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CHARACTERIZATION OF THE ENDOMORPHISM
RINGS OF DIVISIBLE TORSION MODULES

AND REDUCED COMPLETE TORSION-
FREE MODULES OVER COMPLETE

DISCRETE VALUATION RINGS

WOLFGANG LIEBERT

Let R be a complete discrete valuation ring" (possibly
non-commutative). If K is the quotient field of R then there
is an isomorphism between the category of divisible torsion
R-modules G and the category of reduced complete torsion-
free ^-modules H given by G-+H = Horn* (K/R, G). More-
over, the -β-endomorphism ring E(G) is naturally isomorphic
to the i?-endomorphism ring E(H) of H. It is the purpose
of this paper to find necessary and sufficient conditions for
an abstract ring to be isomorphic to the ϋNendomorphism
ring of such an ϋNmodule.

Our problem has already been solved in the special case where R
is a (not necessarily commutative) field. In [16] Wolfson characterized
the ring E of all linear transformations of a vector space over a field
by the following four properties: (1) Eo, the socle of E, is not a
zero ring, and is contained in every nonzero two-sided ideal of E,
(2) If L is a left ideal of E which is annihilated on the right only
by zero, then Eo c L. (3) The sum of two left (right) annihilators
is a left (right) annihilator. (4) E possesses an identity element.
Our main theorem may be considered as an extension of Wolfson's
beautiful result to the case of an arbitrary complete discrete valua-
tion ring. So, for example, in passing from the vector space case to
this general one, "subspace" now becomes "direct summand" and "zero
ideal" translates to "Jacobson radical". If H is a vector space over
a field R, then the structure of its iZ-endomorphism ring E(H) is to
a large extent determined by the ideal E0(H) of all i?-endomorphisms
which map H onto a subspace of finite rank. In this case E0(H) is
the socle of E(H), the sum of all minimal left (right) ideals of E(H).
If R is an arbitrary complete discrete valuation ring and H a reduced
complete torsion-free i?-module, then E0(H) determines again the be-
havior of the entire ring E(H). The proper generalization now reads:
E0(H) is the sum of all minimal nonradical left (right) ideals of E(H).
Here we call an ideal of a ring E nonradical if it is not contained
in the Jacobson radical J(E) of E. And by a minimal nonradical ideal
we mean an ideal I which is nonradical and has the property that
every ideal of E which is properly contained in / belongs to J(E).
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If we define the J-adic topology of a ring by taking the powers
of its Jacobson radical as a neighborhood basis at zero, then we can
state our main result as follows. The following three properties of
an abstract ring E are equivalent:

I. E is isomorphic to the endomorphism ring of a divisible
torsion module over a complete discrete valuation ring.

II. E is isomorphic to the endomorphism ring of a reduced com-
plete torsion-free module over a complete discrete valuation ring.

III. (1) E is Hausdorff and complete in its J-adic topology.
(2) J(E) = pE = Ep, where p is either zero or a non-zero-divisor

of E.
(3) Eo, the sum of all minimal nonradical right ideals of E, is

not a zero ring, and is contained in every nonradical two-sided ideal
of E.

(4) Let L be a left ideal of E which is closed in the J-adic
topology of E and satisfies pE n L = pL. If the right annihilator of
L is zero, then L contains Eo.

(5) Let A and L2 be left annihilators in E whose intersection
is zero. If pE Π ( I Ί + L2) = p{Lγ + L2), then Lγ + L2 is a left anni-
hilator.

( 6 ) E has an identity element.

The similarity to Wolfson's characterization theorem is apparent.
In fact, for p = 0 these are Wolfson's conditions, however, our theo-
rem doesn't say explicitly that in this case the complete discrete
valuation ring reduces to a field. Our theorem is proved by modify-
ing the methods used by Wolf son in [16]. The main tool is a Galois
correspondence between the annihilators of the endomorphism rings
and the direct summands of the underlying modules. Use is also
made of the fact that these endomorphism rings are generated by their
idempotents. This paper continues the author's work in [10, 11, 12].

2* Complete discrete valuation rings*

DEFINITION. A ring R with Jacobson radical J(R) is a complete
discrete valuation ring if it satisfies the following conditions:

(1) R/J(R) is a (not necessarily commutative) field.
(2) J{R) = pR — Rpf where p is either zero or a non-nilpotent

element of R.
(3) JB is Hausdorff and complete in its J-adic topology.
(4) R possesses an identity element.

Thus complete discrete valuation rings need not be commutative.
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A typical example is provided by the ring of all formal power series
in one indeterminate x over a (not necessarily commutative) field F
together with the rule kx = xka for all x e F, where a is an auto-
morphism of F.

Our intention is to give a ring-theoretical characterization of the
endomorphism rings of certain i?-modules. If p = 0 in the definition
above, then R is a field and the i?-modules are just the vector spaces.
Since their endomorphism rings have already been characterized
(Wolfson [16]), we shall henceforth assume that p Φ 0. The follow-
ing properties of a complete discrete valuation ring R are immediate
consequences of the above definition. For more details see Baer [1, 3].

(2.1) J(R) is the set of all non-units of R.

(2.2) Every nonzero ideal of R is two-sided and has the form
J(RY = pΉ = Rpt with 0 ^ ί.

(2.3) Every element r Φ 0 of R has a unique representation of
the form r = ph^r)s = tph{r\ where s and t are units in R.

(2.4) R has no zero-divisors.

(2.5) For every t in R there is a ring automorphism σ(t) of R
with rt = trσit) for all reR. For ί = 0we define σ(0) = 1. In par-
ticular R satisfies the Ore condition

xy = yxσ{y) = yσ{x) 'x
for all x, y e R.

(2.6) It is well known that (2.5) implies the existence of a unique
quotient field K of R into which R can be embedded. The elements
of K may be represented in the form rp~ι with r e R and 0 ^ ί.
Addition and multiplication in K are defined by

rp~ι + sp~j = (rpj + spi)p~i~j

(rp-1) (sp~j) = ( r s σ ( p i ) ) p - w .

And the multiplicative inverse of τp~ι is (pH~ι)p~h{r\ if r = pMr)£ with
t a unit in R.

(2.7) Every ring automorphism a of R can be extended to an
automorphism a of if by defining {rp~l)a = {raejι)p~\ where {pl)a =
p% with βi a unit in i2. Then (2.5) yields that for every reR there
is an automorphism σ(r) of K which satisfies kr = rkσ{r) for every
keK.
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(2.8) The jR-module K/R contains for every i exactly one sub-
module isomorphic to jβ/p\β, and is the union of all of them. There-
fore we have Rx = xR for every x e K/R, that is to say, if x e K/R
and r e R then there exists an element s in R such that rx = xs.
Now only a minor modification of a proof in Fuchs [4] (Example 5,
p. 211) is necessary to show that the i?-endomorphism ring of K/R
is isomorphic to R. Moreover, it follows from (2.7) that for every
te R there exists a group automorphism σ(t) of K/R satisfying (rx)σ{t) =
τait)χoW a n ( J χ t = tχa(t) foγ a l J r e R a n ( J χ e g/β^

In the following R will always be a complete discrete valuation
ring with quotient field K. Once for all: module means left module
and homomorphisms operate on the right side of their arguments.
The ring of all i?-endomorphisms of an i?-module M will be denoted
by E(M). We shall be concerned with divisible torsion and reduced
complete torsion-free jR-modules. The theory of these modules is al-
most identical with the theory of the corresponding modules over
commutative valuation rings as presented in Kaplansky [7]. Only
some slight formal changes have to be made in so far as typical
commutative arguments will now involve the automorphisms σ(r)
described above. We shall briefly indicate some of these changes,
others we leave to the reader.

3* Divisible torsion i?-modules and their homomorphisms*
An iϋ-module D is called divisible if D — RD. Alternatively, D is
divisible if D = pD. We call an iϋ-module reduced if it has no non-
zero divisible submodules. The following characterization of the di-
visible i?-modules can be found in Baer [3] (§4) or Kaplansky [7] (§5).

THEOREM 3.1. The following properties of an R-module D Φ 0
are equivalent',

(1) D is divisible.
(2) D is a direct sum of modules each isomorphic to K or K/R.
(3) D is a direct summand of every containing module.
(4) If M is an R-module and N a submodule of M, then every

R-homomorphism of N into D can be extended to an R-homomorphism
of M into D.

Let M be an iϋ-module. If x is an element in M, then the order
o(x) of x is the set of all reR with rx = 0. Evidently o{x) is a left
ideal in R. It follows from (2.2) that o(x) is either zero or has the
form pιR = Rp\ The set of all x in M with o(x) Φ 0 is a submodule
tM of M, the so-called torsion submodule of M. If tM = M, we say
that M is a torsion module, and if tM = 0, we shall say that M is
torsion-free. Now let G be a divisible torsion i?-module. We know



CHARACTERIZATION OF THE ENDOMORPHISM RINGS 145

from (3.1) that G is the direct sum of modules each isomorphic to
K/R. Define G[p<] = {xeG\p*R c o(x)}. Then G[pl] is a submodule
of G which is fully invariant (it is sent into itself by every iϋ-endo-
morphism of G). Moreover, G[p*] may be regarded in a natural way
as an R/pΉ-modxύe. We define the rank r(G) of G to be the rank
of the vector space G[p] over the field R/pR. Obviously r(G) is just
the cardinal number of K/R summands in the above direct decompo-
sition of Go It is a fact that r{G) determines G up to isomorphism
as an R-module.

