi-continuous and M\3? is a generalized arc.

A continuum M is of type A provided that it is irreducible be-
tween a pair of points and has an admissible decomposition; M is of
type A if it is of type A and has an admissible decomposition each
of whose elements has void interior.
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THEOREM 2.2. Let M be a continuum irreducible from x to y.
If M has an admissible decomposition, then it has one which is
minimal (with respect to partial order by refinement).

Proof. See the proof of [11, Theorem 3, page 8]. Notice that
we are not required to prove the upper semi-continuity of the decom-
position.

Suppose that M is a continuum irreducible between two points.
If M is of type A, let A denote the collection of all admissible de-
compositions of M. For each ^ e J , let /: JldΓ—> Mj£2r denote the
natural map. Thus / is a continuous monotone function from M onto
a generalized arc. Observe that every monotone map from M onto
a generalized arc is obtained in this manner.

THEOREM 2.3. Let M be a continuum of type A, ^eA, and
f: M—> Ml£&. Suppose that K is a subcontinuum of M such that
f(K) — [r, s] where [r, s] is a nondegenerate subinterval of Mj^f. Then
f~ι(r) Π K and f~\s) Π K are continua, and for r < t < s, f~\t) is
contained in and separates K. In particular f\κ is a monotone map
of K onto [r, s]; thus, if K is irreducible, K is of type A.

Proof. Suppose that M is irreducible from x to y and
[a,b]. If r < t < s, then f~\t) c K; for if p is in f~\t) - K then
f~\[a, r]) + K + f~\[s, b]) is a proper subcontinuum containing x and
y. Clearly f~\t) separates K, since it separates M. To see that
f-ι{r) Π K is connected, let Kr = Π {cl[f~ι{{r, u))]\ u e (r, s)}. Then K'
is a subcontinuum of f~\r) Π K which is easily seen to intersect each
component of f~ι{r) Π K. Thus f~\r) Π K, as well as /^(s) Π ίΓ, is
connected.

THEOREM 2.4. Lei M be a continuum of type A; then A contains
a unique minimal element.

Proof. The proof of [11, Theorem 6, page 10] is valid, since we
are not concerned with proving the upper semi-continuity of the de-
composition.

COROLLARY 2.2. Let M be a continuum of type A'. If & e Δ is
such that each element of & has void interior, then & is the minimal
element of A.

Proof. Suppose that &' e A such that &' ^ &. Let D{a) and
D(b) denote the nonseparating elements of &r. Then M — D(a) is
connected, and since D(a)° = 0, [M — D(a)\ + Dr(a) is connected. Thus
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D(a) = D'(a) and D(b) = D'(b). Given x in M - [D(ά) + D(b)], write
M - D(x) = Ax + Bx uniquely. Then M = Ax + Bx and

0 Φ Axf]Bx(zD(x) .

Given z in D(x), D'(z) must separate D(α) from D(b); thus A,, n δ , c
D'(z). Consequently, Df{x) = £(#) and ^ ' = ^ .

The following useful result is a generalization of [11, Theorem 8,
page 14].

THEOREM 2.5. Let M be a continuum of type A, 2$ e Δ, and
f: M-* M\3f = [α, δ ] . Then for a^r <s ^ δ, ^ [ / - ' ( ( r , s))] = iΓ i s
a subcontinuum of M which is irreducible from every point of

to every point of Kf] /"^(s) = Ks. Also Kr and Ks are subcontinua
of K with void interior relative to K.

Proof. Since Kr c K - /^((r, s)), K°r = 0 . By Theorem 2.3, ίΓr

and ifs are subcontinua of iί. That K is irreducible from ifr to K8

follows from the proof of [11, Theorem 8, page 14].

THEOREM 2.6. Let M denote a continuum which is irreducible
between two closed subsets H and K such that every subcontinuum of
M with nonvoid interior is decomposable. Then the following hold.
(a) There is a decomposition of M, M= MH + Mκ, where HaMH,
KdMκ and cl[MH — Mκ] Π Mκ is connected, (b) If U and V are
open subsets of M such that He: Ucz Ua VczM— K and both dU and
dV are connected, then there is an open set W of M such that Ucz Wa
Wcz V and dW is connected.

