
PACIFIC JOURNAL OF MATHEMATICS
Vol. 36, No. 3, 1971

ON DOMINATED EXTENSIONS IN LINEAR
SUBSPACES OF

E. M. A L F S E N AND B. HIRSBERG

The main result is the following: Given a closed linear
subspace A of ^c(X) where X is compact Hausdorff and A
contains constants and separates points, and let F be a com-
pact subset of the Choquet boundary dAX with the property
that the restriction to F of every A-orthogonal boundary
measure remains orthogonal. If aoeA\F and a0 ^ Ψ \F for
some strictly positive ^4-superharmonic function ¥, then a0

can be extended to a function a e A such that a ^ Ψ on all
of X. It is shown how this result is related to various
known dominated extension-and peak set-theorems for linear
spaces and algebras. In particular, it is shown how it gen-
eralizes the Bishop-Rudin-Carleson Theorem.

The aim of this paper is to study extensions within a given linear
subspace A of ^C{X) of functions defined on a compact subset of the
Choquet boundary 3AX, in such a way that the extended function
remains dominated by a given A-superharmonic function ¥. (Precise
definitions follow). Our main result is the possibility of such extensions
for all functions in A\F provided F satisfies the crucial requirement
that the restriction to F of every orthogonal boundary measure shall
remain orthogonal (Theorem 4.5). Taking Ψ = 1 in this theorem we
obtain that F has the norm preserving extension property (Corollary
4.6). This was first stated by Bjork [5] for a real linear subspace A
of ^R{X) and for a metrizable X. A geometric proof of the latter
result was given by Bai Andersen [3]. In fact, he derived it from a
general property of split faces of compact convex sets, which he proved
by a modification of an inductive construction devised by Pelczynski
for the study of simultaneous extensions within ^R{X) [12]. Our
treatment of the more general extension property proceeds along the
same lines as Bai Andersen's work. It depends strongly upon the
geometry of the state space of A, and Bai Andersen's construction is
applied at an essential point in the proof. Note however, that this
is no mere translation of real arguments. The presence of complex
orthogonal measures seems to present a basically new situation. Ap-
plying arguments similar to those indicated above, we obtain a general
peak set-and peak point criterion (Theorem 5.4 and Corollary 5.5) of
which the latter has been proved for real spaces by Bjork [6]. In
§ 6 (Theorem 6.1) it is shown how the Bishop-Rudin-Carleson Theorem
follows from the general extension theorem mentioned above. In § 7
we assume that A is a sup-norm algebra over X and study the inter-
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relationship between our conditions on F and a condition introduced
by Gamelin and Glicksberg [9], [10]. Finally we should like point out
that some related investigations have been carried out recently by
Briem [7]. However, his methods are rather different. The geometry
of the state space is not invoked, but instead he applies in an essential
way a measurable selection theorem of Rao [14].

We want to thank Bai Andersen for many stimulating discussions
of the problems of the present paper. Also we are indebted to A. M.
Davie for the counterexample at the end of § 7.

1* Preliminaries and notation* In this note X shall denote a
compact Hausdorff space and A a closed, linear subspace of C^C{X),
which separates the points of X and contains the constant functions.

The state space of A, i.e.

S = {peA*|p(l) = l b | | - 1 } ,

is convex and compact in the w*-topology. Since A separates the
points of X, we have a homeomorphic embedding Φ of X into S, de-
fined by

φ(x)(a) = a(x), a l l aeA.

Similary we have an embedding Ψ of A into the space AC(S) of
all complex valued w*-continuous aίϊine functions on S; namely

W(a)(p) = p ( a ) , a l l p e S .

By taking real parts of the functions Ψ(a) we obtain the linear
space of those real valued w*-continuous affine functions on S, which
can be extended to real valued w*-continuous linear functional on A*,
and this space AR(S, A*) is dense in the space AR(S) of all real valued
affine w*-continuous functions on S9 [1, Cor. I. 1.5].

We shall denote by M(X), resp. M(S), the Banach space of all
complex Radon measures on X, resp. S; by M+(X) resp. M+(S) the cone
of positive (real) measures, and by Mt{X) resp. Mt(S) the w*-compact
convex set of probability measures. The set of extreme points of S
will be denoted by deS, and the Choquet boundary of X with respect
to A is defined as the set

3AX= {xeX\Φ(x)edeS} .

From [13, p. 38] it follows that deS c Φ(X) so that Φ maps dAX
homeomorphically onto deS.

