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DIFFERENTIABILITY OF MINIMAL
SURFACES AT THE BOUNDARY

FRANK DAVID LESLEY

Let Γ be a Jordan curve in Rz and F(z) = (u(z)9 v(z), w(z)):
{\z\ ^ 1} -» RB be a solution of Plateau's problem for Γ, where
z = x + iy are isothermal parameters. Then u,v,w are
harmonic in {\z\ < 1} and are the real parts of analytic func-
tions λ, μ, v. Using the Poisson integral and the defining
properties of minimal surfaces, Kellogg's theorem for con-
formal mapping is generalized by proving: 1. If ΓeCί>a,
0 < a < 1, then ;,/ί,y6(? β for \z\^l and if Γ e 1 1 then
λr, μ', v! have modulus of continuity Kt log 1/ί for | z | ^ 1; K
and the Holder constants depend only on the geometry of Γ.
2. If ΓeCn ω{t), n^2, where ω(t) is a modulus of continuity
satisfying a Dini condition, then λ, μ, v e Cn>ω*(ί) for | z \ ̂  1,
where ω*(t) is a certain modulus of continuity. Once again
ω* depends only on Γ.

Let Γ be a closed Jordan curve in R\ Then S is called a gene-
ralized minimal surface spanning Γ if S is represented by a triple of
real valued functions

F{z) = (u(z), v(z), w{z)): {\z\ ^ 1} -> i?3 (s = a; + î / = re<<?)

such that

( a ) u,v,w are harmonic in | z | < 1 and continuous in | z \ ̂  1
( b ) a? and y are isothermal parameters in z < 1, i.e.,

^•ί 7 ^ = uxuy + ' y ^ + wxwy = 0 for |«| < 1

( c ) i^(βί(9) is a homeomorphism of 131 = 1 with Γ1.
A solution to Plateau's problem for Γ is a generalized minimal

surface spanning Γ, and a solution may be normalized by specifying
that three fixed points on \z\ = 1 correspond to three fixed points on
Γ. We shall consider the solutions to be normalized, and we note
that there may be more than one normalized surface spanning a given
curve Γ.

Consider the analytic functions of which u, v, w are the real parts:

χ(z) = u(z) + iu*{z) μ(z) = v(z) + ίv*(z) v[z) = w(z) + iw*(z).

Then the condition (b) is equivalent to

(1) λ'2(z) + μ'\z) + v'\z) = 0 \z | < 1.
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This paper will deal with the differentiability of λ, μ, v at the
boundary \z\ = 1, under given smoothness conditions on the curve Γ.

It was noted by Weierstrass that if the boundary Γ of a minimal
surface S contains a straight line segment a, then the surface may
be extended analytically as a minimal surface across a, by use of the
reflection principle. In 1951 H. Lewy [5] proved that if a is an
analytic arc then the surface can be extended analytically across a.

For an up-to-date account of the studies on the boundary be-
havior of minimal surfaces see the recent paper of J. C. C. Nitsche
[7]. In that paper Nitsche proved among other results that if Γ e Cn>a

for n ^ 1 and 0 < a < 1, then F(z) e Cn'a in \z\^l and the Holder
constant for the nth derivatives of F(z) is the same for all solutions
of Plateau's problem, i.e., they depend only on the geometrical pro-
perties of Γ. In this connection see also [4], where a completely
different proof of the first part of Nitsche's theorem is given.

In the following we shall say that a function f(z) e Cn>ω{t) for z in
some domain if f{n) exists and has modulus of continuity ω(t), i.e.,

I f ^ f a ) - f{n)(t2) I ^ ω(\ t t - t 2 \ ) f o r \ t ι - U \ < σ ,

where ω(t) is a nondecreasing, non-negative function for 0 ̂  t ^ σ

S σ

(ω(t)/t)dt < co. We shall assume, as we may without loss of
0

generality, that t = O(ω(\t\)) as t -* 0. In the following O(φ(t)) shall
mean O(φ{t)) as t —> 0. Note that if ω(t) = kta, 0 < a < 1, k a constant,
then f(t) e Cn'a. We shall denote by s(θ) = s(F(ei9)) the arclength along
Γ with s(0) = 0. Our principal results are the following.