Proof. The proof in [11, Theorem 9, page 14] is valid. Note
that we have added the hypothesis that dU is connected in part (b).

THEOREM 2.7. Let M be a continuum irreducible between a pair
of points x and y. A necessary and sufficient condition that M be of
type A is that every subcontinuum of M with nonvoid interior be
decomposable.

Proof of sufficiency. Using the construction in [11, Theorem 10,
page 15] we define a monotone function /: M-* [0, 1]. According to
[4, Lemma 3, page 114] / is continuous. Thus {/^(tj te [0,1]} is an
admissible decomposition for M. According to Theorem 2.2 there ex-
ists a minimal admissible decomposition for M, say £&. If some ele-
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ment D e 3ί has nonvoid interior then cl(D°) is of type A. Let £&'
denote an admissible decomposition for cl(D°). By combining £gr and
£&' in the natural way, one obtains an admissible decomposition which
refines £& properly. Thus no element of £& has nonvoid interior, and
M is of type A!.

Proof of necessity. See [11, Theorem 10, page 16].
By making the obvious necessary modifications, one can also gener-

alize Theorems 17 through 22 of Chapter 1 of [11]. As in [11] we
define K(z) = {y e M; M is nonaposyndetic at z with respect to y] and
L(z) = {yeM; M is nonaposyndetic at y with respect to z}. Observe
that L(z) — T(z) where T denotes the set function in [2]. The state-
ments and proofs of Theorems 18 and 19 can be shortened by observ-
ing that K(z) = L(z) for any point z of an irreducible continuum [2,
Theorem 2, page 116]. Since Theorem 19 provides a concise topological
characterization for continua of type A'', we include its statement as
Theorem 2.8.

THEOREM 2.8. Let M denote a continuum irreducible from x to
y. Then M is of type A' if and only if K(z)° = 0 for each z in M.

3* Hereditarily unicoherent, hereditarily decomposable con*
tinua* In [8] Miller proves that every irreducible, hereditarily decom-
posable metric continuum is of type A (this is a corollary of our Theorem
2.7). By applying this result she obtains a number of conditions which
imply that a hereditarily decomposable metric continuum is heredit-
arily unicoherent, and she also shows that hereditarily unicoherent,
hereditarily decomposable metric continua have certain properties an-
alogous to properties of acyclic continuous curves (i.e., dendrites). In
this section we will apply Theorem 2.7 to show that most (but not
all) of Miller's results can be generalized to (nonmetric) continua.

It is easy to see that a continuum M is hereditarily unicoherent
if and only if for each pair of distinct points x and y of M there ex-
ists exactly one subcontinuum of M which is irreducible from x to y.

By a generalized simple closed curve we mean a continuum which
is separated by the omission of any two of its points. A point p is
said to cut the continuum M in case there exist points x and y in M
such that each subcontinuum of M containing x and y also contains
p. Such a point, p, is said to cut x from y in M, or to cut between
x and y in M.

The theorems that follow extend and generalize (to nonmetric
continua) Theorems 2.4 through 2.9 of [8].

THEOREM 3.1. Let M be a continuum of type A, and &eA. If
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each element of £& is unicoherent then M is unicoherent.

Proof. Let /: M—> M/£gr — [α, b] denote the natural map. Sup-
pose that H and K are proper subcontinua of M such that M — H +
K. If f{H) = [a, c] and f(K) = [c, b] then Hf] K(zf~\c). Now

[HΠ f~\c)\ + [KΓ\ f~\c)\ = f~\c) .

Since HΠ f-ι{c) and K Π /"'(V) are continua (Theorem 2.3), and f~ι(c)
is unicoherent, H Γ\ K = [HΠ f"\c)] Γ\[Kf) f"ι{c)\ is connected. The
other cases are handled in a similar manner, although they do not
depend on the unicoherence of the elements of &.