Now let V(G) be the set of all divisible submodules of G. Then
V(G) is partially ordered by set-theoretical inclusion, and for any two
elements V1? V2e V(G) there exists an inf (F 1 ? F2), namely the maximal
divisible submodule of VXΓ\ V2, and a sup(F l 7 V2), namely Vι + V2.
Therefore V(G) is a lattice, which is the same as the lattice of all
direct summands of G. Let us briefly show how to recapture r{G)
from V{G).

If L is any lattice and x an arbitrary element of L, then by an
£-chain in L we mean any subset C of L which is well-ordered by
the lattice order such that each member of C is bounded above by x
and is not a minimum of L. The rank of x is the least upper bound
of the set of all cardinals of x-chains in L.

Now consider V(G) and pick Fe V(G). Then F is the direct sum
of submodules Fif ί ranging over an index set /, each Fi isomorphic
with K/R. I can be well-ordered by some relation, say > . Let S
be the set of all nonempty >-initial segments of I. For each T e S ,
let Fτ be the direct sum of the Ft, t e T. Then the set of all Fτ for
some T e S is a maximal F-chain in V(G). It is immediate that every
maximal F-chain may be obtained in this way and that every given
F-chain can be refined to a maximal one. The cardinal number of
each of these maximal F-chains is just r(F). Hence the concept of
lattice rank of F coincides with its module rank.

For the following choose a fixed decomposition of G into the direct
sum of submodules Gif each isomorphic to K/R. By (2.8), each Gι
possesses a group automorphism σ^r) for every reR, satisfying
(λ0ί)σί(r) = Xσiir)gϊ*lr) for all XeR and gi e G<. We can therefore obtain
a group automorphism σ(r) of G itself, satisfying (Xg)σ{r) = χσirlgσ{r)

for every g eG, if we just define it componentwise: σ(r) — o^r) on G^
Although σ{r) need not be an ί?-automorphism, it maps submodules
of G onto submodules: if S is a submodule, then Sσ{r} = (RS)σ{r) =
Rσ{r)Sσirl = RSσ{r). And if S is divisible and, say, pσ{r) = prr with r '
a uni t in R, then Sa{r) = (pS)σ{r) = p°^Sσ{r) = pr'Sσ{r> = pSσ{r), so t h a t

Sσ{r) is divisible too. In particular, σ(r) maps each G[pι] onto itself
since for each i ^ 0, G[pi+1]/G[p%] is the sum of all minimal submodules
of the i£-module G/G[p*].
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Next, let λ e R. Then (2.8) suggests that we define a map X of
G into itself by gX = XgσU) for all g e G. Clearly λ is additive. More-
over, if reR, then

(rg)X = X(rg)σU) = χr

σ{λ)gσa) = rXgσ{λ) = r(gX) .

Consequently X is an ΐJ-endomorphism of G. If X belongs to the center
of R, then σ(X) = 1, so that in this case the i?-endomorphism λ is
just multiplication of the elements of G by λ.

We have thus proved

LEMMA 3.2. For every Xe R, G possesses a group automorphism
σ(X) and an R-endomorphism X satisfying

(rg)°a) = r°a)gσ{λ) for all reR and geG

gχ = λgσU) for all geG .

Moreover, o(λ) maps submodules onto submodules and divisible sub-
modules onto divisible ones. In particular, each G[pι] is mapped onto
itself by σ(X).

In the following let F and G be divisible torsion iϋ-modules, and
let us consider H = Ή.omR(F, G), the set of all 12-homomorphisms
from F into G. It follows from (3.2) that we can put an iϋ-module
structure on H by defining x(Xφ) = Xx°a)φ for all xeF,XeR and
φ e H. Thus λ0 is the product of the i?-endomorphism X of F with
the i2-homomorphism φ from F into G. But we emphasize that, un-
less R is commutative or F ~ K/R, this is not a canonical way of
turning H into an ϋ?-module because in (3.2) the mappings λ and
σ(X) cannot be defined in a natural way. However, it will be a con-
sequence of the following lemma that the submodules pnH of H are
independent of the particular choice of λ and σ(X) in (3.2). Therefore
we can introduce the p-adic topology on H in a natural way by using
the submodules pnH as neighborhoods of 0. We wish to determine
the ίϊ-module type of H.

LEMMA 3.3. Let aeH= RomR(F, G). Then a annihilates F[pn]
if and only if ae pnH.

Proof. Assume F[pn]a = 0 and let f eF. Because pnF = F, there
exists an element f eF such that / = pnf. Define a map β of F
into G by fβ = [f'^^Ya. Then β is well-defined because if pnf, =
pnf2, then fγ — f2eF[pn], so that fxa = f2a. Clearly β is additive.
Let reR. Then rf = rpnf = pn

r

σ{pnf. Therefore we can choose
(rfy = rσ{pnf. Thus



CHARACTERIZATION OF THE ENDOMORPHISM RINGS 147

(rf)β = [{rf)^n)-ι\a = [r°w-1f°wι\'a

= {r[fσ[»n)-ι\')a = r{[f^n)-ι\a) = r{fβ) .

Consequently β is an jβ-homomorphism from F into G. Also

fp*β = pnf°^n)β = pn(f'a) = (pnf')a = fa .

Therefore a = pnβ e pnH.

Conversely, assume that a e pnH, say, a = pna! for some a! e H.
Then from (3.2) we obtain

F[pn]a = F[pn\{pna') = pnF[pn]σ{pn)a' = {pnF[pn])a' = 0 .

This completes our proof.

LEMMA 3.4. Hom^ (F, G) is a reduced torsion-free R-module which
is Hausdorff and complete in its p-adic topology.

Proof. Let H = Hom^ (F, G). If a e f|» PnH, then

Fa = (U F[pn])a = \J (F[pn]a) = 0 .
n n

Hence f]n pnH = 0. Consequently H is reduced. Next, let 0 Φ φ e H
and λ e o(φ) = {reR\rφ = 0}. Assume λ Φ 0. Then λ = λ'pπ with λ'
a unit in i? and n ^ 0. Now, applying (3.2),

0 - ί\V) = (\FσU))φ = (\F)φ = (λ'pnF)φ = (λ'F)^ - ^ .

But this contradicts our choice of ό. Hence o{φ) ==0, so that H is
torsion-free.

Finally we establish the completeness of H in its p-adic topology.
It follows from f)n pnH = 0 that H is a Hausdorff space. So let (α )̂
be a Cauchy sequence in i ϊ . If x e F, then x e F[pk] for some positive
integer k. By (3.3), there exists an index j k such that a{ — aj}c an-
nihilates F[pk] for all i ^ ^ . Hence x ^ = xajjc for all i^jk. Define
xa — xajjc. Then a represents a well-defined ϋMiomomorphism from
F into Go Moreover, a — ai annihilates F[pk] for all i ^ i/c. By
(3.3), this means that a — a^ pkH. Thus a is the limit of (α^).
Consequently i ί is complete.

We shall now turn to the special case F = G and characterize
the Jacobson radical of E(G) = Hom^ (G? G). Four further lemmas
are needed. The first one follows immediately from (3.1) (4). Let
P(G[pn]) denote the set of all iϋ-endoinorphisms of G which annihilate
G[pn], It is obvious that P(G[pn]) is a two-sided ideal of E(G).

LEMMA 3.5. E(G)/P(G[pn]) is isomorphic with the R/pnR-endo-
morphism ring of G[pn],
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LEMMA 3.6. P(G[pn]) = pnE(G) = E(G)pn.

Proof. The left hand equation is a special case of (3.3). To prove
pnE(G) c E(G)p%, let p*φ e pnE{G) and geG. Define ga = {gσ[pn)φ)σ{pn)~\
It is immediate that a is an additive map of G into itself. If reRr

then, by (3.2),

σ{pn)~ι =(rg)a = [{rg)σ{pn)φ\

Thus a is an iϋ-endomorphism of G. Moreover, again using (3.2),

g(apn) = (ga)pn = pn(ga)σ{pn) = pn(gσ{p%)φ)

Therefore pnφ = apn, and it follows that pnE(G) c E(G)pn.
We complete the proof by showing that E(G)pn c P(G[p%]). If

βeE(G), then, by (3.2),

G[pn]βp* = pnG[pn]σ{pn)β = pnG[pn]β = 0 .

LEMMA 3.7. / / 0 Φ βe R, then the R-endomorphism β of G is
not a zero-divisor in E(G).

Proof. The fact that β is not a left-zero-divisor in E(G) follows
from the torsion-freeness of Hom^ (G, G) in (3.4). On the other hand,
if a G E(G) and aβ = 0, then we write β = p{β' in R with β' a unit
in R and obtain

0 = Gaβ = (Gα)/5 = p*0(Gay^ = p^Gayw .

But Gα, and therefore, by (3.2), also (Ga)σ{β) is divisible. Hence
(Ga)σ{β) = 0, hence Ga = 0, hence a = 0. Thus β also cannot be a
right-zero-divisor in

LEMMA 3.8. Let aeE(G). Then a is an automorphism if and
only if it induces an automorphism in G[p].

Proof. The necessity is clear. Let K(a) be the kernel of a. If
K{a) Π G[p] = 0, then K(a) = 0. Hence a is one-to-one. Moreover,
Ga is divisible since it is a homomorphic image of G. But G[p] a
Ga. Hence Ga = G, which completes the proof.