A measure μ e M(S) is said to be a boundary measure on S if
the total variation \μ\ is a maximal measure in Choquet's ordering of
positive measures [1, ch. I, §3], [13, p. 24]. A boundary measure
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is supported by ~dJ3 [1, Prop. I. 4.6]. For a metrizable X (and S) a
measure μ e M(S) is a boundary measure if and only if \μ\(S\deS) = 0.
We shall denote by M(dβ) the set of boundary measures on S (abuse
of language). Observe that if μ e M(dβS), then the real and imaginary
parts of μ are both boundary measures. The set of boundary measures
on X is defined by

M(dΛX) = {μe M(X) I Φμ 6 M(deS)} ,

where Φμ denotes the transport of the measure μ on X to a measure
on S. For a metrizable X a measure μ on X belongs to M(dAX) if
and only if \μ\(X\dAX) = 0.

For every μ e Mϊ(S) we shall use the symbol r(μ) to denote the
barycenter of μ, i.e., the unique point in S such that a(r(μ)) = μ(a)
for all aeAR(S). The Choquet-Bishop de Leeuw Theorem states that
each point in S is the barycenter of a maximal (boundary) probability
measure [1, Th. I. 4.8]. Accordingly we shall denote by M$(dβS) the
nonempty set of maximal (boundary) probability measures on S with
barycenter peS. For a e l w e define Mϊ(dAX) to be the set of all
μeMΐ(X) such that Φμ e Mt>{x)(dβ). Equivalently, Mt{dAX) consists
of all μ G Mt(dAX) such that

a(x) = 1 adμ a l l aeA ,

i.e., μ represents x with respect to A. Also we denote by Mi(X)
the set of probability measures on all of X which represents x in
this way. Similary we denote by M£(S) the set of probability mea-
sures on S with barycenter p. The annihίlator of A in M(X) is the
set

- 0 all aeA}.

Finally we shall use the symbol &(X) to denote the class of all
complex valued bounded Borel functions on X.

2. A dominated extension theorem* We start by proving a
general dominated extension theorem, which may be of some inde-
pendant interest. In this connection we give the following:

DEFINITION 2.1. Ssf is the class of all / e &(X) such that

(2.1) μ(f) = 0 all μeA1 .

Clearly A c

THEOREM 2.2. Let F be a closed subset of X for which A\F =
{a\F\aeA} is closed in ^C(F); let aQe A\F and let φ\ X—> JR+ U {°°} be
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a strictly positive l.s.c. function such that \aQ(x)\ <φ{x) for all xeF~
Now, if there exists a function a0 e Sf such that

(2.2) α 0\F = α0, |ao(x)\ < φ{x) all xeX

then there exists a function in A with the same properties.

Proof. Without lack of generality we can assume that φ is a
bounded function with values in R+, and we assume for contradiction
that

(2.3) aoίG\F = {a\F\aeG} ,

where

(2.4) G = {aeA\\φ)\ < φ(x)} .

Since φ is l.s.c, G is an open subset of A. Since A\F is closed'
in ^C(F), we may apply the Open Mapping Theorem to the restriction
map RF:A—* A\F. Hence G\F is an open subset of A\F. Furthermore
G\F is convex and circled. By the Hahn-Banach Theorem we can find
a measure v e M(X) with supp v c F such that

(2.5) v(a0) ^ 1 ^ | v ( b 0 ) I a l l boeG\F .

Now we consider C^C{X) equipped with the norm

(2.6)
φ(x)

xeX },
J

and observe that this norm is topologically equivalent with the cus-
tomary, uniform norm. The dual of (C^C(X), \\ — \\φ) is seen to be M{X)
equipped with the norm \\μ\\φ — \\φ μ||, where (φ μ)(f) — μ{φf) for
all fe^c(X).

It follows from (2.5) that the linear functional f on (A, || — \\φ}
defined by

(2.7) ξ(a) - v { R F a ) a l l a e A ,

is bounded with norm \\ζ \\φ ^ 1. Now we extend £ with preservation
of £>-norm to a bounded linear functional on (^C(X)9 || — ||o). This^
gives a measure μeM(X), such that

(2.8) ξ(a) = μ ( a ) a l l a e A , \\φ . μ\\ = \\ζ\\φ ^ 1 .

It follows from (2.2) and (2.8) that

(2.9) \μ(ao)\ - | (φ μ){φ~ιaQ) \ < 1 .

