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TOPOLOGIES FOR QUOTIENT FIELDS OF
COMMUTATIVE INTEGRAL DOMAINS

JOBY MILO ANTHONY

In this paper topologies for the quotient field K of a
commutative integral domain A are investigated. The topo-
logies for K are defined so that convergence in K is stronger
than convergence in A whenever A is a topological ring.

In particular, the Mikusinski field of operators is the
quotient field of many commutative integral domains which
are also topological rings. Each of these rings leads to a
topological convergence notion in the Mikusinski field, which
is stronger than the convergence notion introduced originally
by Mikusinski. (The latter has recently been shown to be
nontopological.)

In general, the algebraic and topological structures con-
sidered are not necessarily compatible; however, the question
of compatibility is investigated. Necessary and sufficient
conditions are given for the topology on A to be the restric-
tion to A of the topology defined on K. In a theorem of S.
Warner, necessary and sufficient conditions have been given
for the neighborhood filter of zero in A to be a fundamental
system of neighborhoods of zero for a topology on K. More-
over K, with this topology, is a topological field with A topo-
logically embedded in K as an open set. For rings satisfying
the conditions of this theorem, the topology for K which is
defined in this paper is shown to reduce to that specified by
Warner.

Let CR denote the set of all infinitely differentiate, complex
valued functions of a real variable with the support of each function
contained in some right half-line. Endowed with the operations of
addition and convolution, CR becomes a commutative ring which has
no divisors of zero. The quotient field of the ring CR will be denoted
by the symbol M. It is isomorphic to the field of Mikusinski opera-
tors [8]. If CR is assigned the topology _^~*, in which a sequence
(an\ne Z+) converges if the supports of the elements an are uniformly
bounded on the left and the derivative sequences (a^ | n e Z+) converge
uniformly on compact sets for all keZ+U{0}, then {CR, ̂ f~*) is a
topological ring.

Mikusinski has introduced a convergence concept for M which is
equivalent to the following definition. If (an\neZ+) is a sequence in
M, then (an\ne Z+) converges if there exists a nonzero pe CR such
that (pan I n e Z+) is a sequence in CR which converges in the space

[6, pg. 144]. T. K. Boehme has shown that this convergence
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is nontopological in the sense that there is no topology for M in which
sequential convergence is given by Mikusiήski's definition [2]. E. F.
Wagner has defined an analogous convergence concept for nets and
filters and has shown that this leads to a limit space structure on M
which is also nontopological [9].

It seems natural to ask how Mikusiήski convergence can be modified
so that it becomes topological. R. A. Struble has introduced such a
modification [7], which has the property that the restriction of the
resulting topology to the right-sided Schwartz distributions, which are
embedded algebraically in M, is the topology which is ordinarily as-
sociated with them. The topology introduced by Struble is also defined
by a convergence concept for sequences and appears to be unwieldy.

S. Warner has given necessary and sufficient conditions for a
topological ring which has no zero divisors to be openly embeddable
in a topological division ring [10, Theorem 5]. It is easy to see that
the ring (C£, ̂ ~*) does not satisfy these conditions. Consequently,
there is no topology on M which makes M a topological field with C#
topologically embedded as an open set. Using some recent results of
Boehme, we will prove an even stronger result concerning M; namely,
there is no topology on M such that CR is topologically embedded in
M and multiplication in M is continuous. Essentially this means that
M cannot be topologized in a "nice" way and efforts to "extend" the
topology of CR to M must be channelled in other directions.

In this paper we present a method for topologizing the quotient
field of any commutative ring which has no zero divisors, using any
topology which may be assigned to the ring. If the ring satisfies the
conditions given by Warner in [10], then the topology which we will
define has the property that the quotient field with this topology is
a topological field with the ring topologically embedded as an open
set. In general, however, the field topology will reflect only part of
the algebraic and the topological structure of the ring and will not
necessarily be compatible with the field structure. Although the
ensuing development is applicable to very general algebraic and topo-
logical settings, it is strongly motivated by the unsatisfactory situa-
tion afforded by the Mikusiήski operators. The field M will frequently
be used as an example.

Throughout this paper, the symbol A will denote a commutative
ring which has no zero divisors and K will denote the quotient field
of A. We will use the symbol A* to represent the set of nonzero
elements of A. A topology on a set will be a collection of open sets
and a neighborhood will be a set containing an open set. We will
always assume that there is a topology associated with the set of
elements of A and this topology will be denoted by ^ 7 The topology

is not necessarily compatible with the algebraic structure of A.
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Whenever we consider a ring of functions in which ring multiplication
is the convolution of functions, multiplication will be represented by
the symbol, *. For terminology concerning nets and filters, the reader
should refer to [5] and [3].

The following development will be divided into two sections. In
the first section we will deal with the definition and characterizations
of a topology for the set of elements of the quotient field K. The
second section will examine some specific properties of this topology
relative to the algebraic and topological structures of A.

1* The definition and characterizations of the topology • Be-
fore defining a topology for the quotient field of an arbitrary commu-
tative integral domain, let us examine the specific problem of extending
the topology ^ * of C% to M.