The first part of the following characterization of the Jacobson
radical J(E{G)) of E(G) also follows from a result of Utumi ([14],
Lemma 8, p. 19).
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THEOREM 3.9. There exists a non-zero-divisor p in E(G) such that
J(E{G)) = P(G[p]) = pE(G) = E(G)p.

Proof. The i2/pi?-endomorphism ring of the vector space G[p] has
zero Jacobson radical. Therefore (3.5) implies that J(E(G)) c P(G[p]).
Conversely, let aeP(G[p]). Then it follows from (3.8) that 1 - a is
a unit in E(G). Since P(G[p]) is an ideal of E(G), this implies that
aeJ(E(G)) (see Jacobson [6], pp. 9 and 10). Thus P(G[p]) aJ(E{G)).
Consequently J(E(G)) = P(G[p]). The remainder is (3.6) and (3.7),

COROLLARY 3.10. E(G) is Hausdorff and complete in its J-adic
topology.

Proof. This is an immediate consequence of (3.4) and (3.9).

STRUCTURE THEOREM 3.11. The following properties of the divi-
sible torsion R-modules Gt and G2 are equivalent:

( 1 ) E{G,) =
( 2 ) GM =
( 3 ) Gi = G2

( 4 )

( 5 )

Proof. Let E(Gd = E(G2). Then EiGJ/JiEiGJ) and E(G2)/J(E(G2))
are isomorphic. It follows from (3.5) and (3.9) that EiG^p] = E(G2[p]).
This implies G\p] = G2[p] (Baer [2], Structure Theorem, p. 183). It
is now clear how to complete the proof.

4* Reduced complete torsion-free jR-modules* Let H be an
i?-module. If an element y in H, is divisible by pn but not by pn^\
then we say that y has height n. And y has infinite height if it is
divisible by pn for every n. A submodule B of H is pure if pnB —
B Π PnH for all n, i.e., if its elements have the same height in B as
in H. In a torsion-free i?-module the elements of infinite height form
a divisible submodule. Consequently, if H is reduced and torsion-free,
then it is without elements of infinite height: f\np

nH= 0. We intro-
duce the p-adic topology on such a module by using the submodules
pnH as neighborhoods of 0. If H is complete in its p-adic topology,
we shall simply call it complete. For the classification of the reduced
complete torsion-free i?-modules the notion of a basic submodule is
essential. This concept has been introduced in the theory of abelian
groups by Kulikov [8]. The following lemma is due to Warfield
([15], Lemma 3), where it is stated for commutative R.
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LEMMA 4.1. Let Hbe a torsion-free R-module and let φ: H-^H/pH
be the natural epimorphίsm. Let (x^ be a R/pR-basis for H/pH, ί
ranging over some index set I. Choose elements yu iel, in H such
that yiφ = Xi. Let B be the submodule of H generated by the y^s. Then

(1) B is a free R-module on the generators y{.
(2) H/B is divisible.
(3) B is pure in H.

DEFINITION. A submodule B of a torsion-free i?-module H is
called a basic submodule if it satisfies the conditions (l)-(3) of (4.1).

It is clear that every basic submodule of H arises in this way.
Since property (2) of (4.1) is equivalent with the density of B in if,
we obtain the following well-known characterization of the reduced
complete torsion-free iϋ-modules. (2) is essentially due to Kaplansky
([7], Theorem 22, p. 51) and (3) is analogous to results proved for
p-groups by Leptin ([9], property 12, p. 85).

THEOREM 4.2. The following properties of a reduced torsion-free
R-module H are equivalent:

(1) H is complete.
(2) If B is a basic submodule of H, then H is the completion

(in the p-adic topology) of B.
(3 ) If B is a basic submodule of H, then every R-homomorphism

B—» H extends uniquely to an R-endomorphism of H.

In (3.4) we saw that H = Hom^ (F, G) is a reduced complete
torsion-free iϋ-module, if F and G are divisible torsion .β-modules.
In the special case F = K/R we shall now construct a basic sub-
module of H.

LEMMA 4.3. Let G be a divisible torsion R-module and H =
Hom^ (K/R, G). Let G = φ ί e / G i with each Gi~K/R. Choose iso-
morphisms φi,iel, between K/R and G> Then the φ^s, considered
as elements of H, generate a basic submodule of H.

Proof. By (4.1) we have to show that modulo pH the φ/s form
a basis of H/pH. To verify that they are linearly independent modulo
pH, suppose that there exist finitely many rά e R such that I(r$,) =
pa with aeH. If xeK/R[p], then by (3.2) and (3.3)

0 = xpa = xΣirjφj) - Σ{xrάφά) = I(rax
a{r!^5) .

But for arbitrary y e K/R the elements yφ, are independent in G since
G is the direct sum of the G/s. This implies that all rjX'Wφj = 0.
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T h e n x(r3 φj) = 0, w h e n c e rjφj-epH, b y (3.3). T h e r e f o r e t h e φiS a r e

independent modulo pH. Assume now that 0 Φ ae H. Then there
exists x Φ 0 in K\R such that xa Φ 0. Write xa = 2^, with ^ 6 (?f

(almost all Xi = 0). It is clear that x4 is contained in the cyclic sub-
module of Gt which is generated by xφi. Thus, we can find Ue R
such that Uixφi) = a?*. And from (2.8) we obtain the existence of
Siβ R with tiX — xSi. It follows that

xlistfi) = Σx(Siφi) = Σ(x8i)φi = Σ(tiX)φi = ΣU{xφi) = Σx, = xα .

Hence, if o(x) = pnR, then x generates K/R[pn] and therefore a —
i'ίs^ί) annihilates K/R[pn]. By (3.3), we have a - Σfaφi) e pΉ, so
that the set {φi9 a} is no more independent. This proves that the
φ^s form a maximal modulo pH linearly independent subset of H, as
required.

Let H be a reduced torsion-free iϋ-module. We define the rank
r(H) of H to be the vector space rank of H/pH over R/pR. If 5 is
a basic submodule of H, then B/pB ~ HJpH. Therefore r(H) = r(B).
And r(S) is of course equal to the usual rank of B as a free ϋ?-module,
that is, to the maximum number of linearly independent elements in
B (which determines B up to isomorphism as an jβ-module). Accord-
ing to an analogous result for p-groups (Fuchs [4], Corollary 34.2,
p. 115), two reduced complete torsion-free R-modules are isomorphic
if and only if their basic submodules are isomorphic. Thus we obtain

LEMMA 4.4. The following properties of the reduced complete
torsion-free R-modules Hx and H2 are equivalent:

(1) fli = J3i
(2)

The next two lemmas shall be needed later. In the first one we
determine the Frattini submodule F(H) of H. It is defined to be
the intersection of H with all its maximal submodules. And the
second direct summand lemma is again due to Kaplansky ([7], Theo-
rem 23, p. 52).

LEMMA 4.5. If H is an R-module, then F(H) = pH.

Proof. If H has no maximal submodules then H is divisible
(Baer [3], p. 51). In that case F(H) = H = pH. Next assume that
H possesses a maximal submodule M. Suppose pH & M. Then there
is an element h in H such that ph and M generate H. Hence we can
find elements me M and r e R with h = rph + m. Since 1 — rp is a
unit in R, we have h = (1 — rp)~ιm e M> a contradiction. We deduce
that pHdF(H). Finally F(H/pH) = 0 implies F{H) - pH.
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LEMMA 4.6. Let H be a reduced torsion-free R-module and S a
pure complete submodule. Then S is a direct summand of H.

Let H be a reduced complete torsion-free iϋ-module and V(H) the
set of all its pure complete submodules. The torsion-freeness of H
guarantees that the intersection of any number of pure submodules
is again pure. Therefore V(H) is a lattice with inf (Si, S2) = S1 Π S2

and sup (Si, S2) equal to the unique smallest pure complete submodule
of H containing Sλ and S2. Since the completion of a pure submodule
is likewise pure in H (Kaplansky [7], Lemma 20, p. 51), sup (Sl9 S2)
is the completion of the purification of S1 + S2. By (4.6), V{H) is
the lattice of all direct summands of H. We shall have to say more
about V(H) in the following sections.

5. The Harrison-Matlis duality* Let F and G be divisible R-
modules. We know from (3.4) that Homβ (F, G) is a reduced complete
torsion-free 12-module. It is now easy to see that every reduced com-
plete torsion-free i?-module can be realized in this way as Hom^ (F, G)
for suitable divisible torsion JS-modules F and G.

LEMMA 5.1 Let G be a divisible torsion R-module and H =
Horn* {KIR, G). Then r{H) = r(G).

Proof. Define φif iel, as in (4.3), so that they generate a basic
submodule B of H. Then the cardinality of the index set / equals
r(B). But on the other hand, this cardinality is clearly just the rank
r(G) of G. Since r{B) = r(H), it follows that r(H) = r(G), as required.

Since, by (3.11) and (4.4), G and H are both determined up to
isomorphism by their rank, we obtain

THEOREM 5.2. The mapping G—>Ή.omR (K/R, G) gives a one-to-one
correspondence between all divisible torsion R-modules G and all reduced
complete torsion-free R-modules.

This is one half of a duality exhibited by Harrison in [5] between
the divisible torsion groups and the reduced complete torsion-free
groups, and later generalized by Matlis in [13] for the corresponding
modules over a (commutative) domain. The other half would be to
establish the inverse correspondence between all reduced complete
torsion-free i?-modules H and all divisible torsion i?-modules, given
by H—>K/R(g)RH. Again this may be done quite elementary (with-
out using homological methods) by showing that the tensor product
KjR®RH is a direct sum of r{H) copies of K/R (see Fuchs [4],
Theorem 65.4, p. 255). We leave it to the reader.
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We shall now exhibit natural isomorphisms between V(G) and
V(H) and between E(G) and E(H), where H = Horn* (K/R, G).

