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SOME NUMBER THEORETIC RESULTS

{In memory of our good friend Leo Moser)

P. ERDOS AND E. G. STRAUS

The paper first establishes the order of magnitude of
maximal sets, S, of residues (mod p) so that the sums of
different numbers of elements are distinct.

In the second part irrationalities of Lambert Series of
the form ]£/(w)Mi •••<&» are obtained where f(n) — d(ri), σ(n)
or φ(ri) and the α* are integers, aι ^ 2, which satisfy suitable
growth conditions.

This note consists of two rather separate topics. In §1 we
generalize a topic from combinatorial number theory to get an order
of magnitude for the number of elements in a maximal set of residues
(mod p) such that sums of different numbers of elements from this
set are distinct. We show that the correct order is cp1'3 although we
are unable to establish the correct value for the constant c.

Section 2 consists of irrationality results on series of the form
Σf(n)jaιa2 a% where f(n) is one of the number theoretic functions
d(n), σ(n) or φ(n) and an are integers Ξ> 2. For f(n) — d(n) it suffices
that the an are monotonic while for σ(n) and φ(n) we needed additional
conditions on their rates of growth.

1* Maximal sets in a cyclic group of prime order for which
subsets of different orders have different sums* In an earlier paper
[4] one of us has given a partial answer to the question:

What is the maximal number n = f(x) of integers alf , an so
that 0 < ax < α2 < < an ^ x and so that

«»!+•••+ &is = α^ + + ajt for some l^it < < is ^ n

l ^ i i < ••• <jt ^n

implies s = tΊ it is conjectured that the maximal set is obtained
(loosely speaking) by taking the top 2τ/ x integers of the interval (1, x).
We were indeed able to prove that f(x) < cVx for suitable c (for
example 4/i/ 3) by using the fact that a set of n positive integers
has a minimal set of distinct sums of ί-tuples (1 <: t ^ n) if it is in
arithmetic progression.

It is natural to pose the analogous question for elements of cyclic
groups of prime order, as was done at the Number Theory Symposium
in Stony Brook [ 5 ]. Here again we may conjecture that a maximal
set of residues (mod p) is attained by taking a set of consecutive
residues, this time not at the upper end but near p21\
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Conjecture UU Let f{p) be the maximal cardinality of a set
of residues mod p so that sums of different numbers of residues in
this set are different, then f(p) = (Ap)113 + o(pU3) where the maximum
is attained, for example, by taking consecutive residues in an interval
of length (4p)1/3 + o(pφ) containing the residue [(p/2)113].

It is easy to see that we can indeed get a set of about (4p)1/a

residues by taking the residues in the interval ([(p/2)m — (4p)1/3],
[(p/2)2/3]). Here sums of distinct numbers of elements are distinct
integers, and since all sums are < p it follows that they are distinct
residues.

The observation which let to the upper bound in [ 4 ] is much les&
obvious (mod p):

Conjecture 1*2, A set A = {αL, α2, •••, ak) of residues (mod p)
has a minimal number of distinct sums of subsets of t elements if A
is in arithmetic progression.

Conjecture 1.2 would give us a simple upper bound for f(p):

COROLLARY 1.3. If Conjecture 1.2 holds then

f(p) < (6p)1/3 + o(p^) .

Proof. The sums of t elements from the set of residues

{1,2, ...,k-l,k}

fill the interval (Cί1), tk - (ί)) that is to say there are tk - f + 0(0
such sums. Since for different t we get different sums we must have

V ^ Σ(«fc - t2 + 0(t)) = ̂  + 0{¥)
t=rl 6

and hence k < (6p)1/3 + o(pφ) .

Using methods employed by Erdδs and Heilbronn [2] we can show
that f(p) = 0{pu%). We use the following lemma from [2].