LEMMA 1. Let J7~f be any topology on M with the following
properties.

( i ) ^~'\C£ > <-̂ ~* (The restriction of J^~' to C% is finer than

(ii) For each nonzero peC^, the mapping ξp: x^->px of M into
M is continuous.
Then sequential convergence in (M, J7~') is stronger than Mikusίnski
convergence.

Proof. Let (an\neZ+) be a sequence in M and let aeM such

that (α%in e Z+) -^-> a. (The net (an\ne Z+) converges to a in the
topology ^~f.) A theorem of T. K. Boehme implies that any countable
collection of elements in CR has a common multiple in C% [1]. This
implies that there exists a nonzero element p in C£ such that pae
CR and, for every n e Z+, pan e C£. Since multiplication by an element

of C% is continuous in (M, ̂ rt), (pan\ne Z+) -^-*pa. But ^~'\C£ >

^~* and therefore (pan\n eZ+)-^->pa. This implies that (an\neZ+)
Mikusiήski-converges to a.

LEMMA 2. Let J7~f be any topology on M with the following
properties.

( i ) ^*>^-'\C%
(ii) For each aeM, the mapping ξa:x^ax of M into M is

continuous.
Then Mikusinski convergence of sequences is stronger than sequential
convergence in (M, ^Γ').

Proof. Let (an\n eZ+) be a sequence in M and let aeM such
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that (an\ne Z+) Mikusiήski-converges to a. Then there exists a non-
zero element p in C^ such that (pan\ne Z+) is a sequence in C£, pae

C~ and (pan | n e Z+) -^U pa. Since ^ * > ^ ' \ C£, (pan \ n e Z+) —'-* pa.

But ξ1/p is continuous in (M, t^
Γf) and therefore (an \ n e Z+) —^-» a.

In [2] Boehme has shown that there is no topology on M which
has the collection of Mikusiήski-convergent sequences for its sequential
convergence class. Combining this result with Lemma 1 and Lemma
2, we obtain the following theorem.

THEOREM 1. There is no topology on M in ivhίch multiplication

is continuous and for which (C~, j^~*) is topologically embedded in M.

We will now examine the more general situation of an arbitrary
commutative ring A with no zero divisors, and its associated quotient
field K. For each pe A*, define a mapping φp from A into K by
φp(cή = a/p, ae A. Denote the image of A under the mapping φp by
the symbol Ap. Let j^~p be the finest topology on Ap which renders
the mapping φp continuous. That is, J7~v — {0pczAp\0p = 0/p, O e ^ } .
Since A has no zero divisors, ajp — ocjp, a19 a2 e A, if and only if
aL = a2. Consequently, φp is a bijection. Therefore (Ap, J7~p) is homeo-
morphic to (A, ^). For each aeA, let ^yKy(a) be the j^neighbor-
hood filter of a and if ae Ap, let ^/Kp(a) be the j^-neighborhood filter
of a. We note that K= \JpeA*Ap. If (aμ\μeM) is a net in K, let
Mp = {μ e M | aμ e Ap}. Clearly if the net (aμ \ μ e M) is eventually in Ap,
then (aμ \ μ G Mp) is a subnet which is in Ap.

DEFINITION 1. Let (aμ\μ e M) be a net in K and let ae K. Then
Tζ

(aμ | ] « G M ) is iΓ-convergent to α, written (aμ \ μ e M) > a, if the follow-
ing condition is satisfied. Whenever aeAp, the net (aμ\μeM) is

eventually in the space Ap and (aμ \ μ e Mp) -^-^ a.

The obvious generalization of Mikusiήski convergence is the fol-

lowing. Let (aμIμ e M) be a net in K and let ae K. Then (a,t\μ e M)

Mikusiήski-converges to a if and only if for some p e A:\ a e Ap, (aμ \μeM)

is eventually in Ap and (ar \ μ e Mp) —^ a. Clearly JSΓ-convergence is

stronger than Mikusiήski convergence, We will now show that K-

convergence is topological. This could be done directly by proving

that the collection of if-convergent nets is the convergence class of

a topology on K; however, it is slightly more interesting to give an

analogous definition of ϋΓ-convergence of filters, show that it is topo-

logical and then prove that it is equivalent to Jf-convergence of nets.



TOPOLOGIES FOR QUOTIENT FIELDS 589

DEFINITION 2. If ^ is a filter on K and aeK, then &~ is K-
convergent to α, written ^τκa, if and only if whenever a e Ap, ̂ ~ is
finer than the ^-neighborhood filter of a.

Clearly if ^τκa and 5^ > ^ then &τκa. Moreover, if ^V{a) =
f\jrτKa ^ι then ^V{a)τκa. Now for each α e if, the collection of filters
which iΓ-converge to a is the collection of filters which are finer than
<yf^{a). Obviously *sK{a) is a candidate for the neighborhood filter of
a in some topology. In [3, pg. 19, Proposition 2], sufficient conditions
are given for a collection of filters on a set to uniquely determine a
topology <in which the specified filters are the neighborhood filters.
The fact that these conditions are satisfied by the collection {tyK{a) \ a e
K) constitutes the proof of Theorem 2; however, first we will prove
the following lemma.