THEOREM 3.2. Let M be a continuum of type A, and 2$ G J . If
f: M-^Mj^ = [a9 b] is an open map, then M is unicoherent.

Proof. Let H and K be proper subcontinua of M such that M —
H + K. If f(H) - [α, c] and f(K) - [c, 5] then

since / is open. Thus H f) K = f~\c) which is connected. The other
cases are handled as in Theorem 3.1.

THEOREM 3.3. If M is a hereditarily decomposable continuum
which is not unicoherent, then M contains a continuum N which is a
generalized simple closed curve with respect to the elements of a
monotone upper semi-continuous decomposition &. Furthermore, if
D1 and D2 are in & then N — {Dι + D2) — U + V where U and V
are disjoint connected open sets such that (1) N — U + V, (2) U and V
are irreducible from D1 to D2, and (3) any subcontinuum of D1

J

ΓD2-\-
U which intersects Όx and D2 contains U.

Proof. Apply Theorem 2.7 to the proof of [8> Theorem 2.6, page
187].

THEOREM 3.4. Let M be a hereditarily decomposable continuum.
M is hereditarily unicoherent if and only if M contains no subcon-
tinuum N which is a generalized simple closed curve with respect to
the elements of a monotone upper semi-continuous decomposition.

Proof. If M is not hereditarily unicoherent, apply Theorem 3.3.
Conversely, suppose that f: N—>C, where JV is a subcontinuum of M,
f is monotone and onto, and C is a generalized simple closed curve.
Write C = A + B where A and B are generalized arcs. Then
f~ι{A) Π f~\B) is not connected.
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THEOREM 3.5. Let M be a hereditarily decomposable continuum.
Suppose that there exists a cardinal number k <^ c such that given k
points of M there exists one of them which cuts between some pair of
them. Then M is hereditarily unicoherent.

Proof. Suppose M is not hereditarily unicoherent. According to
Theorem 3.4 there exists a subcontinuum N of M, a generalized sim-
ple closed curve C, and a monotone map / from N onto C. Choosing
k distinct points of C it is clear that no one cuts between any pair
of them. The theorem follows.

THEOREM 3.6. If M is a hereditarily decomposable continuum
every subcontinuum of which is irreducible about a closed proper
subset having only countably many components, then M is hereditarily
unicoherent.

Proof. Apply [5, Theorem 6, page 173] to the proof of [8, Theorem
2.9].

Theorem 3.6 does not remain true if "countably many components"
is replaced by "c components". A simple modification of Example 2
[11, page 12] produces a metric continuum which is irreducible about
a closed set with uncountably many components and is not unicoherent.

In order to obtain generalizations of theorems in [8> Section 3,
page 190] we prove a generalization of a theorem due to R. L. Moore
[10].

THEOREM 3.7. Let M denote a hereditarily unicoherent continuum,
and suppose that each indecomposable subcontinuum of M is irreduci-
ble. If H is an irreducible subcontinuum of M then H is contained
in a maximal irreducible siobcontinuum.

Proof. Throughout this proof (x, y} denotes the unique irreduci-
ble continuum from x to y.

Suppose that H is irreducible from a to b. Let {Ha} be a maximal
monotonic collection of continua such that HaHa for each a, and
Ha ~ <α, hay for some ha in M. Let K = cl((JaHa). We will prove
that the continuum K is irreducible from a to some point k. Assume
not. Observe that if A is a proper subcontinuum of K which contains
α, then K — A is connected. There are two cases to consider.

Case 1. Suppose that cl(K — A) is indecomposable for some sub-
continuum A of K which contains a. Let T ~ cl(K — A). Then TΓ)
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A is a proper subcontinuum of T; hence T Π A is contained in a com-
posant C of T. Since T is irreducible, it contains at least two com-
posants. Choose ke T — C. Then <α, ky = K. To see this, suppose
that ζa, ky Φ K. Then <(α, ky Π Γ is a continuum which intersects two
composants of T; thus Γ c < α , &>. Choose i e i - <(α, &)>, /^ e if — A.
Then i ϊ α <£ Hβ and Hβς£ Ha, which is a contradiction.