THEOREM 1. If Γ e C1'*, 0 < a g 1 then each of λ, μ, v is con-
tinuously differentiable in \z\ ^ 1. In addition, there exists a constant
c such that \s'(θ)\ ^ c, — π <Ξ θ ̂  π, where c is dependent only on Γ.

THEOREM 2. Suppose ΓeCUω{t) and \μ,v are continuously dif-
fer entiable for \z\ ^ 1. Let c be a constant such that max,^^ \s'(θ) \ ̂  c
and let ωQ(t) = ω(ct). Then there exist constants K and Kγ depending
on c and on co(t), such that X'{ei0), μ\eiβ), v'(eiθ) have modulus of
continuity

and λ'(s), μ'{z), v'(z) have modulus of continuity K^(nt) for \z\ ̂  1.

Combining Theorems 1 and 2 we obtain: If Γ e C1>a, 0 < a < 1
then λ , f t y e C M for \z\ ̂  1. If ΓeC1'1 then X,μ,veCUωHt) for
ω*(t) = Kt log Sπ/t for some constant K. Furthermore there exists a
constant c such that \ s'(θ) | ^ c for all | θ \ ̂  π. K and c depend on
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Γ only.

THEOREM 3. Suppose that Γ e n'ωlt), n ^ 2. Let c be a constant
such that I s'(θ) \ ̂  c, \ θ | <^ π, and let ωo(t) = ω(ct) (such a constant c
which depends only on Γ exists by Theorem 1). Then:

( i ) λ(w), μin\ v{n) have continuous extensions to \z\ = 1 and there
exist constants K and Kly depending only on Γ such that \{n)(eiθ), μ{n)(eiθ),
v{n)(eiθ) have modulus of continuity

and Xin)(z), μin)(z), v{n)(z) have modulus of continuity K^(nt) for
\z\^l.

(ii) There exists a constant cn depending only on Γ, n such that
\s{n){θ)\ ^cnfor \θ\ ^π.

Conformal mappings in the plane are special cases of minimal
surfaces and in the conformal mapping case the result for ω(t) = Kta,
0 < a < 1 is due to 0. D. Kellogg. The extension of Kellogg's
theorem to a modulus of continuity satisfying a Dini condition

(ω(t)/t)dt < oo, was given by S. E. Warschawski [8] for n = 1 (for
0

n > 1 see [9]).
The case ΓeCUω{t), i.e., the proof of Theorem 3 for n = 1, does

not seem to lend itself to the method we use in establishing our
Theorem 1. However, Warschawski [10] has recently given a proof
of this case along different lines.

We note that our results overlap to some extent with those of
Nitsche [7]. They were obtained independently, although a basic
device used in the proof of Theorem 1 (Lemmas 5 and 6) is the same.
However, there are differences both in approach and in detail between
the two proofs.

The results hold for minimal surfaces in %-space, in which case
we have n harmonic and n analytic functions. Also, it will be ap-
parent that the theorems are local in the sense that they are true
for subarcs of Γ.

2. Auxiliary Results* In the following we shall need a number
of lemmas.

LEMMA 1. Suppose that the function f(z) = u{reu) + iu*(reu) is
holomorphic in \z\ < 1 and u(reu) is continuous in \z\ <Ξ 1. Suppose
also that for some integer n ^ 0

\ΦU)\ ^ A | ί | "α>( | ί | ) for | ί | ^ π
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where A is a constant and ω(t) is nondecr'easing and nonnegative.
Then there exists a constant M, depending only on A and on n,

such that for r >̂ 1/2,

\fln+1)(r)\ £
l-r t

Proof. We begin with the Poisson Integral for /:

= 1- Γ *Φ") ^r
2π J-.T eu —

m*(0) | z |

Differentiating, we obtain

fi»+i)(

_ (n + 1)1 [π uje^e1* ^
-* (eu — z)nΛ

and in particular

-dt
π Jo [1 - 2rcos£ + r 2]w / 2 + 1

2A(n + 1)! [π tnω(t) ,.