From (2.7) and (2.8) it follows that μ - v e A1, and since α0 e
we shall have
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<2.10) I [ aodμ = ί aQdv = ί aQdv ^ 1 .

This contradicts (2.9) and the proof is complete.

3* Applications of the geometry of the state space* We shall
consider compact subsets F of dAX satisfying one or the other of the
following two requirements:

(A.I) μ e M(dAX) [\A1=>μ\FeAL

.(A.2) μ G M{dAX) Γ) A1 => μ(F) = 0 .

We assume first (A.I). We also agree to write SF = co(Φ(F)),
and we observe that there is a canonical embedding ΨF of A\F into
AC(SF), defined by

(3.1) ΦF(OO)(P) = P(a), all peSF

where a e A; a \F = α0. In fact, it follows by the integral form of the
Krein-Milman Theorem that p can be expressed as the barycenter of
a probability measure on Φ(F), and hence that the particular choice
of a is immaterial.

For every aoeA\F we define

<3.2) ao(x) = ί aodμx1 xeX,μxe Mt{dAX) ,

and

(3.3) %{V) - f ΨF(a0)dμpy peS,μpe M+(d.S) ,
JSF

and we note that these definitions are legitimate by virtue of (A.I).
We also note that μp(SF) = μp(Φ(F)) for all peS and μp e M;(deS) [3,
Lem. 1],

Clearly α0 is an extension of α0 to a function defined on all of X;
and if we think of Φ as an imbedding of X into S, then α0 will in
turn be an extension of α0 to a function defined on all S. More
specifically, for every μx e Mi(dAX) the transported measure Φμx is in
M+{x)(deS) and so

8 = ί ΨF{a0)d{Φμx) - ( ΨF(a0) o Φ φ , - ί α ^ β ,

which entails

<3.4) α0 o φ = α0 .

LEMMA 3.1. 7f ί7 satisfies (A.I) α^d αoe Al^, ί^e^ α o e j / .
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Proof. Let λ = \\aQ\\F and define

a1 = Re WF(a0) + λ, α2 = Im ΨF(a0) + λ .

Then a19 a2 e AR(SF)
+ and for any peS and μp e M+(deS)

%{v) = \ ΨF(a0)dμp = \ a,dμP + i 1 α ^ p - XμP(SF) —
JSF JSF JSF

At this point we shall appeal to the geometric theory of compact
convex sets. We recall that a face Q of S is said to be split if the
complementary face Q' ( = the union of all faces disjoint from Q) is
convex (hence a face) and every element of S can be expressed by a
unique convex combination of an element of Q and an element of Q'.
It is known ([1, Th. II. 6.12], [1, Th. II. 6.18], see also [2, Th. 3.5])
that for a closed face Q of S the following statements are equivalent:

( i ) If a real measure μ e M(deS) annihilates all continuous affine
functions, then μ\Q has the same property.

(ii) Q is a split face.

(iii) The u.s.c. concave upper envelope bXQ of the function bXQ

which is equal to b on Q and 0 on S\Q, is affine for every b e AR(Q)+.
It follows from the requirement (A.I) that SF is a split face of S,

and hence that

%{p) = aXSF(p) + ia2XSF(p) - XχSF(p) - i^XsF(p) ,

where all the functions on the right hand side are u.s.c. and affine.
In particular α0 is a Borel function, and it follows from (3.4) that a0.
is a Borel function as well. Since the barycentric calculus applies to
real valued u.s.c. affine functions on S [1, Cor. I 1.4], we shall have:

(3.5) %{p) = ^ aodμpy peS, μpe AfJ(S) .

Let μe A1 be arbitrary and decompose

(3.6) μ = Σ a&t ,
ΐ = l

where aΣ e R+, a2 e —R+, α3 e iR+, α4 6 ( — i)R+ and μ{ e Mt{X) for i =
1, 2, 3, 4. Let p{ e S be the barycenter Φ^ f and let σ{ e M+.(dβS) for
i = l , 2 , 3 , 4 ^

Since 3eS S Φ(X) we can transport cr€ back to X by the map Φ~\
and it follows that the measures μζ — Φ~γσi are (real) orthogonal
measures for i = 1,2, 3, 4.