THEOREM 5.3. Let G be a divisible torsion R-module and H —
Horn,* {KIR, G). For Ue V(G) and Fe V(H) define

φ: U—IlomR(K/R, U)

7:F-+(K/R)F = {xa\xeK/R,aeF} .

Then the mappings ψ and 7 are reciprocal isomorphisms between V(G)
and V{H).

Proof. If F is a submodule of G, then Hom^ (K/R, F) is naturally
embedded in HomΛ (K/R, G). And if G = G, 0 G2, then

Horn,, (K/R, G, 0 G2) = Hom^ (K/R, Gx) © Horn* (K/R, G2) .

Therefore φ maps direct summands of G onto direct summands of H.
Let H= H,® H2 and define G, - (K/R)HL = HI and

G2 = (K/R)H2 = H,

We claim that G = G1Q)G2. If geG, then there exists k e K/R and
ae H such that ka = g. But α = αL + a2 with a^H^ Therefore
g =z ka = k(ax + <x>) = toi + ka2 e Gx + G2, which shows G = Gγ + G2.
To prove that this sum is direct, we pick any x e Gt Π G2. Then there
exist elements yζ e K/R and βi e Hi such that x = yιβι = y2β2. Without
loss of generality we can assume yι = y2 = ?/, since either ^ = r̂ /2 or
2/2 = ry1 for some r e R, so that by (2.8) we have, say, yιβι = (ry2)βί =
(2/2s)/Si = 2/2(s/3i) with s e i? and s^ e iϊ. Let o(y) = ̂ i2. Then {1/} =
ϋΓ/i2[pw]. Now, by (3.3), y(βx - β2) = 0 implies that & - /92 is divisible
by pn. This is possible only if βι and β2 are both divisible by pn.
Then a; = yβt = 7//S2 = 0. Hence G = GtQ)G2. Therefore, in particular,
7 maps direct summands of H onto direct summands of G.

If U is a direct summand of G, then clearly (K/R) Hom^ (-K/iϊ, Z7)
is contained in U. Conversely, let ue U. If o(u) = pmR, then pick
an element x in K/R with o(#) = pmi?. By (3.1), the i?-homomorphism
from {x} into ί7, which maps x onto u, can be extended to an R-
homomorphism of K/R into U. So U cz (K/R) RomR (K/R, U). Hence
U*r = U. Next, if H= H,@ H2, then clearly H, is contained in
HomΛ (K/R, (K/R)Hλ). Conversely, let a e H with (K/R)a c (K/R)Ht.
We must show that this implies aeH^ Suppose aίH^ Then a =
αx + <z> with αL e ίZi and 0 Φ a2 e H2. But, as above, G = (K/R)Ht 0
(K/R)H2. Hence there exists 7/ e ̂ /.R such that 0 Φ ya2 e (K/R)H2.
Then ya = yaγ + ya2£ (K/R)Hλ, contradicting the choice of a. So

^ (K/R, (K/R)!!,) c i?Ί. Hence Hγ = H?φ. Thus φ and 7 are re-
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ciprocal correspondences between V(G) and V(H). This implies in
particular that both mappings are one-to-one and exhaustive.

If U c K are direct summands of G, then Uφ c Kφ; and if M c N
are direct summands of H, then Mr c Nr. Consequently φ and 7 are
reciprocal isomorphisms between V(G) and V(H). This completes the
proof.

THEOREM 5.4. Lβ£ G be a divisible torsion R-module and H —
Ή.omR (K/R, G). Then there is a natural isomorphism between E(G)
and E{H).

Proof. There is a natural homomorphism a —> α:* from E{G) into
E(H), defined by ζα* = ζa for all ζ e H. Let ζ/S = 0 for all ζeH.
Then G/3 = (K/G)Hβ = 0, which implies /S = 0. Hence α—*a* is one-
to-one. To prove that it is onto, let σ e E(H). We must find a e E(G)
such that α* = σ. Write G = φ ί 6 7 G i with G< = ϋΓ/i? and choose
isomorphisms 9̂  from KIR onto G .̂ Considering the 9/s as elements
of H, define the J?-endomorphism α of G componentwise by gta =
(giφγι)(φiσ), if gtβGi. Then obviously &#* = ^ α = ^σ, so that α:*
and 0* have the same effect on φim But, by (4.3), the φ{'s generate a
basic submodule B of ZZ". Since B is dense in H, it follows immedia-
tely that a* = σ, as required.

STRUCTURE THEOREM 5.5. The following properties of a divisible
torsion R-module G and a reduced complete torsion-free R-module H
are equivalent:

(1) E(G)~E(H)
(2) H= HomΛ (K/R, G)
( 3 )
( 4 )
( 5 ) V(G) = V(H)
(6) r(G) = r(H).

Proof. By (5.2) there exists a divisible torsion iϋ-module G1 such
that H~Hι = Horn* (K/R, GJ. Then, using (5.1), r(G,) = r(iϊ ) =
r(H). Also E(Gd s ^(i?,) = E(H), by (5.4), and 7 ^ ) = V(fli) = 7(H),
by (5.3).

Now, if (1) is true, then E(G,) = E(G). By (3.11), this implies
that r(G) = r(G,). Thus r(G) = r(H), so that (6) is a consequence of

(1).
Suppose r(G) — r(H). We know that HomΛ (K/R, G) has the same

rank as G. Since, by (4.4), H is determined up to isomorphism by
its rank, (2) follows from (6).

If H = H2 = HomB (K/R, G), then clearly V(HZ) is isomorphic with
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V(H), and combining this isomorphism with the natural isomorphism
between V(G) and V(H2) of (5.3) yields an isomorphism of V(G) onto
V(H), so that (5) is a consequence of (2).

If V(G) is isomorphic with V(H), then V(G) ^ F ^ ) . Hence, by
(3.11), E{G) ~ E(GJ. Consequently E{G) ~ E(H). Thus (5) implies (1).

The equivalence of (4) and (6) is clear from our definition of r(G),
r{H) resp. And (3) has only been included for the sake of complete-
ness. This finishes the proof.

We can now obtain more information about a reduced complete
torsion-free iϋ-module H and its iϋ-endomorphism ring by dualizing
the results of § 3. We demonstrate the dualization of (3.9) and (3.10)
which yields a characterization of the Jacobson radical J(E{H)) of
E(H). Let Λ(pH) denote the set of all i?-endomorphisms of H which
map H into pH.

THEOREM 5.6. There exists a nonzero-divisor p in E(H) such that
J(E(H)) = A (pH) = pE(H) = E(H)p. And E(H)/J(E(H)) is isomor-
phic with the R/pR-endomorphisπι ring of H/pH. Moreover, E(H) is
Hausdorff and complete in its J-adic topology.

Proof. (5.2) implies the existence of a divisible torsion jR-module
G such that H=H1 = Homβ (K/R, G). By (5.4), there exists a natural
isomorphism * of E(G) onto EiH,). Hence (3.9) implies J(E{Hγ)) =
P{G[p\Y = P*E(Hι) = EiH^p*. We claim that P(G[pψ = A (pH,).
This is true because the following properties of a e E(G) are equivalent:

a e P(G[p]); G[p]a = 0; (K/R[p])Ht^ = 0; H,a* c pH,; a*eΛ

Here we have applied (3.1) (4), which yields (K/Rlp])^ = G[p], and
also (3.3).

Now let β be an isomorphism between i/Ί and H. Then β induces
an isomorphism β' between ^(ίZΊ) and E(H), defined by φβ' = β~ιφβ.
It follows from (4.5) that (pHJβ = pH. Therefore the following pro-
perties of the jβ-endomorphism φ of H are equivalent:

φ e A (pH,); H,φ c pH,; H(φβ') c pH; Φβr e A (pH) .

Thus [ΛipHflβ' = A (pH). Hence

J{E(H)) = [J(E{mW = [A{pHd\ff = A {PH)
= {p*β')E{H) = E{H){p*β') .

Now we change notation from p*βr to p and have the desired char-
acterization of J(E(H)).

Finally we observe that the constructed isomorphism *β' between
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E{G) and E(H) induces an isomorphism between E(G)/J(E(G)) and
E(H)/J(E(H)) and also, by (5.5), implies the existence of an isomor-
phism between G[p] and H/pH. Therefore, applying (3.5) and (3.9),
we obtain

E{H)U(E(H)) = E(G)/J(E(G)) = E(G[p]) = E(H/pH) ,

as required. The remainder is immediate from (3.10).
We conclude this section with the following remark. In (5.6) we

have defined p e E(H) to be the image of p e E(G) under an isomor-
phism between E(G) and E(H). Since peE(G) in general cannot be
defined in a natural way, the same is true for peE(H). There is
no way to avoid this if we allow R to be noncommutative. Of course
we can introduce p e E(H) directly (just as it is possible to prove (5.6)
directly). This would go as follows. We choose a fix basic submodule
B = (BieiBi of H with each Bt = R+. Let X e R. By (2.5), there
exists for each i e I a group automorphism σ^X) of Bt satisfying
(rb.yiw = rσia)bϊ*U) for all reR and δ< e B^ This defines a group
automorphism σ(X) of B itself with (rb)σU) = rσU)bσa) if we let σ(X) =
σ^X) on Bi. Then we extend σ(X) to a unique group automorphism
of H satisfying (rh)σU) = rσU)hσa). And now we can define an i?-endo-
morphism X of H by hX = XhσU} for all he H. It is clear, however,
that X e E(H) not only depends on the decomposition of B into the
direct sum of the 2?/s, but also on the choice of the isomorphisms
between the B/s and R+.