LEMMA 3. For each aeK, &{a) = {NP(a)\ae Ap and Np(a) e
for some p e A*} is a subbase for the filter

Proof. Since every element of ^?{a) contains the point α, &(a)
is a subbase for a filter on K. Let ^ ' ( α ) be the collection of all
finite intersections of elements of &(a) and let έ@"(a) be the filter
generated by &'{a). Then &"{a) is the coarsest filter containing
^ ( α ) . Now if J ^ α , then ^ contains ^ ( α ) and so &"(a) < ̂ Γ
Therefore &f\ά) < ^ ( α ) . On the other hand, if aeApJ then clearly
^ " ( α ) > ^fς(α) which implies that &"{a)τκa. Consequently &"(a) >

THEOREM 2. There is a unique topology on K with the property
that a filter converges to a point if and only if it K-converges to that
same point.

Proof. Let a be a given element of K. Since ^V(a) is a filter,
every subset of K which contains a set of ^(a) is an element of
^4^(a) and, moreover, ^4^{a) has the finite intersection property. By
Lemma 3 if N(a) e ^"(a), then aeN(a) since every element of &(a)
contains α. Also as a result of Lemma 3, there exists a finite
intersection, Π; Np.(a)9 of elements of ^ ( α ) , which is contained in
N(a). Hence there exist open sets Op. e ̂ ~Pi such that Op.(a) e ^Ar

v.{a)
and Op.(a) c Np.(a). Therefore ΠiOPi(a) c ΠiNp.(a) c iSΓ(α). Moreover,
Πi Op.(a) e ̂ 4^{a). Let # be an arbitrary element of Π; Op.(a). Since
the sets Op.{a) are open, they are elements of &{y). Consequently,
Π^ Opi(a) e iv{y) and because f]i Op.(a) c N(a), N(a) e ^V{y).

It remains to be shown that iίΓ-convergence of nets and iΓ-con-
vergence of filters are equivalent. For a given net, its associated net
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filter is the collection of all sets which the net is "eventually in". In
[5, pg. 83], it is shown that every filter is the net filter of some net.
Therefore it is sufficient to prove the following theorem.

THEOREM 3. Let (aμ\μeM) be a net in K and let aeK. Then

(aμ \μeM) > a if and only if its associated net filter, J^(aμ \μeM),
K-converges to a.

Proof. Suppose (aμ\μe M) > a. Then if a e Ap, {aμ\ μ e M) is
eventually in every .^-neighborhood of a which implies that

Therefore ^{aμ \ μ e M)τκa. Conversely, suppose ̂ {aμ \ μ e M)τκa. Then
if a e Ap, ̂ {aμ | / «eM)> ^ίr

P{a) which implies that (aμ\μe M) is even-
tually in every ^^-neighborhood of a. Therefore (aμ\μe M) is even-

K

tually in Ap, (aμ\μe Mp) —-^α, and hence (aμ \μeM) > a.

Since iΓ-convergence is topological, the topology determined by K-
convergence will be denoted by ^7~κ. Moreover, since iί-convergence of
nets and K-con verge nee of filters are equivalent, we will use whichever
notion of iΓ-convergence is most appropriate to a particular situation.

The following theorem gives a simple characterization of the topo-
logy J ^ .

THEOREM 4. ^ κ is the coarsest topology on K for which the
collection 6^ — {Op | Op e j^7~p for some p e A*} is a collection of open sets.

Proof. Let Op e 6^ and suppose (aμ\μe M) is a net in K which
p

if-converges to aeθp. Then (aμ \μ e M) p> a which implies that
(aμ\μeM) is eventually in Op. Therefore Ope^~κ. Let J7~' be any
topology on K with the property that £f c ^7~f. If (aμ \μeM) is a
net in K which ^"'-converges to α, then (aμ |/ίeM) is eventually in
every ^^-open-neighborhood of a. This implies that (aμ\μeM) is

eventually in Ap, (aμ\μ e Mp) -^-> a, and hence (aμ\μe M) > a. There-
fore ^7~κ is coarser than

Now we can make the following two observations. First, in view
of Theorem 4, the topology ^~κ could have been defined as that
topology on K which has the collection y as a subbase. From this
point of view, Definition 1 and Definition 2 characterize convergence
in this topology. Second, the algebraic characteristics of the ring A
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and the field K are not essential in defining j?~κ. In general, if
{(&/, ^~s) I / e ^f} is an arbitrary, indexed collection of topological
spaces, then we may define a topology on \J/&, B/ by taking the
collection <9^ = {0/ \ 0/ e ^ > for some / e Sf\ as a subbase. This
topology is the coarsest one in which all the injection maps i/\ B/ —•
\J/es?B/ are open mappings. Convergence in this topology is chara-
cterized by definitions which are analogous to Definition 1 and Defini-
tion 2.