Writing
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we obtain τeM(dAX) and μ — τeAL. In fact for every aeA,

\ ad(μ - r) = ί Ψ{a)d(Φ(μ -τ)) = ±aλ Ψ(a)d(Φμi - σt) = 0 .
J JS i=ί JS

Since μ e AL, we shall also have τ eA1 and then τ \F e A1 by virtue

of (A.I). Hence by (3.3), (3.4), (3.5):

aodμ = I α o Φdμ = aod(Φμ) = Σ «• \ ΰΰd(Φμi)

X JX JS i = i JS

= Σ a^,(Pi) = Σ ^ 1 ΨrWσt = \ ΨF(a0)d(Φτ)

= \ αodr = 0 .
JF

Hence α0 e J ^ and the proof is complete.
We next turn to the less restrictive requirement (A.2). It follows

by a slight modification of the proof of [1, Th. II. 6.12], that the
requirement (A.2) implies that SF is a parallel face of S and hence
that the function χSF is affine [15, Th. 12].

For every xe X we define

(3.7) XF(X)=\ ldμa, μxeMt{dAX)
JF

and we note that this definition is legitimate by virtue of (A.2). For
xeX and μx eMi(dAX) we shall have:

%8F(Φ(x)) = ( ld(Φμx) - \ ldμx - χF{x)
JSF JF

which entails

(3.8) %SF O φ = χ F .

Applying (3.8) and proceeding as in the proof of Lemma 3.1, we
can prove

LEMMA 3.2. If F satisfies (A.2), then χF e sxf

4. Extensions dominated by A-superharmonic functions* We
now proceed to the main theorem, but first we give some definitions.

DEFINITION 4.1. A function Ψ: X—>R u {°°} is said to be A-super-
harmonic if it satisfies

( i ) Ψ l.s.c.

( i i ) W(x) ^ ί Ψdμz1 a l l xeX a n d μxeMt{X).
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DEFINITION 4.2. Let F be a compact subset of X. F has the
almost norm preserving extension property, if for each ε > 0 and
aoe A\F there exists a function ae A such that

(4.1) a\F = α0, | | α | | x ^ \\ao\\F + ε .

If ε can be taken to be zero in (4.1), then F has the norm pre-
serving extension property.

We shall need a criterion for the almost norm preserving exten-
sion property, which is due to Gamelin [9, p. 281] and Glicksberg
[10, p. 420] (cf. also Curtis [8]). For the sake of completeness we
present a short proof.

LEMMA 4.3. A closed subset F of X has the almost norm pre-
serving extension property if for each σeA1:

(4 .2) in f | |σLp + j ; | | ^ | | < r | Z V F | | .
1

Proof. The almost norm preserving extension property is tanta-
maunt to the equality of the uniform norm on A \F and the extension
norm:

||αo|[eχt. = inf { | | α | | x | α e A, a\F = α0} .

In this norm A \F is isometrically isomorphic to the quotient space
A/F1 where F1 = {ae A\a = Q on F}; and we are to prove that the
canonical imbedding p: A/F1 —• A \F is an isometry from the quotient
norm to the uniform norm. By duality (i.e., by Hahn-Banach) we
may as well prove that the transposed map p* is an isometry. Rep-
resenting the occur ing functionals by measures, we can translate this
statement into

(4.3) inf \\μ + σ\\= inf ||/* + i;||, all μeM(F)
σeA1 v e ( A I ^ ) 1

To prove that (4.2) implies (4.5), we consider measures μ e M(F),
σeA1 and an arbitrary ε > 0. Also we can choose voe(A\F)

L such
that

-v0\\^ inf \\σ\F- v\\ + ε ^ \\σ\X\F\\ + e .
1

T h e n

\\μ - σ\\ = | | jw - * U | | + \\σ\τκF\\ ^ H i " - ^ 1 1 ~ l l^o - σ\F\

+ \\σ\τv\\ ^ fJA* ~ y o l l - s ^ i n f \\μ
( 4 | ) 1

which completes the proof.
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We remark for later purposes that for μ e M(F):

(4.4) s u p { I ί aodμ \\<h\\F ^ 1, aoeA\F\ = inf \\μ - v\\ .
U JF ) veU\F)λ

575

PROPOSITION 4.4. If F is a compact subset of dAX satisfying (A.I),
then F has the almost norm preserving extension property.

Proof. By Lemma 4.3 and the above remark (4.4), it suffices to
prove that for every σeA1:

sup ^ 1, ^ I I " \Z\F\

Let σeA1, and aQeA\F kwith | | α o | U ^ l . Applying Lemma 3.1
we obtain

F\X
0 = σ(a0) = I a$σ + I

JF J F\

such that

I aQdσ — I aQdσ
I JF JX\F

which completes the proof.