6* A Galois theory. A right (left) annihilator of a ring E is
the totality of elements in E which annihilate a certain subset of E
from the right (left). The intersection of any set of right (left) an-
nihilators is again a right (left) annihilator. Therefore the set of all
right (left) annihilators of E forms a lattice. In this section we will
relate the lattice of direct summands of a reduced complete torsion-
free i?-module H to the lattice of the left (right) annihilators of its
J?-endomorphism ring E(H). We closely follow methods by Bear in
[2], where a Galois correspondence was developed between the sub-
spaces of a vector space and the annihilators of its endomorphism
ring. See also Wolf son [16].

Let M be an u?-module and E(M) its i?-endomorphism ring. Let
E denote any subring of E(M). To each submodule S of M we as-
sociate two ideals of E, the right ideal P(S) = {aeE\Sa = 0} and
the left ideal A(S) = {βeE\Mβ c S}. If T is a subset of E, then
K{T) denotes the kernel of Γ, i.e., the totality of elements x in M
such that xT = 0. And R(T) denotes the totality of a in E such
that Ta = 0. Similarly, L{T) is the left annihilator of T.
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The proof of the following lemma may be found in Bear [2],
Chapter V. 2 or in Wolf son [16], §2.

LEMMA 6.1. Let M he an R-module and E any subrίng of E(M).
(1) Λ[K{T)] = L(T) for every subset T of E.
(2) P(MT) = R{T) for every subset T of E.
(3) P(S) = R[A(S)] for every submodule S of M satisfying

MΛ(S) = S.
(4) A(S) = L[P(S)] for every submodule S of M satisfying

K[P(S)] = S.

In what follows, H always is a reduced complete torsion-free R-
module. We denote by E0(H) the set of all i?-endomorphisms a of
H such that Ha has finite rank. We shall simply call them finite
iϋ-endomorphisms of H. Clearly E0(H) is a two-sided ideal in E(H).
Many of the properties of E(H) are already enjoyed by the subrings
between E0(H) and E(H). In fact, one can say that E0(H) determines
the behavior of the entire ring E(H).

LEMMA 6.2. Let E he a subrίng of E(H) containing E0(H). Then
HΛ(S) = S = K[P(S)] holds for every direct summand S of H.

Proof. Let H = S 0 Q. Since HΛ(S) c S follows from the
definition of Λ(S), it is only necessary to show that S c HA(S).
Write S = SiφS2 with r(Sί) = 1, and pick a generator x of S,. Then
for every s e S there is an i2-endomorphism as in EQ(H) satisfying
xas = s and (S2 + Q)as = 0. Now Has = Rs c S, and hence as e A(S).
Also seHasd HA(S), and therefore S c HΛ(S). Thus HΛ(S) = S.

Now we show K[P(S)] = S. Clearly S a K[P(S)]. Suppose h& S.
Then h = s + q with s e S and 0 Φ q e Q. Certainly we can find a
finite J?-endomorphism ψ of H satisfying Sφ = 0 but qψ Φ 0. Hence
0 ^ hφehP(S), which implies Ae iΓ[P(>S)], so that ίΓ[P(S)] c S, com-
pleting the proof.

LEMMA 6.3. // aeE(H), then K(a) is a direct summand of H.

Proof. Suppose that y e K(a) is a multiple of pn in H, say y =
pnh. Then 0 = ya = (p%A)α = pn(ha), so that te = 0 by the torsion-
freeness of if. Thus 2/ is already a multiple of p% in K{a). Hence
K{a) is a pure submodule of H. Moreover, we claim that it is com-
plete. Let (Xi) be a Cauchy sequence in K(a). Then (x^ has a limit
x in if. For any given integer n > 0, we have that for large ifx — al-
lies in pnH. Since p w i ί is a fully invariant submodule of H, this
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implies xae Γ\np
nH = 0. Hence x is already the desired limit in K(a)

of the sequence (a?;). Therefore, by (4.6), K(a) is a direct summand
of H.

LEMMA 6.4. Let E be a subring of E(H) which contains E0(H).
(1) If A is a right annihilator, then K(A) is a direct summand

of H and A = P[K(A)].
(2) If Q is a left annihilator, then HQ is a direct summand

of H and Q = Λ(HQ).

Proof. Let A be a right annihilator, so that A — R(T) for some
subset Tof E. Then R(T) = P(HT), by (6.1). Let D be the smallest
direct summand of H containing HT. Then it follows from (6.3) that
P(HT) = P(D). Now K(A) = K[P(HT)] = K[P{D)] = D, by (6.2).
Hence A = P[K(A)].

If Q is a left annihilator, then Q = L(S) for some subset S of
E. But L(S) = Λ[K(S)], by (6.1). The intersection of any number
of direct summands of H is a direct summand of H. Since K(S) =
Γ\βesK(β)> we obtain from (6.3) that K(S) is a direct summand of
H. Therefore, by (6.2), HQ = HΛ[K(S)] = K(S). This completes
the proof.

We can now proceed as in Baer [2] and Wolf son [16] to obtain
the following fundamental result.

THEOREM 6.5. Let E be a subring of E(H) containing all finite
R-endomorphisms of H.

(1) The mappings S—>P(S) and A-^K(A) are reciprocal lattice
anti-isomorphisms between the lattice of all direct summands S of H
and the lattice of all right annihilators A of E.

(2) The mappings S-^Λ(S) and Q-+HQ are reciprocal lattice
isomorphisms between the lattice of all direct summands S of H and
the lattice of all left annihilators Q of E.

It is well-known (Baer [2], Proposition 3, p. 179) that in the
endomorphism ring of a vector space over a field the sum of two left
(right) annihilators is again a left (right) annihilator. This is no
longer true for E(H). Suppose H has rank two, say H = {x}(B{y}.
Then LL = Λ({x}) and L2 = Λ({x + py}) are left annihilators (with in-
tersection zero), but their sum Lι + L2 = Λ({x} φ{py}) is not. There-
fore in general, the smallest left (right) annihilator containing two
given left (right) annihilators of E(H) will be larger than the sum
of the two.
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THEOREM 6.6. Suppose that Lι and L2 are left annihilators in
E(H) with L1ΠL2 = 0. / / (LL + L2) n pE{H) = p(L, + L2), then Lγ +
L2 is a left annihilator.

Proof. It is an immediate consequence of (6.5) that there exist
direct summands Ŝ  and S2 of H with Lt = Λ(Si) and L2 = Λ(S2)
and Si Π S2 = 0. We wish to show that SΣ + S2 is a direct summand
of H and that I,! + L2 = ΛiS, + S2). Let pnx = s, + s2eSι + S2 with
a; g pi ί . Then if = {#} 0 ikf for a suitable submodule M. Let <7 be
the projection of H onto {x} along Λf. There exist α< e L; with ##; = s4.
Let /9 be an iϋ-endomorphism of H with xβ = pnx. Then σβσ = (/(α^ +
α 2 ) e L ! + L2. Also σβσeΛ(pnH). By (5.6), there exists # in E{H)
such that o /9σ = pφσ. Since, by hypothesis, Z/x + L2 is "pure" in
E(H), it follows that 0σ e Lx + L2 c Λ(Sί + S2). Now write xp =
prx + w with y e M are r e R. Let ^cr = £sc and xφσ = sx with
s,teR. Then

pπx = xβ = xpφσ — prxφσ + P2/̂ ίT = prsx + pία; = p(rs + t)x ,

so that rs + ί = p*"1. Therefore £ and s cannot both be contained in
pnR. Since tx and sx are both contained in Sλ + S2, we conclude that
p7 1"1^ G A?! + S2. By induction, a? itself is an element of S, + S2. There-
fore S, + S2 is pure in H.

Next, let (^) be a Cauchy sequence in St + S2 whose limit in H
is z. Write zi — si]L + sί2 with si]L 6 Si and si2 e S2. Then the purity of
Sx + S2 together with Sx Π S2 = 0 imply that (sn) and (si2) are Cauchy
sequences in S19 S2 resp. Since SΣ and S2 are both complete, they have
limits zι and z2 in S^ S2 resp. Then of course we must have z — zι +
z2 e Sx + S2, which shows that ^ + S2 is complete. Thus Sι + S2 is a
direct summand of H, so that Λ(Sί + *S2) is a left annihilator in E(H),
by (6.5). If ^ is any element in A(Sι + S2) and /̂  any element in £Γ,
then fo0 is an element in the direct sum S1 0 S2. Hence there exist
uniquely determined elements hλ and h2 in Sλ and S2 respo such that
hφ = fe: + Λ2. Define ^4 by fe^i = fe<β Then ^̂  e ^(Si) and φ = ^L + ?2.
Hence LL + L2 = Λ(S1 + S2).

7* The finite endomorphisms* Throughout this section we
assume that H is a reduced complete torsion-free .B-module. We
have called an lϋ-endomorphism a of H finite if the submodule Ha
of H has finite rank. The main purpose of this section is to charac-
terize the ideal E0(H) of all finite lϋ-endomorphisms of H inside the
ring E(H). We require four lemmas.