2* Properties of the topology• A few facts concerning the
relationship between (A, J7~) and (K, j^~κ) are immediate consequences
of the characterizations of jfκ which have already been given. For
instance, it follows from Lemma 3 that if (A, ^7~) is a Hausdorff space,
then (K, J7~κ) is a Hausdorff space, since distinct points of K are always
elements of a common A^-space and have disjoint neighborhoods in that
space. There are several observations that can be made as a result
of Theorem 4. Clearly if (A, ^~) is a discrete space, then (K,
is a discrete space. Also, it is obvious that for each pe A*, J7
is finer than ^~p. Another result of Theorem 4 is that if ^~ ( 1 ) and
^~ ( 2 ) are comparable topologies on A with ^ " ( 1 ) finer than J^~{2\ then
the corresponding topologies of Z-convergence, ^~K

{1) and ^Ίt\ have
the same relationship. It is easy to construct examples to show that
if ^~ ( 1 ) is strictly finer than ,^~(2), then ^K

{1) may be strictly finer
than ^ 1 ( 2 ) . Two major questions which remain to be answered are;
"Under what conditions is (A, ^~) topologically embedded in (K, ^K)T\
and "What is the relationship between the topology ^ κ and the al-
gebraic structure of KV It is" the purpose of this section to examine
these two questions.

For each peA*, let ζp be the mapping of A into A defined by
ξp(x) = px, x e A.

LEMMA 4. If for each p e A * the mapping ζp is continuous, then
is finer than J7~κ \ A.

Proof. Since the mappings ξp,peA*, are continuous, if

(aμ\μe M) ~2_> a ,

then for every p e A*, (aμp \μeM) > ap. From the way in which A
is algebraically embedded in K, it follows that the elements of A
are in every A^-space. Specifically, if peA*, then for each μeM,aμ

is identified with aμpjp and a is identified with ap/p. Therefore

(aμp I μ e M) > ap implies that (aμ \ μ e M) — ^ a. But this is true for
Ύζ

every pe A* and so we have (aμ\μe M) > a.
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In view of Lemma 4, we can make the following observation. If
(A, ^~) is a topological r ing (recall t h a t A is always a commutative
ring which has no zero divisors), then ίΓ-convergence is a generaliza-
tion of r ing convergence in the sense t h a t every ^ c o n v e r g e n t net is
Z-convergent. There may, however, be nets in A which do not con-
verge in (A, άΓ) b u t which are Z-convergent. In fact, the following
example shows t h a t this is the case when (A, ̂ ) = (Cg,

EXAMPLE 1. J7~ may be strictly finer t h a n

If (A, j^~) = (C£, ̂ -*) and K = M, we will denote the topology
of JΓ-convergence on M by J ^ * . Then ^~* is finer than ^Ί?\C%
because (C%, ^~*) is a topological ring. Let (an \ n e Z+) be a sequence
in CR with the following properties.

( i ) For each neZ+, the support of an is contained in [0,1/n].
(ii) For each n e Z+, maxf \an{t) \ = 1.

Now if p is a nonzero element of CR, then (an*p\n eZ+)-^->0 which

implies that (an\neZ+)-^0. Therefore (an\neZ+) ^>0, but

(an\neZ+) does not converge in

THEOREM 5. J7~ = ^7~K\A if and only if ^~ has the following

property: If (aμ \ μ e M) is a net in A and a e A, then (aμp \μeM) -^—*

ap for every peA* if and only if (aμ\μeM) -^-»a.

Proof. Suppose ^~ = ^~K | A. Let (aμ \ μ e M) be a net in A with

ae A such that for each peA*, (aμp \μeM) -^—* ap. Now for each
jr

p e A*, aμ~(aμpjp), μeM, and a=(ap/p). Therefore (aμp\μ e M) >ap

implies that (aμ \μeM) -^-> a. Consequently (aμ \μ^M) > a, and since

J7~ = J7~κ \A, {aμ\μe M) - ^ a. On the other hand, if (aμ \μeM) -^-> a

and ^ " = j?~κ I A, then for every peA*9 {{aμpjp) \ μ e M) ^> {apjp)

which implies that

Conversely, suppose ^~ has the specified property. Then for each
peA*, the mapping ξp is continuous. By Lemma 4, ^ > ^K\A.

Let (α ; i I /̂  G M) be a net in A and let α e A such t h a t (α:^ | μ e M) > α:.

Then for every p e A*, (α Λ p | ]«eM) -^^> ap and consequently

( ^ 1/ieM) -^-> α. Therefore ^ | A > J^~ .
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COROLLARY a,. If A has an identity e and if for every pe A*
the mapping ξp is continuous, then

Proof, Clearly the existence of an identity implies that the con-
dition given in Theorem 5 is satisfied.