LEMMA 1.4. Let 1 < m ^ I < p/2 and let B = {bl9 , 6J, A =

{di, * ,αm} δe se£s of residues (mod p). Then there exists an α ^ A
such that the number of solutions of a{ = b3 — δfc; bJf bke B is less
than I — ra/6.

We now can get a lower bound for the number of distinct sums,
of t elements from a set of residues.

LEMMA 1.5. Let A = {aL, • * , α j be a set of residues (mod p)
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and let At = {ah + + aίt 11 ̂  ix < < it^k} then for 1 ^ t ^ fc/4

(1.6)

where

Proof. We divide the set A into two disjoint sets

A = {a19 α2, , α,}, B = {6X, 62, , &w}

and prove the inequality (1.6) for the subset of At consisting of the
sums

At* = K + δ*-βl + ί>4-ε2 + + 62ί~2-εί_11 Si = 0 or 1} ,

where the hi are a suitable ordering of the elements of B.
The inequality holds for t — 1 since

A,* = {αj = A and \A\ = I .

Now assume that (1.6) holds for A* with t ^ (m/2) — 1. Then the
set Aί* + 62i c A* ί+1 and according to Lemma 1.3 there exists^[a
bj e {62ί+i, &2ί+i, , δm}, say δy = δ2ί+i so that the equation

b2t+i - ht = α? - α;, αf, α; e Af

has no more than | A? | — \(m — 2t) solutions. Hence the set

((δ«+i - δ«) + (Af + δ«)) Π (A* + &„)

contains no more than Af — J (m — 2ί) elements and

|Af+1| = | ( A f + & ί + 1 )u(Af+ 6,)|

^ I A* I + i ( m - 2 ί )

6 6 6 3

= I + t m _ (* + *)*
6 6

This completes the proof.

THEOREM 1.7. The maximal number f(p) of a set A of residues
(mod p) so that sums of different numbers of distinct elements of A
are distinct satisfies

(1.8) (4p)1/s + o(plβ) < f(p) < (288p)1/3 + o(plβ) .
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Proof. According to Lemma 1.5 there are at least

ft/2 + k(t - 1)/12 - ί2/6 + 0(ί)

distinct sums of t elements (and hence, by symmetry, sums of k — t
elements) for t < [&/4] out of a set A with k elements. Thus if A
has the desired property we must have

fc/4

j ) ^ 2 Σ (fe/2 + k(t - 1)/12 - f/6) + O(fca)

= 2k3(— — -L-) + 0(k2) = /b3/288 + 0(&2) .

V384 ;3 384/ v v '

Thus

/(p) < (288 p)1" + o(p"3) .
The lower bound for /(p) was established above.

2. On some irrational series. One of us [1] proved that the
series Σ»=id(n)t~n is irrational for every integer ί, | ί | > 1. In this
section we generalize this result to series of the form

(2.1) ς = Σ d{n)

n=ι aLa2 an

where the an are positive integers with 2 ^ aγ ^ α2 rg . It is clear
that we need some restriction, such as monotonicity, on the an since
the choice a% — d(n) + 1 would lead to ξ = 1.

We divide the proof into two cases depending on the rate of
increase of an. The first case is very similar to [1].

LEMMA 2.2. The series (2.1) is irrational if there exists a δ > 0
so that the inequality an < (log n)1^ holds for infinitely many values
of n.

Proof Let n be a large integer so that an < (log nf~\ Then
by the monotonicity of α̂  there exists an interval I of length njlog n
in (1, n) so that for all integers iel we have α< = t where ί is a
fixed integer, t ^ (log n)1"8.

Now put k = [(log w)δ/1°] and let px, p2, « be the consecutive
primes greater than (logw)2. Let

A = ( Π ft)*
l ^ i ^ Λ ( A + l)/2

then
A < (2(loo:n)Ύk{k+ι)l2 < e ^ ^ ) 1 - ^ 0 ^ ) 5 ' 4
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By the Chinese remainder theorem the congruences

x

u+k-iY"1 (mod (pupu+1-

where u = 1 + k(k — l)/2, have solutions determined (mod ^4). The
interval / contains at least [n/(A log n)] solutions of (2.4).