- J° [(i _ r ) . + 4r |J / 2 + 1

2A(n + l) ! Γ r- raΆ^tt + V _ ^ffl. . dt
Jo (1 — r)n+ Ji- 'π

for r ^ 1/2,

Now

2Anl

π 1 - r
r) A(n + 1)! πn+ί fg

2nl2

- r)Γ-ί- - 11 > l^^ 1

L l - r TΓJ 2 1 -i-r f Li - r π J 2 1 - r

so that we may choose M depending only on A and on n such that

\fin+1)(r)\ rg
Jl-r

for r^-i.
2

In the case n = 0, ω(ί) = ία 0 < α < 1 we have here a result of
Hardy and Littlewood (see [2] p. 360-366): If the conditions on u
and / are satisfied and if | u(eu) \ ̂  A\t\a, 0 < a ^ 1, \t\ < π then there
exists a constant M depending on A such that for r ^ 1/2,
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M

and

I/'(*•) I £

\f'(r)\ ^ π
1 - r

if 0 < a < 1,

if α = 1.

For our study of the higher derivatives it is useful to extend
Lemma 1.

LEMMA 2. Suppose that f(z) = u(reH) + iu*(reu) satisfies the
hypotheses of Lemma 1 and that for n^'O

( 2 ) u(eu) = Σ α4ί* + O(|ί| for \t\ ^ π

where co{t) is nondeereasing, nonnegative and t = O(o)(\t\)). Then
there exists a constant M depending only on n, on the {at} and on the
constant in the 0(\t\n ω(\t\)) term such that for r ^ 1/2,

\fin+ί)(r)\ ^

Proof. Let

2 %

Then consider

( 3 ) Σ XkPk(t) = Σ

where the real constants xk are chosen so that

this may be done as these xk are the solutions of the equation

We then set

<ho

•

Wo

0
απ

0
0

P\Λ

•
. . .

•

Λ — V '
k=0

0 \
0

(z —
ik

•

•
=

λ

\

1
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Now let g(z) — f(z) — p(z). Then g is holomorphic for \z\ < 1, con-

tinuous for \z\ ^ 1, g(n+ι)(z) = fn+ί)(z) and

eit)\ = \He[f(eit)-p(eit)]\

= u(eu)-±xkPk(t)(4)

since ί = O(ω(|ί|)). Thus by Lemma 1

= O(|ί| ω(|ί|))

where the constant ikf depends only on the constant in the O-term
in (4). Now note that the {ajk} are totally independent of the func-
tion u, so the {Xi} are dependent only on the {α<}. The {x^ affect the
constant in the O(ί*ω(|ί|)) term in (4) via (3) so that the constant
in (4) depends only on the {αj and the O(\t\nω{\t\)) term in (2). Thus
the value of M depends only on these constants.

COROLLARY. // the conditions of Lemma 2 are satisfied and if

\ (ω(t)/t)dt < oo, then there exists a constant A dependent only on the
Jo
{αj, o)(t), n, and the constant in the 0 term in (2), such that for
r ^ 1/2

\Γn){r)\ ^ A.

Proof. Let A1 be the constant in the 0 term in (4). Then as
in the proof of Lemma 1,

-dt
π

VΊF"

2{n o t

so that

But pίn)(r) = nl xn and xn depends on the {αj so

LEMMA 3. Suppose f(z) is holomorphic in\z\<l andf'(z) satisfies

the condition

( 5 ) l/'(rβ")| ^
l-r t
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for all \θ\ ^ π and for all 0 < r < 1. Here ikf is a constant and ω(t) is

S π

(ω(t)/t)dt < oo.
o

Then,
( i ) \\mr^f{reiθ) = f(eiθ) exists and is finite for \θ\ ^ π and f(eiθ)

has the modulus of continuity

t JO f

(ii) f(z) is continuous in \z\ tί 1 and has modulus of continuity
Aω*(πt) where A is a constant depending only on the function ω*(ί).
That is, for | z j , \z2\ <£ 1,

Here we define ω*(t) = α>*(ττ) /or t ^ π.

For the proof of part (i) see [10], Lemma 4; the proof of part
(ii) is patterned after that of the more special theorem in [2], page 363.