If F is a compact subset of dAX satisfying (A.I), then A\F is a
closed subspace of ^C{F). In fact, A\F is isometrically isomorphic to
A/F1.

We are now able to state and prove the main theorem. The proof
of this theorem is essentially based upon Theorem 2.1 and the technique
developed by Bai Andersen [3].

THEOREM 4.5. Let F be a compact subset of dAX satisfying (A.I),

i.e.

Let α0 e A \F and let ψ be a strictly positive A-superharmonic func-
tion on X such that \ ao(x) \ ^ ψ(x) for all xeF. Then there exists a
function aeA such that

( i) αl^αo,
(ii) \a(x)\ ̂  f(x) all xeX.

Proof. Without loss of generality we may assume ψ to be bounded.
Since F satisfies the requirement (A.I), A\F is closed and α o e j ^

Thus by Theorem 2.2 we can extend aQ to a function a[eA such
that |α{(a?)| <ψ{x) for all xeX, whenever ψ is a bounded l.s.c. func-
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tion on X such that | ao(x) | < φ(x) for all x e X.
Applying this to the function φι = 2f, we can extend α0 to a

function αx e A such that | ax(x) | < 2ψ(x) for all xeX.
Now define

The function φ2 is strictly positive on all of X. For xe F we
have <p2(x) = 2ψ(x), and hence for an arbitrary xeX:

I ά o ( a ? ) \ = \ \ F <*<odμ

Hence |ao(x)| < φ2(x) all xeX.
By Theorem 2.2 we can choose α2 e A such that

I α 2 1 = a0 .

Assume for induction that extensions au •• , α , e i have been
constructed such that

\ap\ <2f - φp, p = 2, . , n

and define

- 2ψ Λ

The function 9>n+1 is strictly positive by induction hypothesis. For
xeF we shall have

such t h a t ^Λ+iίa?) =

\aQ(x)\ =

Hence for an arbitrary xeX:

Hence |ao(x)\ < 9>»+i(a?) for all xeX.
Again by Theorem 2.1 we can choose an+1 e A such that

n+ly an+ί\F — α 0
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Continuing in this way we obtain a sequence {αj~=1 £ A suck
that for n = 1, 2,

( i ) αn \F = α0,
(ii) <̂ (aθ - Σ?=i 2" r | αr(a?) I > 0, all x e X,
(iii) | | α w | | <: 2sup xex ψ(x).
By (iii) the sequence Σ?=i 2~rαr is uniformly convergent and α =

ΣΓ=i 2~rαr e A. Clearly α |^ = α0 and it follows from (ii) that | a(x) \ <£.
ψ(x) for all xeX. This completes the proof.

Taking ψ = 1 in Theorem 4.5 we obtain the following:

COROLLARY 4.6. Let F be a compact subset of dAX satisfying1

(A.I), i.e.

μ e M(dAX) f]A1=>μ\FeA± ,

then F has the norm preserving extension property.

REMARK. In the proof of Theorem 4.5 we have actually proved
slightly more than was stated. The A-superharmonicity of the func-
tion ψ was used just once, namely in the verification that |αo(#)| <
φn+1(x) for n = 1, 2, and all xeX. However if x is a point of X
such that

then by definition ao(x) — 0, and there is nothing to verify.
Hence, Theorem 4.5 subsists if ψ: X—*R+ U {°°} is allowed to be

a l.s.c. function such that

ψ{x) ^ I fdμx ,

for all points xeX for which μx(F) Φ 0 for some μx e Mϊ{dAX)m

5. A peak set theorem* In this section we shall deal with
compact subsets F of dAX satisfying the requirement (A.2). For such
an F we define the function χF as in (3.7).

PROPOSITION 5.1. If F is a compact subset of dAX satisfying (A.2),
then the A-convex hull of F is equal to the set of all xe X such that

Xr(x) = 1.

Proof. By definition, the A-convex hull of F is the set

(5.1) FA = {xeX\\a(x)\^\\a\\F, all aeA}.