Now assume that £ = a/b and choose xeI to be a solution of
(2.4) so that (x, x + k)al. Then

b ar - α ^ ί - integer + b g d ( * + °

( 2 * 5 ) _̂ A ^ d(x + k + s)
~τ- o 2-ι -77

s=o t ax+k ax+k+a

But (2.4) implies that d(x + I) = 0 (mod tι+1) for Z = 0, 1, , k - 1.
Thus (2.5) implies that

(2.6) b αt α ^ f = integer + -A- Σ d(X + k + s) .
t s=o αx+k * αx+k+s

We now wish to show that for suitable choice of x the sum on
the right side of (2.6) is less than 1 and hence bξ cannot be an integer.
We first consider the sum

b v d(x + k + s)
tc B>ίίiogn a x + k ' ' ' ax+k+s

(2.7) < -A. Σ x + k + s <h(χ + K) Σ _1
t $>i01ogn tS *>i° lo& n tS

< < — for large n .

Next we wish to show that it is possible to choose x so that

(2.8) d(x + k + s) < 2kli for 0 ^ s < 10 log n .

We first observe that

(2.9) (x + k + s, A) = 1 for all 0 ^ s< 10 log n

since otherwise

(2.10) x + k + s = 0 (mod p, ) for some 1 £ j ^ k(k + l)/2

and

(2.11) a? + i = 0 (mod p^ ) for some 0 ^ i < Λ .
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But

0<k + s - i < l l logn < (log rif < p3

so that (2.10) and (2.11) are incompatible.
Let x = x0, x0 + A, * fx0 + zA be the solutions of (2.4) for which

(x, x + k) a I. From (2.9) we get

Σ d(xQ + H s + i/4)<2Σ(4Γ
2/=0 1 = 1 \Al

(2.12)

Λ n logn
< C A

Thus the number of #'s for which d(^0 + k + s + "2/A) > 2fc/4 is less
than en logn/(A.2kβ), and the number of y's so that for some
0 <J s < 10 log w we have d(x0 + k + s + yA) > 2fe/4 is less than

10c n log2 n/(A.2kli) < 1/2 w/(A log n) < z .

It is therefore possible to choose x = x0 + yA e I so that (2.8) holds-
For such a choice we get

610jgf» d(x + k + s) ^ b 9 m ^ 1
ί* =o ax+k 0,+*+, tk *=o tε

(2.13)

< 6.2-"'* < — .

Combining (2.7) and (2.13) we see that ξ is irrational.

LEMMA 2.14. If there exists a positive constant c so that \an\ >
φognf1* for all n then the series (2.1) is irrational.

Note that in this lemma we need not assume the monotonicity
of aH (or even that they are positive, however for simplicity we give
the proof for positive an only).

Proof. We use two results. The Dirichlet divisor theorem

(2.15) jtd(n)~ NlogN
n—i

and the average order of d(n)9 [3]

(2.16) d(n) < (log ^ ) l o g 2 + ε for almost all n .

From (2.15) we get the following.

LEMMA 2.17. Given constants 6, c > 0, then for almost all in-

tegers x
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(2.18) d(x + V)< b-ι{2c)~y{\og xf^; y = 3, 4,

Proof. If we choose x large enough so that log x > (2δce)4/3

then the right side of (2.18) is greater than ey which exceeds x + y9

and hence d(x + y), whenever y > 2 log x. Thus, if (2.18) fails to
hold for sufficiently large x then it must fail to hold for some y with
3 ^ y ^ 2 log x.