In the case ω(t) = t", 0 < a < 1 this is another result of Hardy
and Littlewood ([2] Pages 360-366):

If / is as in Lemma 3 and if | f'(rei9) \ < M/(l - r) 1 "" for all
\θ\ ^ π then f{ei0) e Lip(α') for \θ\ ^ π. If ω(t) = t then \f'(reίθ)\ g

M log (7r/(l — r)) and the conclusion is that f(eiθ) has modulus of con-
tinuity ω*(t) = 3Mtlog(3π/t).

We note that a result analogous to Lemma 3 can be obtained if
(5) is satisfied for a subarc 0t <; θ ^ θ2 of \z\ = 1 for 0 < r < 1. Then
/(βΐ{?) has modulus of continuity &>*(£) on this arc and f(z) has modulus
of continuity Aω*(πt) in the sector θ1 ^ θ ^ θZy 0 ^ r ^ 1, A depending
on ω*. Thus it will be evident that our theorems will hold for
subarcs of Γ.

The first link between the geometry of Γ and the function F is
given by the following Lemma, (see [8] pp. 615-17 and [6] p. 238).

LEMMA 4. Suppose Γ is a closed Jordan curve in R3 and F{z)
is a solution to Plateau's problem for Γ. For two points pu p2e Γ,
let AsiViV?) denote the length of the shorter arc between pι and p2.
Suppose there exist constants c > 1 and δ > 0 such that As(pιp2)lψφ'2 < c
for AsiViVz) < <̂  Then there exist constants K > 0, δι > 0, depending
on Γ only, such that for \ θ — θ01 < δλ

\F{ei0) - F(eiθ°)\ ^ \s(θ) - s(θo)\ SK\Θ-Θ^

where s(θ) for \θ\ ^ π is arclength along Γ and where β = 2/(1 + c)2

so that 0 < β < 1/2.
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Proof. Let D[F] = 1/2 ί ( (F2 + Ffidxdy, the Dirichlet integral
JJlzKl

of F.

If there exists a constant B such that for each solution F to
Plateau's problem, D[F] <̂  B, then Lemma 3.2 of [1] implies that the
family of solutions is equicontinuous. Since x and y are isothermal
coordinates D[F] = A[F], the area of the minimal surface, and by
the isoperimetric inequality for minimal surfaces, A[F] g L2/4π where
L is the length of Γ. Thus D[F] ^ L2/£π = B for all minimal sur-
faces spanning Γ which satisfy the three point condition and, as the
modulus of continuity of the vectors {F(eiθ)} depends only on B, it
depends only on Γ. Thus the family of arclength functions {s(θ)}
associated with the minimal surfaces has a uniform modulus of con-
tinuity which depends only on Γ.

Let D be the diameter of Γ and let δ' > 0 be such that | θ - θ'\ < δ'
implies | s(θ) — s(θr) | < min (δ, D/2) for all minimal surface spanning Γ.

Let kp = {z: I z — eiθ° \ = p, \ z \ < 1} where p < min (574, 1) and let
eiθ* and eiθl be the endpoints of kp which are on \z\ = 1. Then
\θ2- θx\ <δ' so \s(θ2) - s(^) | < min(δ, D/2). Thus F(eiθή must be on
the shorter arc between F(eiθή and F(eiθή. This is true for all solutions
to the Plateau problem for Γ.

Now let lp = length of F(kp). Then, for z0 = ei0»

lp = \ \Fφ(z0 + pe^)\dφ

and by Schwarz's inequality

\Fφ(z0 + pe^)\2dφ

so that

p

Since F is a minimal surface l/ρ2-F2 = F2 so that l/p2-F* = 1/2(F2 +
l/ρ2-F2) and thus

r 72 τ r Γ r Γ / 1

h-dp^ — (JF7* + — i
op 2 JO }kp\ p2

Lett ing Ar = F({^: |« - eiθ°\ ^ r, | ^ | < 1}) and A(r) = area of Ar1 we

have

Jo p

Let L denote the length of the boundary of Δr. By the isoperi-
metric inequality A(r) ^ L2/4π. By our first remarks letting p1 — F(eiθl)
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and p2 = F(eίθή, we have