2. cZ(if — A) is decomposable for each subcontinuum A of
if containing a. If

ci(if - A) = E + F

is any decomposition of cl(K — A), then A n i ^ ^ 0 or i ίl ί? = 0 .
Using this fact it is easy to verify that there exists an Hβ such that
A c H°β. In particular, given an Ha, there exists an Hβ such that
Ha c iίp°. Choosing k in fl« ^<X - Ha) it follows that <α, /b> = iΓ.

In either case, K is "maximally irreducible" from a to some point
k. If <sc, 2/> contains K = ζa, fc)> properly, then ζx, yy — <(xy ky or
<(xf yy — ζyy ky. For suppose not and let x ί K. Then fc g <̂ α, x}\ hence
y £ <α, %}. Since <x, fc> is properly contained in <αs, 2/>, 2/ g <«, /b>. But
K c <α, a;> + <#, &>; thus 7/ g if. Now <α;, y> c (a, xy + <(α, y> which
misses k. This is a contradiction.

Let L be a continuum containing K which is "maximally irreduci-
ble" from k to some point. Then L, is a maximal irreducible subcon-
tinuum containing H. For if L(zζz,yy then Kaζx.yy. According
to the argument above we can assume that <(x, yy = <x, fc>. It follows
immediately that <(x, yy = L.

COROLLARY 3.1. Le£ ikf denote a hereditarily unicoherent, heredi-
tarily decomposable continuum. If H is an irreducible subcontinuum
of M, then H is contained in a maximal irreducible subcontinuum.

COROLLARY 3.2 (Moore). Let M denote a hereditarily unicoherent
metric continuum. If H is an irreducible subcontinuum of M, then
H is contained in a maximal irreducible subcontinuum.

Proof. Every indecomposable metric continuum is irreducible.
As in [8], we define a point p to be a terminal point of the

continuum M in case every irreducible subcontinuum of M which
contains p is irreducible from p to some point. By making use of
Theorem 2.7 and Corollary 3.1 we obtain the following generalizations
of theorems in [8, §3, page 190].

THEOREM 3.8. Every point of a hereditarily unicoherent continuum
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M is either a terminal point or a cut point of M.

THEOREM 3.9. A continuum which is hereditarily unicoherent
and hereditarily decomposable has at least two terminal points.

THEOREM 3.10. A continuum which is hereditarily unicoherent
and hereditarily decomposable is irreducible about the set of all its
terminal points.

THEOREM 3.11. If the continuum M is hereditarily decomposable
and K is a subset of M consisting of some of the terminal points of
My then M — K is connected.

In § 4 we will see that Theorem 3.7 of [8] does not generalize to
nonmetric continua.

4* Some properties of trees* A continuum M is said to be a
tree [12] if and only if given two distinct points p and q of M, there
exists a third point which separates p from q. The point p of a tree
M is said to be an end point of M if and only if p is a nonseparat-
ing point of every generalized arc containing p. It is known [12]
that a continuum M is a tree if and only if M is locally connected
and hereditarily unicoherent. If M is a metric continuum then M is
a tree if and only if M is a dendrite [13, (1.1), page 88]. In Theorem
4.1 we show that a number of familiar properties of dendrites are
also shared by trees.

THEOREM 4.1. Let M denote a tree. Then (1) M is connected by
generalized arcs, (2) each point of M is a separating point or an end
point, (3) each generalized arc in M is contained in a maximal gener-
alized arcy (4) M has at least two end points, (5) M is irreducible
about the set of all its end points, (6) if K is a subset of the end
points of My then M — K is connected.

Proof. Let A be a subcontinuum of M irreducible from p to q.
Since M is hereditarily unicoherent, each point of A — (p + q) cuts p
from q in M; thus, since M is locally connected, each point of A —
(p + Q) actually separates p from q in M. Consequently, A is a
generalized arc. Since M is hereditarily decomposable, properties (2)
through (6) follow from Theorems 3.7 through 3.11.