Now if there are cλN integers x below N so that (2.18) fails to hold
then we have more than c2N integers x with i/ΪV ^ x ^ N — 2 log AT
and

d(a? + y) > 6-1(2c)-y(log £)3 W 4 ^ 6-1(2c)-y(i log iV)3W4

( 2 Λ 9 ) ^ δ-1(4c)~3(log ΛΓ)9/4 - c3(log ΛΓ)9/4 .

Thus

Σ d(n) ^ c2N / c3 (log Nf*
«=i 2 log iV

- c4 iV(log iV)5/4

which contradicts (2.15) for large N.
Combining Lemma 2.17 with (2.16) we find that there exists an

infinite set S of integers x so that

(2.21) d(x + 1)< - ^ (log xf'\ d(x + 2 ) < - ^ - (log α;)3/4

and (2.18) both hold.
Now assume that ζ = a/b is a rational value of (2.1) and choose

neS. Then

(2.22) ax an bξ = integer + δ Σ d ( ? ? / + ^ }

y=ι an+1 an+y

where

< | χ ^

w + 1 αn+tf »=i (c(log π)3/4)y

in contradiction to the fact that the left side of (2.22) is an integer.
Summing up we have

THEOREM 2.23. The series (2.1) is irrational whenever

2 <£ αx ^ a2 <Ξ ^ αn ^ .

With considerable additional effort one can weaken the monotonicity
condition on the an to ajan >̂ c > 0 for all m>n.

We have not been able to prove the following
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Conjecture 2*24* The series (2.1) is irrational whenever αΛ

If we consider series of the form

(2.25) Σ Ψ{n) or Σ σ { n )

a a i α α

then we cannot make conjectures analogous to 2.24 since the choice
an = φ(n) + 1 or σ(n) + 1 would make these series converge to 1. It
is reasonable to conjecture that the series (2.25) must be irrational if
the an increase monotonically, however we can prove this only under
more restrictive conditions.

THEOREM 2.26. If {an} is a monotonic sequence of integers with
a% ^ nllll2for all large n then the series in (2.25) are irrational.

For the proof we need the following simple lemmas.

LEMMA 2.27. Let {an} be a sequence of positive integers with

an^2 and {bn} a sequence of positive integers so that bn+1 = o(anan+1).

If
(2.28) ξ = ±

*=i a1 an

is rational then an = 0(bn).

Proof Assume ξ = a/b and choose N so that for all n> N we
have bbn < a^aji. If there existed an n> N so that an> 2bbn then
we would have

baι an«! ί = aax an^ = integer + ^ wc;%+/b

=̂0 aw an

but

n ^ v bbn+k _ bb% , ^ &^+fe 1

a contradiction. Thus an ^ 2bbn for all large n.

LEMMA 2.29. If the series (2.28) is rational, say ξ — α/δ, and
bn+1 — o(anan+1), then there exists a sequence of positive integers {cn} so
that for all large n we have

(2.30) bbn = cnan - cn+ι , 0 < cn+ι < anf and cn+1 = o(an) .

Conversely, if these conditions hold then the series (2.28) is rational.



SOME NUMBER THEORETIC RESULTS 643

Proof. Choose N so that for all n > Aτ we have bbn < αΛαw+1/4.
Now for n ^ ΛΓ choose cH, cn + 1 so that

bbn = cnan — cn+1 , cw > 0

0 < cn+1 < an

and ct,-i, cr

ft+2

ODn + l — Cn + ιttn + ! @n+2 J ^n + 1 ^ v

0 < c'w+2 < an+1

Then

- integer + ™± + Jϋ^±^ + Σ —™s±*-

= integer - ^2±L + -£S±L - c " +

(2.31) + — Σ ^ ^
a w fc=2 a n + 1 an

n+1 an+k

= integer - ^S±L + ^S±L ίki_ + J_

Thus

cn+1 + c'Λ+1 ^ - + 0) = integer

and since 0 < cn+1 <an1 0 < c'n+1 ^ [αΛ/4] + 1 0 < c'n+2/an+1 < 1,

0 < 0 < 4, th is is possible only if cn+1 = c'n+ι.