L = lr + ΛsfaPi) ^lr + c ψ^pl ^ (1 + c)lr

so that

- Aπ 4 ~ 4

Now ^~'(r) = ll/r a.e., so r^f{r) = l\ and
Then for p < p0 = min (574, 1)

so that

Choose Λf so that ^'((o)/(1o
4''1+';»2) ^ .^((Oo)/^"1*^2 ') = M - 1. M

depends only on Γ since ^~(p0) ^ πA(p0) g ^^.[F] ^ L2/4π = B and (00

depends only on 8'. Then .^"(,0) < Mp4la+C)* so that

^dr^ ["^dr < Mρίlίι+C)2 .
ρ/2 r Jo r

N o w t h e r e e x i s t s a ft w i t h ,o/2 S piS p s u c h t h a t

J/o/2 r

so that

and thus
2/(l+c)2 _

log 2 ' v log 2v;
Thus if I eiθ - eiθ» \ = ρ/2 and if p, = F(eίoή and p2 = Fίβ4^) are the
endpoints of fe^

\F{eid) - F(eiθή\ ^ \s(θ) - s(θo)\ ^

lMlp ς cJIMl
log 2 v log 2

Letting K = cJ M 2? we havey log 2

| i Γ ( ^ ) _ F(eiθή\ ^ \8{θ) - s(θo)\ ^ K\θ - ΘQ\?.

This is true for \θ - θo\ < l/3min(S74, 1) = δly for we may then
choose p so that ρ = 2\eiθ - ei9* \ < 2 | θ - θo\ < ρ0 = min (574, 1).

Since s(#) is bounded we may find a constant ϋ^ such that
\s(θ) - s(θo)\ ^ K, \θ - ΘQ\? for all θ, θQe [-π, π]. It is in this form
that we shall use Lemma 4. (Kx clearly depends on Γ only.)
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For the hypothesis of Lemma 4 to hold, it is sufficient that Γ
be continuously differentiable with respect to arclength. Then c may
be taken as close to 1 as we like, so that β is as close to 1/2 as we
like. The constant Kγ will depend on c, but will be uniform for all
solutions to the Plateau problem for Γ.

3* The first derivative* We first prove Theorem 1. From
Lemma 4 we know that F(eiθ) e Lip (β) for any 0 < β < 1/2. Our first
step is to improve the Holder exponent by a "bootstrap'' technique
involving the Hardy-Littlewood forms of Lemmas 1 and 3.

LEMMA 5. Suppose Γ is a smooth closed Jordan curve and F(z)
is a minimal surface spanning Γ. Suppose F(l) = (0, 0, 0) and the
tangent to Γ at F(l) is along the positive u axis. Let J^(s) = (£7(s),
V(s), W(s)) be the parametrization of Γ with respect to arclength s.
Let s(θ) = s(F(eiθ)) and s(0) = 0, so that J^(0) = F(l) = (0, 0, 0) and
_^""'(0) is along the positive u axis.

Suppose that ^"(s) eCι'a for some 0 < a ^ 1 and that F(eiθ) e Lip (β)
for some β > 0, with Holder constant Kβ.

Then there exists a constant K, depending only on Γ, Kβ, and β,
such that for \ θ \ ̂  π

Iv{e i 0)\^K\Θ\^1 + a ) Iw{e i0)\^K\Θ\β{1+a) .

Proof. Since V(s) eCι>a and Vs(0) = 0 we have, for some constant K&

\V.(8)\£K0\8\".

Since F(0) = 0 we integrate to obtain

( 6 ) I V(s)\ ^ K° \s\ι+a.
1 + a

F(θ) e Lip (β) implies that s(θ) e Lip (β) so that there exists K£
(depending on Kβ and Γ) such that

combining (6) and (7) one obtains

v(ei0)\ = \V(s(θ))\ ^
1 + a

The proof for w(eiθ) is analogous.
We now apply Lemma 5 to raise the Holder exponent for F(ei0)~

LEMMA 6. Suppose Γ is a closed Jordan curve and F(z) is a
minimal surface spanning Γ. Suppose Γ e C1'" for 0 < a ^ 1 and
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that F(eiθ) e Lip (β) with Holder constant Kβ, where β(l + a) < 1.
Then {F(ei0) e Lip (β(l + a)) with the Holder constant depending only
on Kβ and Γ.