We shall term an ideal of a ring E nonradical, if it is not con-
tained in the Jacobson radical J(E) of E. And by a minimal non-
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radical left (right) ideal of E we mean a left (right) ideal L which
is nonradical and has the property that every proper subideal of L is
contained in J(E).

LEMMA 7.1. Let E be a ring with Jacobson radical J(E). Suppose
that E contains a non-zero-divisor p such that J(E) = pE = Ep and
Π% PnE = 0. Then every minimal nonradical right (left) ideal of E
is a principal ideal generated by an idempotent.

Proof. We shall only prove the statement for right ideals since
the left ideal case is similar.

Let K be a minimal nonradical right ideal of E. If k2 e J(E) for
all ke Ky then [K + J(E)]/J(E) would be nil and consequently K c
J(E). Therefore we can find an element k in K such that k2£j(E).
The minimality of K implies K = kK = k2E.

Now suppose that for some ae E we have ap e K. We shall show
that this implies ae K. We can write ap — k2β for a suitable βe E.
Suppose that kβ£j(E). Then kβE = K, by the minimality of K.
Therefore there exists a τ e £ such that kβy = k. Hence k2 = k2βy =
apy e J(E). But this would contradict our choice of k. If follows that
kβeJ(E). Thus we can find an element φ in E such that kβ = όp.
Now ap = k2β = k(φp) — (kφ)p, so that (a — kφ)p — 0. Since p is not
a zero-divisor, we must have a — kφ, which implies that aeK. It
now follows from the hypothesis f\ PnE = 0 "that every nonzero ele-
ment of K has a unique representation of the form xpn with n ^ 0
and xe K but x £ J(E).

Next let us consider S = R(k) Π K, the set of all elements in K
which annihilate k from the right. Suppose S Φ 0. Let s be a non-
zero element of S. We can write s = srpm with m ^ 0 and s' e K but
s'$J(E). Then s'2? = if. Now pick σeE with s'σ = & and write
pmσr = σpm. Then

0 = 0σ' = (&s)<7' = ks'pmσ' = &s'σpw = k2pm ,

which yields /c2 = 0, since p is not a zero-divisor. This contradicts
again our choice of k. Hence S = 0.

Finally, we observe that kK = K. Therefore we can find a non-
zero element e e K such that ke = k. Then β2 — e e S. Thus the
element e is the desired idempotent in K. We now have K = eE
since K is minimal nonradical and e&J(E). The proof is complete.

A nonzero idempotent of a ring is called minimal if it cannot be
written as the sum of two orthogonal idempotents. Obviously, the
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minimal idempotents of E(H) are just the projections of H onto direct
summands of rank one. Thus, if e is a minimal idempotent in E(H)r

then there is a ring isomorphism eE(H)e = R.

LEMMA 7.2. The following properties of a left [right] ideal X of
E(H) are equivalent:

(1) There exists a direct summand F of rank [co-rank] one in
H such that X = Λ{F) [X = P(F)].

(2) X is a principal left [right] ideal generated by a minimal
idempotent.

(3) X is a minimal left [right] annihilator.
(4) X is a minimal nonradical left [right] ideal.

Proof. The equivalence of (1), (2) and (3) is an immediate con-
sequence of (6.5). We complete the proof by showing that (2) and
(4) are equivalent. Let X be a principal left [right] ideal of the
form E(H)e[eE(H)], with e a minimal idempotent of E{H). Let Y
be a left [right] ideal of E(H) which is properly contained in X.
Then eί Y2. Furthermore, Y2 = YeYe[eYeY]. Therefore eYe Φ
eE(H)e. But eE(H)e = R. Hence eYe c J(eYe) = eYe Π J(E(H)).
This implies Y2 c J(E(H)), whence YaJ(E(H)), since E(H)/J(E(H))
has no nonzero nilpotent ideals. Accordingly, X is minimal nonradical,
so that (4) is a consequence of (2). Finally, the implication (4) —> (2)
follows from (7.1) and (5.6).

LEMMA 7.3. If Zx and Z2 are nonradical two-sided ideals of E(H),
then ZγZ2 is likevjise nonradical.

Proof. If xe H and x £ pH, and if y e H, then there exists an
i?-endomorphism of H mapping x onto y. By (5.6), J(E{H)) = A(pH).
Therefore the hypothesis implies the existence of an element he H
such that h $ pH and hZι = H. If Z,Z2 c Λ(pH), then HZ2 = hZ,Z2 =

Hence Z2 c Λ(pH), which is a contradiction.

LEMMA 7.4. J(E0(H)) = pE0(H) = E0(H)p, and EQ(H)/J(E0(H)) is
isomorphic with E0(H/pH), the ring of all finite R/pR-endomcrphisms
of H/pH.

Proof. Let apeE0(H). Then, by (6.3), H= H.φKiap) with
r{Hλ) finite. But 0 = K{ap)ap = [K(ap)a]p implies that K{ap) = K(a),
since K(p) = 0 follows from (6.3) and the fact that p is not a zero-
divisor in E(H). Hence Ha = Hγa, hence r{Ha) is finite. Thus ae
E0(H).

Next, if φ is any element of E(H), then by (5.6) there exists an
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element φ' in E(H) such that pφ = φrp. Since p is not a zero-divisor
in E(H), the mapping φ-+φf constitutes an automorphism of E(H).
As a consequence of the following theorem, EQ(H) is automorphism
invariant. Therefore, if pa e E0(H), then a'p e E0(H), hence a' e EQ(H),
hence ae E0(H).

Since E0(H) is an ideal, we now obtain from (5.6) that J(E0(H)) =
E0(H) n J(E(H)) = p# 0(#) - #<>(#)*>.

To prove the statement about E0(H)/J(EQ(H)), note that pH is a
fully invariant submodule of H. Therefore every a e EQ(H) induces
a finite i?/^J?-endomorphism α* in H/pH. The map a—>a* is a ring
homomorphism from E0(H) into E0(H/pH) with kernel

Λ(piϊ) n #0(iϊ) - J(E0(H)).

We claim that it is an epimorphism. So let φe E0(H/pH), and let
7), p be the natural maps H—*H/pH, R—+R/pR resp. We may pick
a R/pR-b&sis ($<), i e l , for H/pH such that α?̂  = 0 for almost all
ί e J . Next, we choose elements y^iel, in H such that yj] = xi9

Then, by (4.1), the submodule I? of H, generated by the τ//s, is a
basic submodule of H. And we can write XiΦ = ^3-el (ri3 Xj) with
Tij-eR/pR and r^ = 0 for almost all j . Then choose elements si3 in
J? such that si3 p = r^ and s^ = 0 if riS = 0. Finally, define yφ =
Σιiei(s^ ?/i). Then β is a finite i2-endomorphism of B, and by (4.2),
it can be extended to a unique i?-endomorphism 7 of H. Since Uy
is a basic submodule of Hr, we have (Bj)/pBy = (Hy)/pHy, so that
r(Hy) must be finite. Consequently jeE0(H), and by construction
we have 7* = p. Thus α—>α* is onto. Hence E0(H)/J(E0(H)) =
E0(H/pH), as required.

We are now ready for the characterization of EQ(H).

THEOREM 7.5. E0(H) is both, the sum of all minimal nonradical
right ideals and the sum of all minimal nonradical left ideals of E(H).
Considered as a ring, E0(H) is simple modulo its Jacobson radical.
Moreover, E0(H) is contained in every nonradical two-sided ideal of
E(H).

Proof. If a is a finite i?-endomorphism of H, then by (6.3) we
can find a submodule F of finite rank such that H = F 0 K{a). Since
F is free, the first assertion of the theorem follows from (7.2).

It is well-known (Jacobson [6], Structure Theorem, p. 75) that
the finite endomorphisms of a vector space over a field form a simple
ring. Therefore (7.4) implies that EQ(H)/J(EQ(H)) is simple.

Finally, let Z be a nonradical two-sided ideal of E(H). Then
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ZEQ(H) is nonradical too, by (7.3). Hence E0(H) = ZE0(H) c Z. This
completes the proof.

The following result shows among other things how we can re-
capture the j?-module H from its iϋ-endomorphism ring E(H).

THEOREM 7.6. Suppose that M = eE(H) is a minimal nonradical
right ideal of E(H) [e is a minimal idempotent of E(H)]. Let R and
eE(H)e be endowed with their J-adic topologies. Then there is a
topological isomorphism β of the R-module H upon the eE(H)e-module
M which satisfies (HL)β = M f] L for every left ideal L of E(H).

Proof. We have H — HeQ)K(e), where He = Rx has rank one.
To every element reR there is one and only one jR-endomorphism

rβ _ erβe of ft with the property xrβ = rx and K(e)rβ = 0. And to
every element he H there exists one and only one j?-endomorphism
hβ = ehβ of H with the properties xhβ = h and K(e)hβ = 0. It is easy
to check that β effects a topological module isomorphism between the
.β-module H and the ei?(iϊ) β-module M.

Let L be a left ideal of E(H) and b e HL. Then b = yX with
y e H and λ e L. There exists an a in M such that xa = y. Since
M is a right and L a left ideal, we have aXe M f] L. It follows that
bβ = (yX)β = (xaX)β = αλ, so that (HL)β c l f l L . Conversely, pick
φ e M Π L. Then ό = (xφ)β e (HL)β, which implies that M Π L c (HL)β.
Thus (HL)β = M Π L.

COROLLARY 7.7. // L is a left ideal of E(H), then HL is a sub-
module of H.