We first assume that χF(x) - 1 i.e., μx(F) = 1 for μxeMi(dΛX)+
Then we obtain for every aeA,
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| o ( . τ ) | = \ adμ, ^ ί | α | d μ . ^ ! j α | L

such that xeFA.
Next assume that 7̂ (0?) < 1. This implies that Φ(x) £ SP. Hence

we can separate Φ(x) and SF by a w*-continuous linear functional on
A* i.e., there exists a function α e i and an α e ί such that

Re Ψ(a)(Φ(x)) > a > Re ?Γ(α)(S^) ^ 0 ,

and hence again

Re a(x) > α > Re α(F) ^ 0 .

Now, for sufficiently large 3eR+, the function a + δ e A satisfies

\a(x) + δ\>δ + a>\a(y) + δ\ all ι /e f ,

In fact, it suffices to take

where

β = max {Re α(τ/) | | / G ί 7 } < α , 7 = max {| Im a(y) \\yeF}.

Hence

IIα + δ l ^ < \a(x) + δ

i.e., x&FA, which completes the proof.

LEMMA 5.2. Let F be a compact subset of dΛX satisfying (A.2),
for which A\F is closed in ^C(F). Let ψ be a strictly positive A-
super'harmonic function on X such that 1 ^ ψ(x) for all x e F.

Then there exists a function ae A such that

(5.2) a \ F = l, I a ( x ) \ ^ ψ(x) a l l x e X

Proof. Since χF is an element of Sxf and A\F is assumed to be
closed in ^C{F) we can use Theorem 2.2 with α oe A\F, a0 = 1. Now
using the same technique as in the proof of Theorem 4.5 we obtain
a function aeA satisfying (5.2).

LEMMA 5.3. Let F be a compact subset of dAX satisfying (A.2),
and let G be a compact subset of X\FA. Then there exists an A-
superharmonic function ψ on X such that:

(i) ψ(x) = 1 for all x e FA

(ii) \ψ(x)\ < 1 for all xeG
(iii) 0 < <γ{x) ̂  1 for all x e X.
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Proof. We write SG = cδ(Φ(G)) and claim that SFΠSG= 0 .
To prove this, we assume for contradiction that there exists a

poeSF Π SG, and we recall that χSp is u.s.c. and affine (since SF is a
parallel face) and that χSp is related to χF by formula (3.8). Now
we obtain

1 = XsF(Po) = max χSF(p) = max χSF(p) = max χF(p) .
peSβ peΦ(G) peG

By Proposition 5.1, this contradicts the hypothesis G f] FA = 0 ,
and the claim is proved.

Now there exists a number δ such that

max XsF(p) < δ < 1 ,

and hence we can define two disjoint convex subsets of A* x R by
the formulas:

(5.3) FQ - {(p, a)\peS,aeR,O^a<^ χSp(p)}

(5.4) Fλ - {(p, α ) | p e 5 β , aeR, 3 ̂  a} .

The set Fo is compact and the set Fx is closed. Hence we can
use Hahn-Banach separation to obtain a function be A such that

XsF(p) <ReψΦ)(p), a l l peG ,

a n d

Re ψ(b)(p) <δ <1, all p e SG .

The function f = Ee( ί ι )Λl is A-superharmonic and satisfies (i)f

(ii) and (iii).

THEOREM 5.4. Let X be a metrίzable compact Hausdorff space
and let F be a compact subset of dAX which satisfies (A.2) i.e.

and for which A \ F is closed. Then there exists a function aeA such
that

(5.5) a | F Λ - 1, I a(x) | < 1 all xe X\FA ,

i.e. the A-convex hull of F is a peak set.

Proof. By metrizability FA is a Gs-set, and we can write X\FA =
U«=i Km where Kn is closed.

Now we use Lemma 5.3 to obtain strictly positive A-superharmonie
functions ψn on X such that

ψn(x) = 1 for all x e FA, ψn(x) < 1 for all xeKu, n = 1, 2, *
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and ψn(x) fg 1 for all xeX. It follows from Lemma 5.2 that there
exist functions ane A such that an \F — 1 and | an(x) | ^ ψn{x) for all
x e X. Now the function

α = Σ 2-α Λ

satisfies (5.5) and the proof is complete.

REMARK. Actually the conclusion of Theorem 5.4 subsists under
more general assumptions. The metrizability of X was only invoked
to make FA a Gδ-set. In particular we shall have the following:

COROLLARY 5.5. Let xedAX be a Gb-point satisfying (A.2), i.e.

μ e M(dΛX) Π A1 => μ({x}) = 0 ,

then x is a peak point for A.