Proof. First assume that Γ, F are in the position of Lemma 5.
Then \v{eiθ)\ ^ K\θ\^ι+a) and \w{eiθ)\ ^ K\θ\^+a).

Consider now μ(z) = v(z) + iv*(z) and v(z) = w{z) + iw*(z). Then
by Lemma 1 (w = 0), there exists a constant M depending only on K
such^that for b — β(l + a)

| g .. M.. . and l»'(r)l<; „ M".. , .

Letting X(z) = w(̂ ) + iu*(z) and applying (1) we have

and hence

(1 — r) 1 " 6

We would now like to apply Lemma 3 to conclude that λ, μ, v e

For any F(eiθ) on Γ, let (uθ, vθ, wθ) be a new coordinate system cen-
tered at F(ei0) and such that the v? axis is tangent to Γ at F(eiθ).
Then (V^z), /y(9(^), wθ{z)) ~ Fθ(z) is a minimal surface and by a rotation
of the unit circle we may assume that Fθ(l) — F(ei0). It is clear
that Fθ(eu) e Lip (β) with the same Holder constant as F(eu). Thus
Γ, F° are as in Lemma 5, so that we may use the preceding argu-
ment to see that

I (μθY(r) I < — and | {v°)'{r) \ < —

where μθ{z), vθ(z), Xθ(z) are the analytic functions with real parts
vθ(z), wθ(z) and u°(z), respectively and μ\l) = i ^(l) = λ^(l) = 0 so that

M is dependent only on JΓ, β and if̂ . If (α^ ), 1 ^ i, i ^ 3, is the
orthogonal matrix of the coordinate transformation, we have

( 8 )

and therefore by the inequality of Schwarz and the orthogonality of
the matrix (a{j)

χ(rei0) = alί.{θ)X\r) + α12(#)μ9(r) + aJ0)v>>{r) + \{eie)

r) + au(θ)μ1(r) + ai%(θ)v'(r) + μ(eiβ)

v(τe") = a31

„ V b for |<? |^ 2π
(1 — r) 1 - '
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and by Lemma 3, λeLip(ί>). The same holds for μ and v, and the
Holder constant is as claimed.

LEMMA 7. With Γ, F defined as in Lemma 5, there exists an
ε > 0 such that v{eiθ) = 0(θ1+ε), w(eiθ) = 0(θ1+ε) where the constant in 0
depends only on Γ.

Proof. Choose 0 < β < 1/2 such that for all integers n, (1 + a)n Φ
1/β. Then there exists an integer n such that (1 + a)nβ = 1 + ε > 1
but (1 + ay^β < 1. Apply Lemma 6 w — 1 times to obtain F(ei0) e
Lip (β(l + a)n~ι) and then apply Lemma 5 to see that there exists K
constant such that \v(θ)\ ^ K\θ\ι+ε and \w{θ)\ S K\θ\ι+ε.

Proof of Theorem 1. First suppose Γ, F are as in Lemma 5.
Then we claim l i m ^ μ'(r) = μ'(l), lim,.^ v'(r) = v'(l), lim^i λ'(r) = λ'(l)
all exist and are finite. By Lemma 7 v(θ) = 0(^1+ε)» hence by Lemma 1
\μ"{r)\ ^ M/(l - r)1-6, for r ^ 1/2. Then for 1/2 ^ n < r2 < 1

I fr2 fr2 TUT

μ'(r2) - μ'irM = μ"(r)dr <; —JL—dr
\in in (1 — r) δ

so that lim,..,! ^'(r) = μ'(l) exists and is finite. Likewise l i m ^ vr(r) =
i/(l) exists and is finite.

Since λ'2(r) = -{μ'\r) + v'\r)), we see l im r ^ λ'(r) = λ'(l) exists
and is finite.