COROLLARY b. Suppose that (A, ̂ ~) is a topological ring. If
there exists p'eA* such that p'^f^(O) < f̂S-(O), then ^7~

Proof. Since multiplication is continuous in A, we have ΛZ>- (0) <
p'^O(O). Therefore the given condition is equivalent to the require-
ment that p'^>(0) be a base for ^ > ( 0 ) . Because (A, J7~) is a topo-
logical ring, if (aμ\μ e M) -^-> a, then for every peA*, {aμp\(μ e M) -̂ —>
ap. Let (aμ\μeM) be a net in A and let aeA such that for every

pe A*, (aμp\μeM) — > a p . Since p ' ^ X O X ^ X O ) , if ΛΓ̂ (O) e ~ ^ ( 0 ) ,
it follows that p'iW(O) e ~^>(0). Therefore (α^p' - ^ Ί ^ e M ) is even-
tually in p'iVV(O) which implies that (α^ — α | μ e M) is eventually in

iVV(O). Consequently (aμ\μe M) ——> α.

COROLLARY C. /f (A, ̂ ~) is α compact, Hausdorff, topological
ring, then

Proof. Since (A, ̂ ~) is a topological ring, if (aμ\μeM) ' > a,

then for every p e A*, (α^pI^ e M) ——* α:p. Let (aμ\μe M) be a net in

A and let α: e A such that for every peA*, (α^p | // e M) ——> α p. Let
(/3;Jλ G /ί) be an arbitrary subnet of (aμ\μe M). Since (A, ̂ Γ) is com-
pact, there exists a subnet (δr \ 7 e Z7) of (/3Λ | λ e /I) and δ e A such that

(δ r | 7eΓ)-ί->δ. If peA*, then (δ rp|7e Z7) ——> δp. But (δrp|7 e Γ)
is a subnet of (aμp\μeM) which, by assumption, converges to ap.

Therefore (δrp\y e Γ)-?—>ap and since (A,^~) is Hausdorff, δp — ap

which implies that δ — a. Now every subnet of (aμ\μe M) has a sub-

net which converges to a. Consequently (aμ\μ e M) > #.

There are several important subsets of K which warrant special
consideration, among which are A itself and the A^-spaces. Another
important subset of K is the intersection of all of the Ap-spaces. It
is well known that the elements of K may be identified algebraically
as either quotients (equivalence classes of ordered pairs of elements of
A), or as partial homomorphisms of ideals of A into A whose domains
are maximal in the sense that the partial homomorphisms cannot be
extended to properly larger ideals [4]. In the latter situation, Γ\peA* Ap



594 JOBY MILO ANTHONY

is identifiable as the set of those partial homomorphisms defined on
all of A. This collection of mappings is denoted Hom^ (A, A). If
ae A, then a may be identified with the homomorphism ξa: A—> A
where ζa(x) — ax, x e A. Hence A c Hom^ (A, A). Now Hom^ (A, A)
may be considered as a collection of functions which map a common
domain into a topological space. One way of topologizing such a
function space is to use the so-called "weak" topology, the topology
of pointwise convergence. Let & denote this topology. It is not
difficult to see that ^"κ | Hom^ (A, A) — &*. An immediate corollary
to Theorem 5 is that {A, ^~) is topologically embedded in (K, ^~κ)
if and only if it is topologically embedded in (Hom^(A, A), &).

If A = CR and K — ikf, Struble has shown that Hom^ (A, A) is
isomorphic to the collection of all right-sided Schwartz distributions
[7]. The usual topology assigned to distribution is a "weak" topology.
In this case it can be shown that these right-sided distributions are
embedded both algebraically and topologically in the Mikusiήski operator
field.

In general, A and Hom^ (A, A) do not need to be either open or
closed subsets of (K, J?^). In his paper on compact rings [10], Warner
considers the problem of openly embedding a topological ring, which
has no divisors of zero, in a division ring. The following theorem
shows that if (A, j?~) is a topological ring, then a weakened version
of a condition used by Warner in [10, Theorem 5] is sufficient to
guarantee that both (A, J7~) and (Hom^ (A, A), &) are openly embedded
in (i

THEOREM 6. Suppose that (A, J7~) is a topological ring with the
additional property that for each iV̂ -(O) e ^ > ( 0 ) , there exists p e A*
such that pN<r(0) e ^ > ( 0 ) . Then

( i )
(ii)
(iii) Hom^ (A, A) e

Proof.
( i ) Let (aμ\μeM) be a net in A with ae A such that

{aμp I μ e M) -^-» ap

for every p e A*. Then (aμp — ap\μeM) -̂ —• 0 for every p e A*. Let
iV>(0) G *ΛO(0) and choose p ' e A * such that p'NAV e^S-(O). Then
(α^p' — tfp' I μ e M) is eventually in prN^{0) which implies that ( ^ —

α I μ e M) is eventually in iV>(0). Therefore ( ^ | μ e M) — -̂> a. Since

(A, ^ ) is a topological ring, if (α^|μ e M) —̂ -» #, then for every p e i * ,

(α^p |j«6M) - ^ αp. By Theorem 5, ^ " = ^ . | A.
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(ii) Choose pf e A* such that p'A e Λ^(O). If x e p'A, then there
exists y e A such that x = p'y and hence x + p'A — p'y + p'A = p'A.
Therefore p ' A e ^ ( a ; ) , Now since p'A is in the neighborhood filter
of each of its points, it is an open subset of (A, ^). Consequently
if α e A, then p'A e ^f^(p'a). But a has the representation p'a/p' in
K, and since p'Ae^i^-(p'a), by Lemma 3, p'A/p' — Ae^V{a). Thus
A is in the ^^-neighborhood filter of each of its points and hence is
an open subset of (K, ^κ).