Finally we remark that if X is a metrizable compact Hausdorff
space and F is a compact subset of 3AX satisfying the stronger con-
dition (A.I) then the A-convex hull of F is a peak set.

6* Relations to the Bishop-Rudin-Carleson Theorem, In the
present chapter we shall consider a compact subset F of X satisfying
the requirement

(B) μeA"=>μ\F = Q .

Clearly (B) is more restrictive than (A.I), and a fortiori than
(A.2). Note also that (B) implies Fa dAX since Mi{X) = {ε,} for all
xeF.

If x g F and μx e Mϊ(X), then εx — μx e AL. Now the requirement
(B) implies (ex — μx) \F = 0, such that μx(F) = 0. By the definition
(3.2) we shall have dQ(x) = 0. Hence

(6.1) α 0 = a0 χ F .

Transferring to the state space and making use of (3.8), we observe
that the function χSF takes the value zero on Φ(X\F). Geometrically,
this means that the canonical embedding Φ:X—>S maps F into the
(compact) split face SF — cb(Φ(F)), and X\F into the complementary
(Gδ-) face S'F (cf. [2, Cor. 1.2]).

It follows from (6.1) that χF = χF and by Proposition 5.1 we obtain
F — F. Moreover, it follows from Proposition 4.4 that A\F is a closed
subspace of ^C(F), and it follows from (B) that (Al^)1 = (0). Hence
A\F — C^C(F). Also it follows from the results of chapter 5 that if
F is a Gδ, then it is a peak set.
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In other words: If F satisfies (B) then it is an interpolation set)
and if in addition it is a Gδ, then it is a peak-interpolation set.

Finally we note that we may apply Theorem 4.5 in the form
stated in the Remark at the end of § 4, to obtain:

THEOREM 6.1. (Bishop-Rudin-Carleson) Let F be a compact sub-
set of X satisfying (B), i.e.

μ e AL => μ\F ^ Q

let / o e ^ c ( j P ) , and let ψ: X—> R+ U {°°} be a strictly positive l.s.c.
function such that \ fo(x) | ̂  ψ(x) for all xe F. Then there exists an
ae A such that a\F = f0 and \a(x)\ rg ψ(x) for all xeX.

REMARK. Theorem 6.1 is the most general form of the Bishop-
Rudin-Carleson Theorem. Originally Bishop stated and proved this
theorem for a continuous function ψ and strict inequality sign [4].
Appealing to the inductive construction of Peίczynski [12], Semadeni
improved it to the form stated above [16]. (Cf. also Michael-Peiczynski
[11, p. 569]).

7* The sup-norm algebra case* In this section we shall assume
that A is a sup-norm algebra, and we shall consider two new require-
ments on a compact subset F of dAX:

(G.I) μeA^μ^eA1

(G.2) μeA'^μl^eA1 .

Clearly (B) implies (G.I) and (G.2), and each one of these implies
(A.I). In fact, (G.2) implies (A.I) since μ \FA = μ \F for every μ e M(dAX).
This result in turn is elementary, but not entirely obvious, so we
shall sketch a short proof: Note first that FA = φ - 1 ^ ) , so that F
can be thought of as the intersection of X with the ordinary closed
convex hull of F in S. (This is standard for real function spaces,
and the complex case is taken care of by the same argument as in
the proof of Proposition 5.1.). Hence the problem is reduced to show
the general implication:

Supp (v) c cό(Q) => Supp (v) c Q ,

where v is a boundary measure and Q is a closed subset of S. By an
elementary theorem v is also a boundary measure on cδ(Q). (An explicite
proof is given in [3, Lem. 1].) Hence v is supported by the closure
of the extreme points of Έo(Q). By Milman's Theorem Supp(v) c Q,
and the implication is proved.

In [9] and [10] Gamelin and Glicksberg have dealt with the re-
quirement (G.I), and from their works we shall adopt the following:



582 E. M. ALFSEN AND B. HIRSBERG

DEFINITION 7.1. Let F be a compact subset of X and let t > 0.
A \F is said to have the property Et if the following conditions holds:

Given f e A\F with | | / | | F < 1 and a compact subset G of X\F,
there exists an extension g e A of / such that

| | 0 | | x < m a x { l , t } , \g(x)\<t all xeG .

The extension constant e(A, F) of F associated with A\Γ is defined
by the formula:

(7.1) e(A,F) = int{t\ A\F has property Et} .