Now choose N so large t h a t bbn+1 < εα% α n + 1 for all n > N, t h e n
from (2.31) we have

integer = —-£»±L + ^ vά± < _ ^ ± L + ε Σ

Thus cn+1 < 2εα% for all n> N.

If condition (2.30) holds for all n ^ ΛΓthen

c

a,

* u

••• α»
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is clearly rational.
Finally we need a fact from sieve theory. We are grateful to

E. Miech for supplying the correct constants.

LEMMA 2.32. Given an integer a and e > 0 then for large y the
number of integers m satisfying

m Ξ£ 0, m ^ a (mod p)

for all primes p, with 2 < p < y115 exceeds yγ~\

Proof of Theorem 2.26. Let f(n) stand for either σ(n) or φ(n)
and assume that

Σ
f(n) _ «
^ an o

Since an > n11112 for large n the hypothesis of Lemma 2.29 is satisfied
and we get

(2.33) bf(n) = cnan — cn+1 for large n .

Since f(n) = o(nι+ε) for all ε > 0 we get

(2.34) cn < nιiι2+ε for large n .

From Lemma 2.28 we get

(2.35) an - O(f(n)) = 0(nί+ε)

and hence the number of integers n ^ x for which

is O(#3/4)), since otherwise we would have

ax = Π - ^ ^ > (1 + a^2)*3 '4 > α;2

for large a?, in contradiction to (2.35). From now on we restrict our
attention to integers n for which

(2.36) 2Z±L < 1 + n~112 .

For such integers we get from (2.33) and (2.35) that
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f(n
f(n)

__ cn+1 an+1 Λ cn+2 \ / Λ cn+1 \

(2.37)

Now consider a prime q, \ xmι ^ q ^ xm, then according to Lemma
2.32 there exist more than y1"5 integers m ^ y — α;10/11 so that

(2.38) m 0, m -φ — 2q (mod p)

for all primes p with 2 < p < yllδ. We may even assume that m is
odd. The number of integers n = 2#m where m satisfies (2.38) exceeds
βio/π-e > 3̂/4 a n ( j h e n c e w e c a n p j ^ s u c ] 1 a n n jfagft satisfies (2.37)

with x/2 ^ n ^ a?
Now

/(rc)=/(2?)/(m)

where

itf=<P

in either case

(2.39) /(2g) = A/g, A an integer not divisible by q.

Since m has at most 5 prime factors all exceeding y115 we have

( ) ( )
m

<2.40) /(m) = m(l + O(y-115)) = m (1 + O(ίc~2/11)) .

By the same reasoning we get

(2.41) f(n + 1) = n(l + O(αr2/11)) .

Substituting (2.39), (2.40) and (2.41) in (2.37) we get

.(2.42) —
qf(n) q cn

But since g > x1/12 and cw < x1'12 we get

O(χ-ίl2+ε) .

(2.43) A.

q
< X -2/11+e
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Since qcn < χιιn+1'12 < χ2'n-ε this leads to a contradiction.
We could get similar irrationality results if the functions σ(n) or

φ(n) are replaced by σk{n)(k ^ 1) or products of powers of σk(n) and
φ(ri). In each case we would need the assumption that the an are
monotonic, increasing faster than a certain fractional power of the
numerators.

From Lemma 2.29 it is clear that there is a set of power 2Ko of
series (2.25) which are rational even if we restrict the integers cn to
the values 1 or 2 since for cn = 1 we can choose an = σ(n) — 1 or
σ(n) — 2 to get cn+ι — l or 2 respectively and for cn = 2 we choose
an = [(σ(n)-l)/2] to get cn+ί = 1 if σ(n) is odd and cn+1 = 2 if σ(n) is
even. For the series with numerators φ(n) we would have to use
cn = 1, 2 or 3 since all φ(n) are even for n > 2.
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