(iii) We have shown in (ii) that it is possible to choose p'eA*
such that p'A is an open subset of (A, JίΓ). If α€Hom4(A, A), then
there exists aeA such that a = a/p'. Now α: + p ' A e ^ X α ) and by
Lemma 3, (a+p'A)/p' e ^V(a). However, (a+p'A)/p' = α/p' + p'A/p' =
α + A which is a subset of Hom^ (A, A). Consequently Hom^ (A, A.) 6
^4^(a). Now Hom^(A, A) is in the ^^-neighborhood filter of each of
its points and hence is an open subset of (K, J7~κ).

The remainder of this paper will be devoted to an examination
of the compatibility of the topology J7"κ with the algebraic structure
of K.

DEFINITION 3. For each aeK, let D(a) = {pe A*|αe Ap}.

Note that D(a) (J {0} is an ideal in A. It is, in fact, the domain
of a when a is identified as a partial homomorphism.

THEOREM 7. Let a and b be elements of K such that D(a + b) =
D(a) Π D(b). Then, if addition is continuous in (A, ^ " ) , the mapping
f: K x K—+ K defined by f(x, y) — x + y, (a?, y) e K x K, is continuous
at the point (α, δ).

Proof. Let Λ^(a + b) be the ^^-neighborhood filter of a + 6 and
let ΛΓ(α + ί>) be an arbitrary element of <yi^{a + b). By Lemma 3,
there exists a finite intersection, Π; -Wp/α + 6), of ^.^-neighborhoods
of a + & contained in JV(α + 6). Since D(a + 6) = jD(α) Π D(b), both α
and δ are elements of each A^^-space. Moreover, addition is continuous
in each A^-space and hence, for each i, there exists Np.(a) e ^^.(a) and
Np.(b) e ^i.(b) such that f(Np.(a) x Np.(b)) c JVPi(α + 6)! Therefore we
have f(fu Np.(a) x Π. NP.(b))<z Hi Np](a + 6) c N(a + 6). If Λ\a, b)
is the neighborhood filter of (α, 6) in iΓ x jfί, then a base for ^/K{a, b)
is the collection of all sets of the form N(a) x N(b) where N(a) e
and JSΓ(&) e ^f^{b). Now by Lemma 3 we have Πi Np.(a) x Πi

(a, b). Therefore / is continuous at (α, 6).

COROLLARY. If addition is continuous in (A, j^~), ίfcβ^ addition
is continuous in (Hom^(A, A),
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Proof. If a and b are elements of Hom^ (A, A), then D(a) = D(b) -
D(a + b) = A*.

THEOREM 8. Let a and b be elements of K such that D(ab) a D(a)
D(b). (D(a) D(b) = {p e A\p = qr, q e D{a) and r e D(b)}). Then, if
multiplication is continuous in (A, J?~), the mapping f: K x K—>K
defined by f(x, y) = xy, (x, y) eK x K, is continuous at the point (a, b).

Proof. Let <yί^{ab) be the ^^-neighborhood filter of ab and let
N(ab) be an arbitrary element of ^V(ab). By Lemma 3, there exists
a finite intersection, Π* Nv.{ab)1 of ^.-neighborhoods of ab contained
in N(ab). Now, for each i, we have the following. Since D(ab) c
D(a) D(b), there exist q{ e A* and r{ e A* such that a e Aq., b e Ar%,
and Pi — qtfi. Therefore there exist ring elements a{ and /5 such
that a = ai/qif b = βjriy and ab = aφijq^i = aφ^p^ Moreover, there
exists Njr(oCiβi) e ^K^{(^iβi) such that Np.(ab) = N^aφ^lPi. But mul-
tiplication is continuous in (A, ̂ ~), and therefore there exist N,y{a^) e
ΛZ/ioLi) and N^(βύ e ^O-(βi) such that iV>(<> Ny\βi) c N^ia^,).
Let Nq.(a) = NA^lQi and Nr.φ) = NAβi)/^. Then Nq.(a) e ^Γq.(a)
and iVr.(δ) G ̂ i^r.(b). Now we have

c

That is, for each i,f(NQz(a) x iVrJ5)) c Np.(ab). Therefore we have
f(Πi Nq.(a) x Πi Nr%(b)) c Πi ̂ ( α δ ) c iV(αδ) and since f|. ^ t ( α ) x
Πi Nrβ>) e ^^{a, 6),/ is continuous at the point (α, 6).

COROLLARY, /f multiplication is continuous in (A, J7~) and A —
A2, then multiplication is continuous in (Hom^ (A, A), &).

Proof. If a and b are elements of Hom^ (A, A), then D(a) = D(b) =
D(ab) = A*. Since A = A2 and A has no divisors of zero, A* = (A*)2.
Therefore D(a) - D(b) = (A*)2 = A* = D(αδ).