We conclude this section with an important property of the finite
endomorphisms of H.

THEOREM 7,8. Let L be a left ideal of E(H) which is closed in the
J-adic topology of E{H) and satisfies L Π pE(H) = pL. Then R(L) = 0
if and only if L contains E0(H)»

Proof. HL is a submodule of H, by (7.7). We claim that it is
pure. Let he H and phe HL, so that ph — h'X with XeL. Choose
a decomposition H = {x} 0 F of H and let π be the projection of H
onto [x] along F« If ψ e E(H) is such that xφ = h\ then xπφX = ph
and πφX e πE(H) Π L» We derive from (5.6) [or from (7.6)] that
πφX e pE(H). Hence πφX e pLv say, πψx = pa with ae L« Now ph =
xpa = px'a for suitable xf e H, which implies that h = x'a e HL. This
shows that HL is a pure submodule of H.
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Moreover, HL is complete. To see that, let (xt) be a Cauchy
sequence in HL, say, x{ = y^ with λ4 e L. Now πE(H) is a minimal
nonradical right ideal of E(H), and there exist βieπE(H) such that
a /Si = i/i. Then x(βiXi) = ^ and /3Λ* e 7Γ#(£Γ) Π I/. Now (7.6) shows,
that (/3iλ») is a Cauchy sequence in the πE(H)π-module πE(H). But
J[πE{H)π] = πE{H)π n J{E{H)). Therefore (/2A ) is Cauchy in # ( # ) .
Since /2Λ; e L, and since L is closed in the J-adic topology of E(H),
this sequence has a limit λ in L. Evidently then (xj converges to
α λ in HL. Thus flL is a pure complete submodule of H, and as
such it is a direct summand, by (4.6).

Suppose that R{L) = 0. By (6.1), R(L) = P(HL). Hence P(HL) = 0.
But this implies that HL = H, since HL is a direct summand. If
now M is any minimal nonradical right ideal of E(H), then, by (7.6),
M = Hβ = (-HL)* = i ϊ f l i . Accordingly, every minimal nonradical
right ideal of E(H) is contained in L, so that E0(H) a L follows from
(7.5). Conversely, if E0(H) c L, then clearly HL = H. Applying
(6.1), we see that 0 = P(H) = P(HL) = R(L), as was to be proved.

8. The idempotents* In this section we establish the very
useful fact that the i?-endomorphism ring of a reduced complete tor-
sion-free iϋ-module H is generated by its idempotents. For the proof
we shall need the following argument. If fc$p is

 a n y cardinal number
smaller than or equal to r(H), then there exists a decomposition H =
Hγ © H2 of H with r(Hj) = ^ v . To see that, choose a basic submodule
B of H. Then r{H) = r(B), and certainly we can decompose B into
a direct sum Bγ © B2 with r(B^ = Kv If Hγ and H2 denote the p-adic
completions of Bx and B2 resp., then H = ί ζ φ iϊ2 and

LEMMA 8.1. Suppose that H=M(&N with r(N) ^ r(M) ^ 1..
Lei ^ G £/(H) satisfy Nφ = 0. Γfeew ^ belongs to the snbring of E\H)
generated by all idempotents of E(H).

Proof. Let π be the projection of H onto Λί along N. Because
of r(N) ^ r(M), we can write JV = iV'©iV" with r(ΛΓ') = r(M). Let
σ be an isomorphism between M and iV'. Then there exist i2-endo-
morphisms a, β and 7 of iϊ, defined as follows:

a = 0 on Λf α = 1 on N' a = 0 on ΛΓ"

/S = 1 o n l /5 = σ - ^ π on N' β - 0 o n ΛΓ"

7 = Φ(l - π) on M 7 = 1 on iSΓ' 7 = 1 on N" .

Then a2 = a, β2 = β and 72 = 7. Finally, let τ — πaβ and p = πy~
Then for all x e Λf,

^r = ^τrα:/3 = a;α:/S = xoβ = xσσ~ιφπ = xφπ

xp = xπy = xj = xφ(l — π)
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and
Nτ = {Nπ)aβ = 0 = Nφ = Nφπ

Np = (Nπ)y = 0 = Nφ = i\fa(l - TΓ) .

Hence τ = φπ and |0 = ̂ (1 — TΓ), and therefore ^ = r + <o. This com-
pletes the proof of the lemma, since τ and p are generated by the
ldempotents π, a, β and 7.

THEOREM 8.2. The ring E(H) is generated by its idempotents if
and only if the rank of H is at least two.

Proof. If r(H) — 1, then E(H) — R; and the only idempotents
of R are 0 and 1 which clearly do not generate R as a ring (since
we are assuming throughout this paper that R is not a field).

Let r(H) ̂  2. If r(H) is infinite, then we break up H = H, 0 H2

with r{H^ = r(H2). For every β in E(H) we have β = εβ + (1 - ε)β,
where ε is the projection of H onto Hι along H2. Applying (8.1), we
see that εβ as well as (1 — ε)β are generated by idempotents in E(H).

If r(H) is finite and even, then again we only have to write H =
Hi 0 H2 with r(Hx) = r(H2) and apply the lemma. Suppose finally that
r(H) = 2n + l with n^l. Then H = M@N with r{N) = 1. If w
denotes the projection of H onto M along N, then for each a e E(H)
we may write

a = wa + (1 — w)a = waw + wa(l — w) + (1 — w)a .

Then (8.1) tells us that (1 — w)a is generated by idempotents. The
same is true for waw, since it is an iϋ-endomorphism of the module
Hw = M, whose rank is even. Therefore we only must show that
ιva(l — w) is generated by idempotents. This, however, follows from
wa(l — w) = [w + wa(l — VJ)] — ID, v/here w and w + wa(l — vS) are

both idempotent. This completes the proof.

9* The characterization theorem* In this last section we shall
characterize the ii-endomorphisrn rings of the divisible torsion R-
modules and the reduced complete torsion-free jβ-modules. First, a
preparatory lemma which generalizes a well-known fact for semi-
simple rings.

LEMMA 9.1. Let E be a ring and 0 Φ e — e2 e E. Then the fol-
lowing three statements are equivalent:

(1) eE is a minimal nonradical right ideal
( 2) eEe/J(eEe) is a field
(3) Ee is a minimal nonradical left ideal.

Proof. Assume that eE is minimal nonradical. Let a e eEe, but
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a£j{eEe). Then a$J(E), since J{eEe) = eEe n J(E). But aeeE.
Hence aeE = eE. Thus aeEe = eEe, which shows that eEe/J(eEe) is
without proper nonzero right ideals. It is well-known that this is
equivalent with (2). Conversely, assume the validity of (2). Let R
be a right ideal of E which is properly contained in eE. Then Re =
eRe is a proper right ideal of eEe because it doesn't contain e. Hence
eRe c J(eEe), hence eRe c J(E), hence R2 = eReR c J(E), hence R a
J(E). This proves the equivalence of (1) and (2). By symmetry, (2)
and (3) are equivalent.

If a ring is without minimal nonradical right ideals, then we
define the sum of its minimal nonradical right ideals to be the zero
ideal.

MAIN THEOREM 9.2. Let E be a ring and Eo the sum of its
minimal nonradical right ideals. Then the folloivίng three properties
are equivalent:

I. There exists one and essentially only one complete discrete
valuation ring S and one and essentially only one divisible torsion
S-module G such that E is isomorphic to the ring of all S-endomor-
phisms of G.

II. There exists one and essentially only one complete discrete
valuation ring R and one and essentially only one reduced complete
torsion-free R-module H such that E is isomorphic to the ring of all
R-endomorphisms of H.

III. (1) E is Hausdorff and complete in its J-adic topology.
(2) There exists a non-zero-divisor q in E such that J{E) =

qE = Eq.
(3) EQ is not a zero ring and is contained in every non-

radical two-sided ideal of E.
(4) Let L be a left ideal of E which is closed in the J-adic

topology of E and satisfies qE Π L = qL. If R(L) = 0 then L contains
Eo.

(5) If Lι and L2 are left annihilators in E whose inter-
section is zero, and if qE f] (Lι + L2) = q(Lλ + L2), then Lι + L2 is a
left annihilator.

( 6 ) E possesses an identity element.

Proof. The equivalence of I and II is a consequence of (5.5). It
remains to show that II and III are equivalent. Assume that E =
E(H), where H is a reduced complete torsion-free i?-module. Then
(1) and (2) of III follows from (5.6). Furthermore, (3) holds by virtue
of (7.5), and (4) is true by (7.8). Finally, (5) is satisfied by (6.6), and
clearly E(H) possesses an identity element. Hence II implies III.
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Assume now that (l)-(6) of III are valid. The proof, that this
implies the existence of one and essentially only one reduced complete
torsion-free iϋ-module H such that E ^ E(H), will be given in ten
steps.

(a) Construction of the ϋί-module H such that E is essentially
a subring of E(H). By (3), there exists a minimal nonradical right
ideal H in E. And from (1) and (7.1) it follows that there exists a
minimal idempotent e in E such that H = eE. The right annihilator
R(H) of H is a two-sided ideal of E. Assume that 0 Φ aeR(H). It
is a consequence of (1) and (2) that for every element in E there is
a maximal power of q dividing it. So let a = βqn with βίJ(E).
Since q is not a zero-divisor, we must have β e R(H) so that R(H) (£
J{E). Then Eo c R{H), by (3). This implies H* c HE0 = 0, twhich
contradicts H2 = H. Hence R{H) = 0, and H is a faithful right E-
module. The centralizer of H — eE is the ring R = ei?e (Jacobson
[6], Proposition 3, p. 51). We may therefore identify E with a sub-
ring of the iϋ-endomorphism ring E(H) of the left iϋ-module H.