From (8) it is clear that each of X'(reiθ), μ'(reiθ), vr(reiθ) have radial
limits for all \θ\ ^ π and the convergence is uniform for all θ. Thus
defining λ'(β^) == l im r ^ X'(reiθ), the function X'{eiθ) is continuous. This,
together with the uniform convergences of X'(rei0) to X'(eiθ) implies
that Xf{z) is continuous for \z\ S 1. From this it follows that X{z)
is differentiable at each eiθ, ie.

z-eiθ y

The same facts are true for μ'(z) and v'(z).
Finally, recall that if Γ, F are as in Lemma 5 then there exist

ε > 0 and K>0 such that \v(eiθ)\ ^ K\θ\1+ε and \w(ei9)\ ^ K\θ\ί+ε,
where K depends only on Γ.

Thus, by the corollary to Lemma 2 there exists a constant Kt

such that | ^ ( 1 ) | ^ K, and \v'(l)\ ^ iΓx; hence |λ '( l) | ^ i / T ^ . By
the equations (8) one sees that \X'{eiθ)\,\μ'{ei0)\,\vr{eiθ)\ are bounded
by 2K, for all θ. Thus \s\θ)\ ^ 2 1 / y ^ = c for \θ\ ^ 7Γ, and c is
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the same for any solution to Plateau's problem for Γ.
We now prove a lemma preparatory to the proof of Theorem 2.

LEMMA 8. Suppose Γ, F are positioned as in Lemma 5. Suppose
also that X',μ',vr are continuous in \z\<*\ and ΓeC1>ω{t). Let
s'(θ)\ ^ c, \θ\ ^ π, and let ωo(θ) = ω(cθ). Then

\v(eiθ)\ £ K\θωQ(\θ\)\, \w{eiθ)\ ^ K\θωo(\θ\)\, \u*(eiθ)\ £ K\θωQ(\θ\)\

for \θ\ rg π, where the constant K depends only on c and Γ.

Proof. By the argument of Lemma 5 we have | V(s)| ^ \s\ω(s) and
s i n c e | s { θ ) \ ^ c \ θ | , [ v ( e " ) \ ^ c \ θ \ ω Q ( \ θ | ) ; l i k e w i s e | w { e i θ ) \ ^ c \ θ \ ω o ( | θ \ ) .

By Lemma 4, Us(s(θ)) is uniformly continuous for \θ\<Lπ and
Us(s(0)) = 1. Therefore there exists a δ > 0 (depending only on Γ)
such that \θ\<δ implies Us{s{θ)) > 1/2. Now ds(θ)/dθ Φ 0 for almost
every θ and Uss0 — uθ and Vssθ = v0 so that

But

so that

likewise

Mei0) Us

VJ

UJ

_ Vs(s(θ))

i UMΘ))

2ω(| s I) ^ 2ft),

a.e.

vβ(ei0)

w,(ew)

wθ(eie)

2ω a.e.

^2ω o ( |^ | ) a.e. S.

In polar coordinates the minimal surface condition implies that
uruθ + vrv0 + wrwθ — 0 and therefore

uθ
Ue

but \vr{eiθ)\ and \wr(eiθ)\ are both bounded by c for all # so that
\u${eiθ)\ ^ 4cα>0(|β|) a.e. \θ\<δ. Taking u*(eiθ) = 0 we may integrate
to obtain

\θ\<δ.

Since δ was dependent only on Γ it is clear that K may be chosen
to complete the proof of the lemma.

Proof of Theorem 2. Suppose first that Γ, F are as in Lemma 5.
Then the conclusion of Lemma 8 holds. Applying Lemma 1 to —
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for instance, we obtain

I λ"(r) I £ M [*
Jl-r f

for r ^ —

and analogous inequalities for \μ"{r)\ and \v"(r)\. Since M depends
only on Γ we see by applying the transformation (8) that

I \"(rei9) I £ ι / Ϊ J ί Γ ϋΆdt \θ\<π.
Jl-r t

Analogous inequalities hold for \μ"(reiθ)\ and \v"(rei0)\. The conclu-
sion of Theorem 2 then follows from Lemma 3.

4* The higher derivatives* In proving Theorem 3 for a given
n >̂ 2, the result for % — 1 is assumed, so that ΓeCn>ω{t) implies
ΓeCn~1Λ and thus s{n-1](θ) has modulus of continuity ktlogSπ/t.