Theorems 7 and 8 give algebraic conditions which are sufficient for
addition and multiplication to be locally continuous operations in
(K, J7~κ). Since for every aeK, D( — a) = D{a), it is clear that if
additive inversion is continuous in (A, jf), then it is also continuous
in {K, J?~κ). Combining this fact with the corollaries to Theorems 7
and 8 yields the interesting result that if (A, J7~) is a topological
ring and A = A2, then (Hom4 (A, A), &) is a topological ring.
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The following examples demonstrate that multiplication and multi-
plicative inversion are not necessarily continuous operations in (K,

Example 2. Multiplication is not necessarily continuous in (K,

Let (A, ^) = (C£, ̂ ~*) and K = M. Choose a nonzero element
φ of CR such that φ has compact support. For each neZ+, let mn =
supί \Φ{n){t)\. Consider the sequence (fn = sn/nmn\n eZ+), where sn is
the operator (homomorphism mapping CR into itself) which maps a
function in CR to its nth derivative. If a is a nonzero element of
CR, then for each neZ+, fn has the representation (a{n)/nmn)/a. Choose
a real number λ > 1 and let ξ(t) = φ(Xt). Then

(ϊl neZ'
Λ = / Xnφw(\t)/nmn

ζ

inceί Xnφ{n)(Xt)

nmn

neZ"

neZ+j

0 .

0

Hence (fn\neZ+) -+> 0. If, however,
CR, then

V tim. / V nm

is any nonzero element of

neZ<
nmn

and since (CR, is a topological ring, by Lemma 4, it follows that

(Φ * ΨT
nmn

neZ" 0 .

For each n e Z + , let αΛ = (^ * ψ){n)/nmn and let 6W = (φ

a = 0 and 6 = (φ Now (αn a and (6n |

Let

-> 6;

however, (anbn\neZ+) = (fn\neZ+) -+> 0 = ab. Therefore multiplica-
tion is not continuous on M.

Example 3. Multiplicative inversion is not necessarily continuous
in (K,

Let (A, j ^ ) = (C£, ̂ ~*) and K = M. Consider the sequence
(1 — s/n\neZ+). This is a sequence in M which clearly iΓ-converges
to the multiplicative identity; however, Mikusiήski has shown that
((1 — s/n^lneZ*) does not converge according to his definition [6,
pg. 147]. Therefore ((1 - sjn)~ι \ n e Z+) does not if-converge. Con-
sequently, multiplicative inversion is not continuous on M.

If addition is to be continuous in (iΓ, ^~κ), then for each aeK,
the .^-neighborhood filter of a must be the translate to a of the
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.^-neighborhood filter of zero. We will now discuss sufficient con-
ditions on (A, ^) for {K, ̂ κ) to have this property.

Suppose that (A, ^) is a topological ring. Then for each p e A*,
the mapping x h-• px is a continuous mapping of A into itself. Con-
sequently, p^K^(0) is a filter base for a filter which is finer than

In general, if p and g are distinct elements of A*, then
and g^f>(0) are not equivalent filter bases; however, if for

every pair (p, q) of elements of A*, p^Kr{Q) and q^K^(0) are equivalent
filter bases, then for each p e A*, p^f>(0) and p\^>(0) are equivalent
filter bases. In this case, given N^(0) e ̂ f>(0), there exists N^(0)e
f̂S-(O) such that piV (̂O) c p2N^φ) which implies that J\^(0)cpJVM0).

Therefore pN^(0) e ̂ /<M0) and consequently, p^O(O) is a base for
^ ^ ( 0 ) . Conversely, if for each pe A*, p^/O(0) is a base for ιΛS(O),
then for every pair (p, g) of elements of A*, p^S-(O) and g^O(0) are
equivalent filter bases.

LEMMA 5. Let {R, T) be any topological ring. The following
conditions on (i?, T) are equivalent.

(1) Given an open neighborhood 0 of zero and a nonzero element
p of R, then pO is an open set.

(2) Given a nonzero element p of R, then p^iφ) is a base for
is the T-neighborhood filter of zero.)

Proof.
(1) implies (2): Let p be a nonzero element of R and let Nτ(0) e

Since (R, T) is a topological ring, the mapping x i-> px is a
continuous mapping of R into itself. Consequently, there exists an
open neighborhood O of zero such that]pθ c Nτ(0). By hypothesis,
pO is an open neighborhood of zero. Therefore p^4r

τ^) is a base for

(2) implies (1): Let 0 be an open neighborhood of zero and let p
be a nonzero element of R. Let pα: be an arbitrary element of pO.
Then 0 is a neighborhood of a. Consequently, there exists 0' 6 ^4^(0)
such that 0 = a + 0'. By hypothesis, jλΛ'ί(O) is a base for ^ί(O).
Therefore pO' is a neighborhood of zero. Now pO = pa + pO' and
hence pO is an element of ^4^τ{pa). Therefore pO is in the neigh-
borhood filter of each of its points which implies that pO is an open
set.