(b) If n is a positive integer then In = {φeE\Hφ c J(i?)%} =
J ^ ) 7 1 = g n # = £7g\ The In's are two-sided ideals in £7. From (2) it
is clear that J(E)n = £*£? = £7g\ And obviously J(E)n c /„. We prove
the opposite inclusion by induction on n. If Iλ ςt J(E) then EQ a 1^
by (3). However, this would imply H = H2 a HEQ a J(E), contra-
dicting the choice of the ideal i ϊ a s a nonradical one. Hence Iλ a J(E).
Next, assume that In c J(E)n and let c e In+ι. Then, since In+1 c In,
we can write c — c'qn. If he H, then hc'qn = hce qn+1E. Thus c! e Iλ

since q is not a zero-divisor. Therefore c e qn+1E. Consequently In+1 c
J(E)*+1.

(c) There exists a non-zero-divisor p in the ring eEe such that
eE Π J(.ET = vneE, Eef]J(E)n = Eepn and eEef]J(E)n = pneEe = βE'βp71

for every positive integer n. Suppose that eJ(E)e c J(E)2. Then it
follows from (b) that qeeJ(E)2 = g2i£. But then eeJ(E), since g is
not a zero-divisor. The Jacobson radical of a ring, however, doesn't
contain nonzero idempotents. Hence eJ(E)e ςt J(E)2. Now pick any
a in E such that p = βαgβ g J(E)2 and write ge = e'g. Note that ef

is an idempotent. Then β = eae' & J(E). Therefore βE = eE since
eE is minimal nonradical. If edq is arbitrary in eE f] J{E), then
there exists / e E with βf = ed. Write fq = qf. Then

= βqf = eae'qf =

Thus eE Π e/(£?) is a principal right ideal in E generated by p. We
know from (9.1) that Ee is a minimal nonradical left ideal in E.
Therefore, by symmetry, Ee Π J(E) is a principal left ideal generated
by p. An easy induction argument now asserts that the first two
wanted equations hold for all n. Then the validity of the third one
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is established by

pneEe = pneE f] Ee = [eE n J(E)n] Π Ee = βEe Π J(E)n

= [Ee Π J(E)n] n eE = iϊtep* n ^ = eEepn .

Next, we claim that neither in eE nor in Ee is p a zero-divisor.
Suppose φp = 0 for ^ e i?e. Then /̂9g = 0 implies that φβ = 0, hence
0ei£ = 0 since βE = eE7. Thus 0 e i£(l - e) Π Ee = 0, whence 9 = 0.
By symmetry, also pφ = 0 with φeeE implies φ = 0.

(d) J(e#e)w = β#e Π J(#)*. Since J(e#β) = βE'e Π J(E) is true in
any ring it follows from (c) that J(eEe) = peEe = eEep. Hence
J(eEe)n = pwei?β which in turn equals eEe Π J{E)n = pneEe which in
turn equals eEe Π J{E)n, by (c).

(e) JR = eEe is a complete discrete valuation ring. First, we
have that R/J(R) is a field, by (9.1). Secondly, we know from (c)
that J{R) = pR = Rp, with p a non-zero-divisor in i?. Of course p
is not nilpotent. Moreover, if {αj is a Cauchy sequence in the J-adic
topology of E which is contained in eEe, then lim a{ = lim {ea{e) =
e(\imai)eeeEe. Hence eEe is a closed subspace of E. Therefore the
fact that R is Hausdorίϊ and complete in its J-adic topology is an
immediate consequence of (1), if we just observe that, by (d), the
J-adic topology on R is the same as its relative topology induced by
the J-adic topology of E.

(f) H = eE is a reduced complete torsion-free R-module. H is
torsion-free since we know from (c) that p is not a zero-divisor. And
H is reduced because p[np

nHa Γ\nq
nE = 0. Now endow H with its

p-adic topology by taking the submodules pιH for i ^ 0 as a neigh-
borhood basis at zero. Then it follows from (c) that this topology
coincides with the relative topology on H induced by the J-adic
topology of E. Since eE is a closed subspace of E, we conclude that
H is complete in its p-adic topology.

Recall that we have identified E with a subring of E{H). In
the following we shall use the operators A and P as defined in § 6.

(g) HΛ(S) = S for every submodule S of H. Clearly HΛ(S) c S.
Conversely, let se S. We have s — es and H — eEe ® eE(l — β).
Therefore

Hs = Hes — eEes + eE(l — e)es = eEes = Rs cz S .

In other words: s is the image of e in H under the jR-endomorphism
s of H which belongs to Λ(S). Accordingly S c HA(S).

(h) E0(H) cz E. It is enough to show that E contains all R-
endomorphisms φ of H with r(Hφ) = 1, because every i?-endomorphism
in E0(H) is a sum of those. If r(Hφ) = 1, then by (6.3) we may
write H = {h} © K(φ). Hence to prove EQ(H) c E, we must show



CHARACTERIZATION OF THE ENDOMORPHISM RINGS 169

that to each decomposition H = {h} 0 H' and each y e H there exists
an iϋ-endomorphism in E which maps h onto y and annihilates H'.
Consider the left ideal L — Λ(Hr) of E. We claim that L is closed
in the J-adic topology of E and satisfies qE n L = gL. To this end,
let (α'i) be a Cauchy sequence in L. This sequence has a limit α in E,
since I? is complete. It follows from (b), (c) and (d) that Λ{pιH) =
J(Ey for every positive integer i. Therefore, for each x e H, the
sequence (xa^) is Cauchy in the p-adic topology of H and converges
to xa. But each xa{ belongs to Hf, and H' is a direct summand of
H. Consequently xa e Hf for each x e H, or equivalently, α e L. Thus
L is closed. To prove the purity of L, note first that pH — Hq. If
now Q9 e L7 then iϊig^ = (pH)ό a pH n ίΓ = pH'. This implies that
Hφ c £P because i ϊ is torsion-free. Hence ψe L. In other words,
£ Π (/-£' = g'X/ Assume next that R{L) — 0. Then L satisfies the
hypothesis of (4), so that EQ must be contained in L. But this would
mean in particular that H = HH c HEQ c HL c Hf, contradicting the
fact that H' is a proper summand of H. Hence R{L) Φ 0. But by
(g) and (6.1) we have R{L) = P(Hf). Since q is not a zero-divisor and
Πn Eqn = 0, this implies that P(iϊ') ςz! £?g. So pick a in P(iί') with
a£Eq. Then hagJ(E), since otherwise because of iΓα = 0 and (b),
a would be divisible by q. Now haE is a right ideal of E, contained
in H but not in J(E). However, H is minimal nonradical. Hence
haE = H. Thus for every yeHwe can find a /? e E such that (to)/3 =
y, and so α/3 is the desired i?-endomorphism in E mapping h onto y
and annihilating H''.

(i) E = E(H). Since we just proved that E^JH") C E, we can
now apply the powerful Theorem 6.5. If the rank of H is one, then
already EQ(H) = E(H). Hence without loss of generality we may
assume r{H) ^ 2. In order to show E = E(H) it is by virtue of (8.2)
only necessary to show that E contains all idempotent i?-endomorphisms
of H. If σ is any idempotent of E(H), then we can write H = HσQ)
K(σ), where σ is the identity on Hσ and annihilates K(σ). Hence we
have to prove that to each decomposition H = H, 0 H2 there exists an
j?-endomorphism in E which fixes every element in H, and annihilates
H2. Consider the two left ideals LL = Λ(iϊΊ) and L2 = Λ(H2). Clearly
LγC\L2 = 0, and (6.5) tells us that Lγ and L2 are both left annihilators.
We wish to show qE Π (LL + L2) = q(LL + L2). The purity of Lγ and
L2 themselves is established as under (h). So let qae LL + L2, say,
qa = β, + β2 with ^ e Liβ Pick any A e ίί. Then fe/S< = Λ< e Hi and

+ β2) = hqa e Hq = pH = pHλ 0 pH2 .

Thus hβi e pHi9 so that βi e Li n /ί(piϊ) = L4 Π ^(E) = gLie Conse-
quently βλ + β2eq(L1 + L2), which establishes the validity of qE Π
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(Li + L2) = q(Lι + L2). Hence Lx + L2 satisfies the hypothesis of (5)
and is therefore again a left annihilator. Under the lattice isomor-
phism of (6.5) this left annihilator must correspond to H^ 0 H2 = H,
which means that Lx 0 L2 = i?. Since i? possesses an identity element,
it follows that there exists an idempotent σ in E such that Lι = Eσ
and Z/2 = E(l — σ). Now, using (g), we have fli = HΛ(H^) = HEσ
and H2 = HΛ(H2) = JEΓJE(1 — σ). Hence σ is the identity on Hx and
annihilates H2.

(j) Uniqueness. Suppose that a is a ring isomorphism between
E(H^) and E(H2), where Hi is a reduced complete torsion-free iί^-module
(i — 1, 2). We know from (7.6) that, if ^ is any minimal idempotent
in E(Hi), then the ϋ^-module Hi is isomorphic with the βiEiH^βi-
module βiE(H^. Since a maps minimal idempotents onto minimal
idempotents, it follows that the ϋ^-module Hι is isomorphic with the
ϋ?2-module H2. This completes the proof.
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