We shall make extensive use of the following fact: If f(x) e O ω ( ί )

for I a? I ̂  δ, then

f(x) = Σ/ ( ί ) (0)^ + O(\x«\ω(\x\)).
* = o 'fc!

We now prove a lemma analogous to Lemma 8.

LEMMA 9. Suppose Γ e O ω ( ί ) , % ̂  2, αraϋ ί/̂ αί JΓ, ί7 are positioned
as in Lemma 5. Suppose c >̂ | s'(^) | for \ θ \ ̂  π and that ωQ(θ) = ω(c#).
iŜ c/̂  a c exists and is dependent only on Γ by Theorem 1. Then
there exist constants {6J, {cj, {aj 2 ^ i ^ n such that

( 9 )

where ^(l^l) = | θ \ log 3ττ/| /91 + ωo(|^|) a^ώ ί/̂ β constants in the
0{\θ\n ω^(\θI)) terms depend only on Γ and the constants {aj, {5J, {cj
are uniformly bounded by a constant depending only on Γ.

Proof. We have

(10) s{θ) = Σ s ( i )(0)^ + θ( | θ| log ^

for | ί | ^ π. By the induction hypothesis, there exists a constant K
such that |s(ί)(0)| ^ K for 1 ̂  i ^ n - 1 and |^| ^ π, and such that



DIFFERENTIABILITY OF MINIMAL SURFACES AT THE BOUNDARY 137

the constant in the 0 term is bounded by K. We also have

so that

v(e«) = V(β(θ)) = I

The corresponding expression for w(eiθ) is obtained similarly. Now,
as in Lemma 8

where v,M = VJUS for | 0 | < 51. But V3(s)/Us(s) e C-1-" for | 0 | <
so that

^ Σ d * β 4 + O ( | β | - 1 ω ( | β | ) ) for \θ\ < δ
U,(S)

and O Λ using (10)

Since Γ e C*-ι \ vr(eM) e Cn-2^w where ct)2(<) = ΛΓί (log Sπ/t), so that

Σ / ^ + 0(1 <? I - 1 «,(!<? I))]

A similar expansion holds for wr(eio)wΰ(eiθ)/uθ(eίo) so that

^ | - 1 ^ ( | 01)) for 101<

and

f for

In each case the coefficients of the expansions and the constants
in the 0 terms are bounded uniformly, the bound depending only on Γ.

1 At points 0o where dsldθ — 0 we mean by vo(ei&o)/uθ(eίθo) the limit as θ -
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Proof of Theorem 3. Let us first suppose that Γ, F are as in
Lemma 5. Then by Lemma 9, (9) holds. We may then apply lemma
2 to iX(z), μ(z) and v(z) to conclude that

and

\v{n+1)(r)\ ^

Since the constants involved in (9) are bounded by a constant
depending only on Γ, Mn depends only on Γ. Thus, for all \θ\ ^ π
we have

Mn
l - r

and the corresponding inequalities obtain for μ and v.
Part (i) of the theorem then follows from Lemma 3, with ωx

rather than ωQ.
Furthermore, by the corollary to Lemma 2, if Γ is positioned as

in Lemma 5 then there exists a constant K depending only on Γ,
such that I λ ( w )(l) \^K,\ μ{m)(l) \ ̂  K and | v{m)(l) \ ̂  K for m = 1, 2 , n.
By the equations (8) one sees that |λ(TO)(e^)|, \μ{m)(eiθ)\, and \v{7n)(eiθ)\
are bounded by Vz K for all θ and each m, 1 ^ m ^ n. From this
it follows that |s(Λ>(0)| is bounded for all θ by a constant cn depending
only on Γ.

We may now see that Lemma 9 and Theorem 3 are true with
ωo(|0|) in place of ωjβ).

Since s{n)(θ) is continuous and bounded, s(θ)eCn~lfl i.e.,

(ID β0) = g>(o)£

where the coefficients and the constant in the 0 term are bounded
by some constant K. Then, using (11) instead of (10) in the proof
of Lemma 9, we obtain (9) with ωo(|0|) instead of α^flfll). Then
Theorem 3 may be proved with ωo(|0|) instead of α^fltfl).
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