THEOREM 9. Suppose that (A, ̂ ) is a topological ring. If for
every pe A*, p^O(O) is a base for ^S-(O), then jr~(0) = ̂ > ( 0 ) is a
base for ^V{ϋ) and Λ^{a) = a + ^/Γ(0) for every aeK.

Proof. By Lemma 3, for every aeK, &(a) — {Np(a)\aeAp and
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Np(a) e ^/^(α) for some p e A*} is a subbase for Λ^(a). If Np(0) e
&(0), then there exists JV>(O)e^(O) such that Np(0) = NAWP*

Since p^//>(0) is a base for ^O(O), there exists ΛΓ̂ (O) e ^^-(O) such
that pN'ΛO) c iV (̂O). Therefore ΛΓP(O) = NAty/P z> pN'AWP =
ΛΓ; (0). This implies that ^ ( 0 ) < J^T(O). On the other hand, if
N^(0)eST(0) and peA*, then pNAO) e - ^ (0). Now JSΓ̂ -(O) =
pN,y-(0)/p which is an element of ^ ( 0 ) . This implies that J3T(0) <
&(0). Therefore j^"(0) and ^ ( 0 ) are equivalent subbases. However,
since Sf~φ) is a filter on A, it is a filter base on K. Consequently,

and ^ ( 0 ) are bases for the filter ^/^(0). For each αelf, let
= a + J2Γ(0). Clearly J^r(α) is a base for the filter a + ^T(O).

If a e Av and iVp(α) e ^J(α), then there exists α e i and N^-(a) £ Λr^{ά)
such that α = α/p and Np(a) = Nr(a)jp. Since (A, ^~) is a topological
ring, there exists N^(0) such that N\^(a) — a + iV^(0). Moreover,
ί>c^jr(0) is a base for ^f>(0). Therefore there exists iV^(0) e -^r(O)
such that pN^(0) c Ns(0). Now we have

a + P ^ O ) = α

This implies that &{a) < ^Γ{a). Conversely, if a + iSΓ̂ -(O) 6
choose p e A* such that α e i r Now let a e A such that a —
Since ^ ^ ^ ( 0 ) is a base for ^ > ( 0 ) , we have pN^φ) e ^S-(O). This
implies that α + pN^(0) e Λ^λa). Consider

α + NA0) - — + p J V ^ ^ O ) = a

3> p p

This is an element of &(a) and consequently J3Γ(ά) < &(a). There-
fore &(a) is a filter base which is equivalent to 3ίΓ(a). Since ^ ( α )
is a base for *Λ"(a) and ,Ĵ Γ(α) is a base for α + ^/^(0), we have

What we have now demonstrated is that if (A, ^~) is a topological
ring which satisfies either of the conditions of Lemma 5, then (K, ^~κ)
is homogeneous in the sense that the ^^neighborhood filter of any
point is the translate to that point of the ^^-neighborhood filter of
zero. Moreover, the neighborhood filter of zero in (A, J7~) is a base
for the neighborhood filter of zero in (K, ^~κ). Also, since (A, j?~)
satisfies one of the conditions of Lemma 5, by Theorem 6 it follows
that A is topologically embedded in (if, J7~κ) as an open set.

In [10, Theorem 5], Warner places the following conditions on a
topological ring which has no divisors of zero.

(1) Given an open neighborhood O of zero and a nonzero ring
element p, then pO and Op are open sets.

( 2 ) The collection of ring elements which have an inverse relative
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to the circle composition {x°y = x + y — xy) is an open set, and the
mapping which sends an element of this open set to this inverse is
continuous.

He concludes that these conditions are both necessary and sufficient
for the ring to be algebraically embeddable in a division ring, where
the neighborhood filter of zero in the original ring is a fundamental
system of neighborhoods of zero for a topology on the division ring.
Moreover, the specified topology on the division ring is compatible
with the division ring structure and the original ring is topologically
embedded as an open set. Therefore, by Lemma 5 and Theorem 9,
we conclude that these conditions on (A, ^7~) are necessary and suffi-
cient for (iΓ, ^ i ) to be a topological field with A topologically em-
bedded as an open set. In the process of proving this theorem of
Warner's, condition (2) is used only to establish the continuity of
multiplicative inversion in the division ring. Hence we conclude that
(K, ^~κ) is a topological ring with A topologically embedded as an
open set if and only if (A, J7~) satisfies one of the conditions of
Lemma 5.

Several questions concerning the topology J7~κ are suggested by
this paper. For instance, what hypotheses are required for (K, ^~κ)
to be a topological field without A necessarily being an open set? By
Theorem 5, Corollary c, if (A, ^~) is compact and Hausdorff, then it
is topologically embedded in (K, Jf^). What further hypotheses, if
any, are needed to insure that (K, J7~κ) is at least a topological ring?
There is also, of course, the observation that the concept of ϋΓ-con-
vergence provides a method for topologizing the Mikusiήski field. In
fact, the various algebraic models which generate the Mikusiήski field
lead to several topologies of if-convergence on it. What properties
do they possess and how are they related?
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