If A\F has property Et for no £, then we define e(A, F) = oo.
The connection between the extension constant and the require-

ment (G.I) is expressed in the following:

THEOREM 7.2. (Gamelin-Glicksberg). Let F he a compact subset
of X. Then the following conditions are equivalent:

( i ) μeAL=>μ\FeAL

(ii) e(A,F) = 0
(iii) F is an intersection of peak sets for A.

Proof. See [9] and [10].

PROPOSITION 7.3. Let A be a sup-norm algebra over X and let F
be a compact subset of 3AX satisfying the requirement (A.I). Also let
G be a compact subset of X\FA and let ε > 0. Then there exists a
function ae A such that

( i ) a(x) = 1 for all XGFA

( i i ) \a(x)\ < e f o r a l l x e G
(iii) | | α | | x - l .

Proof. Choose >v as in Lemma 5.3 and let α 0 eA\ F , a0 = 1. Using
Theorem 4.5 we obtain a function b e A such that

b\F = l, \b(x)\^ψ(x) for all xeX.

Cleary b(x) - 1 for all x e FA and ] b(x) | < 1 for all xeG. Now
choose a natural number n such that (||b \\G)

n < ε and define a = bn. The
proof is complete.

We are now able to clarify the connection between (A.I) and the
extension constant of FA.

THEOREM 7.4. Let A be a sup-norm algebra over X and let F be
a compact subset of dAX. Then e(A, FA) — 0 if and only if F satisfies
(A.I) i.e.
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μeM(dAX)f]A1=>μ\FeAL .

Proof. By virtue of Theorem 7.2 and the fact that μ \FA = μ \F

for every μeM(dAX), if follows that e(A, FA) = 0 implies (A.I).
Now assume (A.I) and let aoe A\FΛ with ||αo||irΛ = ||αo||jp < 1. Let

G be a compact subset of X\FA and let ε > 0. We choose be A such
that \\b\\x = | | α o | | F and b\F = ao\F according to Corollary (4.6), and we
choose he A according to Proposition (7.3) i.e.

h\FΛ = 1, \h(x)\ < ε f o r a l l xeG

and ||fe||x = l . Then we define a = h beA. Now, a is a norm
preserving extension of α0 and |a(x) | < ε for all xeG. Hence A\FA
has property Eε for all ε > 0, and so we have proved that e(A, FA) = 0.

Thus we see how the requirements (A.I), (G.I) and (G.2) are re-
lated for sup norm algebras. (A.I) and (G.2) are always equivalent
for every compact subset F of dAX, and if in addition F is A-convex,
then they are equivalent to (G.I). This is not always the case even
if A is an algebra and F satisfies (A.I), as can be seen from the
following example

EXAMPLE 7.5. (The "Tomato Can Algebra").

Let X c R x C be defined as {(ί, z)\te [0,1], \z\ ^ 1}; let A be the
sup-norm algebra consisting all functions f e ^dX) such that /(0, z)
is analytic for \z\ < 1; and let F = {(0, z)\\z\ — 1}. Then F satisfies
(A.I) and FA = {(0,z)\\z\ ^ 1}.

Proof. We first note that

dAX={(t,z)\te]O,l],\z\£l o r ί = 0 , | s | = l } .

Hence the Shilov boundary dsA = dAX is all of X, and it also
follows that X is the maximal ideal space MA of A.

If G is a compact subset of X\{(0, z)\\z\ ^ 1}, then G is a peak
interpolation set for A and A\G = ^C(G). Hence if μ e AL then μ\G — 0.
In other words supp(μ) c {0, z)\ \z\ ^ 1} for all μeA1.

Now assume μeM(dAX) Π A1. Then μ\F = μeA1. Hence F
satisfies (A.I) but trivially FA = {(0, z)\\z\ ^ 1}; and the proof is
complete.

This example shows also that (A.I) and (G.I) need not be equivalent
even if we consider A as a sup-norm algebra over the maximal ideal
space or the Shilov boundary.

Finally we remark that if X is a compact subset of C and
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A — R{X) lax, i.e., if A is the uniform closure of the rational functions
on X considered as a function algebra over the topological boundary
dX, then the two conditions (A.I) and (G.I) are equivalent since F — FA

for every compact subset F of dAX. In fact for a point z0 e 3X\F we
choose / = (1/z — Zi) e A, where z^X and

= i inf I z - zQ

and obtain \f(zo)\ = 2 sup \f(z)\.
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