For a metric continuum M the following properties are equivalent
[13, (1.1), page 88]: (a) M is a tree, (b) M is locally connected and
contains no (generalized) simple closed curve, (c) every subcontinuum
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of M contains uncountably many separating points of M.
For (nonmetric) continua we have seen that condition (a) implies

conditions (b) and (c). However, neither of these implications can be
reversed. Mardesic has shown [6] that there exists a locally connected
continuum which contains no proper locally connected subcontinuum.
This example clearly satisfies condition (b), but is not a tree. The
following example satisfies condition (c) but not (a); and also shows
that [8, Theorem 3.7, page 193] does not generalize to (nonmetric)
continua.

EXAMPLE. Let C denote a circle, and let M = C x [0, 1]. We
define a basis & for the topology on M as follows: V is in & if
and only if (1) V= p x (r, s), (2) V = p x (r, 1], or (3)

V=(Ux [0,1])- \J{Pi x [<fc,l]},

where U is open in the usual topology for C, Pi is in £7, and 0 <
?i < 1. If ^ denotes the topology generated by & then (M, ά7~)
is seen to be a (compact Hausdorff) continuum with the desired pro-
perties.

Finally, we give a characterization of trees in terms of inverse
limits. For a discussion of inverse limits systems, see [1].

THEOREM 4.2. The continuum M is a tree if and only if M is
homeomorphic to the inverse limit of a monotone inverse system (Da,
πaβi Λ) where each Όa is a (metric) dendrite.

Proof. According to [12] we must show that M is locally con-
nected and hereditarily unicoherent. M is locally connected by [1,
Theorem 4.3, page 241]. A simple application of [1, page 235, 2.9]
shows that M is hereditarily unicoherent. On the other hand, since
M is locally connected, M can be written as the inverse limit of a
monotone inverse system (Da, πaβ, Λ) where each Da is a locally con-
nected metric continuum [7] According to [1], πa: ikf—> Da is mono-
tone. It follows easily that Da is a tree, hence a dendrite.

5* Continua hereditarily of type A'. As in Chapter 2 of [11],
we define a continuum M to be hereditarily of type A' if and only if
every nondegenerate subcontinuum of M is of type A'. If M is a
hereditarily decomposable metric continuum then M is hereditarily of
type A! if and only if M is snake-like [11, Theorem 13, page 50]. In
this section we obtain several topological characterizations of (non-
metric) continua which are hereditarily of type A!.
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THEOREM 5.1. If the continuum M is hereditarily of type Ar,
then M is hereditarily unicoherent and atriodic.

Proof. The proof of [11, Theorem 6, page 41] is valid for (non-
metric) continua.

LEMMA 5.1. If the continuum M is hereditarily unicoherent and
atriodic, then given three points of M, one cuts between the other two.

THEOREM 5.2. The continuum M is hereditarily of type Af if and
only if M is hereditarily unicoherent, hereditarily decomposable, and
atriodic.

Proof. Suppose that M is hereditarily unicoherent, hereditarily
decomposable, and atriodic. According to Theorem 2.7 it suffices to
show that every subcontinuum N of M is irreducible. Let A be a
maximal irreducible subcontinuum of N (Theorem 3.7) which is ir-
reducible from p to q. If there exists a point r in N — A then, since
A is maximal irreducible, it follows that none of p, q, and r cuts
between the other two. This contradicts Lemma 5.1; hence N — A.
The converse follows from Theorem 5.1.

THEOREM 5.3. Let Mdenote a hereditarily decomposable continuum.
Then M is hereditarily of type A! if and only if given any three
points of M one cuts between the other two.

Proof. If M is hereditarity of type Af apply Theorem 5.1 and
Lemma 5.1. If given any three points one cuts between the other
two then M is hereditarily unicoherent (Theorem 3.5). Clearly M
contains no triods. Thus, by Theorem 5.2, M is hereditarily of type
A'.
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